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Bounds for Convex Functions of Čebyšev Functional
Via Sonin’s Identity with Applications

Silvestru Sever Dragomir

Abstract. Some new bounds for the Čebyšev functional in terms of the
Lebesgue norms ∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

and the ∆-seminorms

‖f‖∆p :=

(∫ b

a

∫ b

a

|f(t)− f(s)|p dt ds

) 1
p

are established. Applications for mid-point and trapezoid inequalities are
provided as well.

1 Introduction
For two Lebesgue integrable functions f, g : [a, b]→ R, consider the Čebyšev func-
tional

C(f, g) :=
1

b− a

∫ b

a

f(t)g(t) dt− 1

(b− a)2

∫ b

a

f(t) dt

∫ b

a

g(t) dt .

In 1935, Grüss [7] showed that

|C(f, g)| ≤ 1

4
(M −m)(N − n) , (1)

provided that there exists the real numbers m,M,n,N such that

m ≤ f(t) ≤M and n ≤ g(t) ≤ N for a.e. t ∈ [a, b] . (2)

2010 MSC: 26D15, 25D10
Key words: Absolutely continuous functions, Convex functions, Integral inequalities, Čebyšev

functional, Jensen’s inequality, Lebesgue norms, Mid-point inequalities, Trapezoid inequalities
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The constant 1
4 is best possible in (1) in the sense that it cannot be replaced by a

smaller quantity.
Another, however less known result, even though it was obtained by Čebyšev

in 1882 [5], states that

|C(f, g)| ≤ 1

12
‖f ′‖∞‖g′‖∞(b− a)2, (3)

provided that f ′, g′ exist and are continuous on [a, b] and ‖f ′‖∞ = supt∈[a,b] |f ′(t)|.
The constant 1

12 cannot be improved in the general case.
Čebyšev inequality (3) also holds if f, g : [a, b]→ R are assumed to be absolutely

continuous and f ′, g′ ∈ L∞[a, b] while ‖f ′‖∞ = ess supt∈[a,b] |f ′(t)|.
A mixture between Grüss’ result (1) and Čebyšev’s one (3) is the following

inequality obtained by Ostrowski in 1970 [12]:

|C(f, g)| ≤ 1

8
(b− a)(M −m)‖g′‖∞, (4)

provided that f is Lebesgue integrable and satisfies (2) while g is absolutely con-
tinuous and g′ ∈ L∞[a, b]. The constant 1

8 is best possible in (4).
The case of euclidean norms of the derivative was considered by A. Lupaş in [9]

in which he proved that

|C(f, g)| ≤ 1

π2
‖f ′‖2‖g′‖2(b− a), (5)

provided that f, g are absolutely continuous and f ′, g′ ∈ L2[a, b]. The constant 1
π2

is the best possible.
Recently, Cerone and Dragomir [2] have proved the following results:

|C(f, g)| ≤ inf
γ∈R
‖g − γ‖q ·

1

b− a

(∫ b

a

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s) ds

∣∣∣∣p dt

) 1
p

, (6)

where p > 1 and 1
p + 1

q = 1 or p = 1 and q =∞, and

|C(f, g)| ≤ inf
γ∈R
‖g − γ‖1 ·

1

b− a
ess sup
t∈[a,b]

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s) ds

∣∣∣∣,
provided that f ∈ Lp[a, b] and g ∈ Lq[a, b] (p > 1, 1

p + 1
q = 1; p = 1, q = ∞ or

p =∞, q = 1).
Notice that for q =∞, p = 1 in (6) we obtain

|C(f, g)| ≤ inf
γ∈R
‖g − γ‖∞ ·

1

b− a

∫ b

a

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s) ds

∣∣∣∣ dt
≤ ‖g‖∞ ·

1

b− a

∫ b

a

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s) ds

∣∣∣∣dt
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and if g satisfies (2), then

|C(f, g)| ≤ inf
γ∈R
‖g − γ‖∞ ·

1

b− a

∫ b

a

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s) ds

∣∣∣∣dt
≤
∥∥∥∥g − n+N

2

∥∥∥∥
∞
· 1

b− a

∫ b

a

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s) ds

∣∣∣∣dt
≤ 1

2
(N − n) · 1

b− a

∫ b

a

∣∣∣∣f(t)− 1

b− a

∫ b

a

f(s) ds

∣∣∣∣dt. (7)

The inequality between the first and the last term in (7) has been obtained by Cheng
and Sun in [6]. However, the sharpness of the constant 1

2 , a generalization for the
abstract Lebesgue integral and the discrete version of it have been obtained in [3].

For other recent results on the Grüss inequality, see [8], [10] and [13] and the
references therein.

In this paper, some new bounds for the Čebyšev functional in terms of the
Lebesgue norms

∥∥f − 1
b−a

∫ b
a
f(t) dt

∥∥
[a,b],p

and the ∆-seminorms are established.
Applications for mid-point and trapezoid inequalities are provided as well.

2 Some Results Via Sonin’s Identity
The following result for convex functions of Čebyšev functional holds.

Theorem 1. Let f, g : [a, b] → R be Lebesgue integrable functions on [a, b]. If
Φ: R→ R is convex on R then we have the inequality

Φ[C(f, g)] ≤ 1

b− a
inf
λ∈R

∫ b

a

Φ

[(
f(x)− 1

b− a

∫ b

a

f(t) dt

)(
g(x)− λ

)]
dx

≤ 1

(b− a)2
inf
λ∈R

∫ b

a

∫ b

a

Φ
[(
f(x)− f(t)

)(
g(x)− λ

)]
dtdx. (8)

Proof. Start with Sonin’s identity [11, p. 246]

C(f, g) =
1

b− a

∫ b

a

(
f(x)− 1

b− a

∫ b

a

f(t) dt

)(
g(x)− λ

)
dx

that holds for any λ ∈ R.
If we use Jensen’s integral inequality we have for any λ ∈ R

Φ[C(f, g)] = Φ

[
1

b− a

∫ b

a

(
f(x)− 1

b− a

∫ b

a

f(t) dt

)(
g(x)− λ

)
dx

]
≤ 1

b− a

∫ b

a

Φ

[(
f(x)− 1

b− a

∫ b

a

f(t) dt

)(
g(x)− λ

)]
dx

=
1

b− a

∫ b

a

Φ

[
1

b− a

∫ b

a

[(
f(x)− f(t)

)(
g(x)− λ

)]
dt

]
dx

≤ 1

(b− a)2

∫ b

a

∫ b

a

Φ
[(
f(x)− f(t)

)(
g(x)− λ

)]
dtdx .

Taking the infimum over λ ∈ R we deduce the desired inequalities (8). �
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Remark 1. If we write inequality (8) for the convex function Φ(x) = |x|p, p ≥ 1,
then we get the inequality

|C(f, g)| ≤ 1

(b− a)1/p
inf
λ∈R

{∫ b

a

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣p∣∣g(x)− λ
∣∣p dx

}1/p

(9)

≤ 1

(b− a)2/p
inf
λ∈R

{∫ b

a

∫ b

a

∣∣f(x)− f(t)
∣∣p∣∣g(x)− λ

∣∣p dtdx

}1/p

.

Utilising Hölder’s integral inequality we have

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]∫ b

a

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣p∣∣g(x)− λ
∣∣p dx

≤ ess sup
x∈[a,b]

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣p ∫ b

a

∣∣g(x)− λ
∣∣p dx

=

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥p
[a,b],∞

‖g − λ‖p[a,b],p ,

b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1∫ b

a

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣p∣∣g(x)− λ
∣∣p dx

≤
(∫ b

a

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣pβ dx

)1/β(∫ b

a

∣∣g(x)− λ
∣∣pα dx

)1/α

=

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥p
[a,b],pβ

‖g − λ‖p[a,b],pα ,

c) for f ∈ Lp[a, b], g ∈ L∞[a, b]∫ b

a

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣p∣∣g(x)− λ
∣∣p dx

≤ ess sup
x∈[a,b]

∣∣g(x)− λ
∣∣p ∫ b

a

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣p dx

=

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥p
[a,b],p

‖g − λ‖p[a,b],∞ .

Utilising (9) we can state the following result.

Theorem 2. Let f, g : [a, b]→ R be Lebesgue measurable functions on [a, b]. Then

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p
inf
λ∈R
‖g − λ‖[a,b],p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

,
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b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

(b− a)1/p
inf
λ∈R
‖g − λ‖[a,b],pα

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

,

c) for f ∈ Lp[a, b], g ∈ L∞[a, b]

|C(f, g)| ≤ 1

(b− a)1/p
inf
λ∈R
‖g − λ‖[a,b],∞

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

.

We have the following particular cases of interest.

Corollary 1. Let f, g : [a, b]→ R be Lebesgue measurable functions on [a, b]. Then

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g− 1

b− a

∫ b

a

g(t) dt

∥∥∥∥
[a,b],p

∥∥∥∥f− 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

,

b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g− 1

b− a

∫ b

a

g(t) dt

∥∥∥∥
[a,b],pα

∥∥∥∥f− 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

,

c) for f ∈ Lp[a, b], g ∈ L∞[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g− 1

b− a

∫ b

a

g(t) dt

∥∥∥∥
[a,b],∞

∥∥∥∥f− 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

.

If one function is bounded, then we can state the following result.

Corollary 2. Assume that f, g : [a, b] → R are Lebesgue measurable functions on
[a, b]. If there exist constants n,N such that n ≤ g(t) ≤ N for a.e. t ∈ [a, b], then

a) for f ∈ L∞[a, b]

|C(f, g)| ≤ 1

2
(N − n)

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

,

b) for f ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

2
(N − n)

1

(b− a)1/pβ

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

,
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c) for f ∈ Lp[a, b]

|C(f, g)| ≤ 1

2
(N − n)

1

(b− a)1/p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

.

Proof. We observe that∥∥∥∥g − n+N

2

∥∥∥∥
[a,b],p

=

(∫ b

a

∣∣∣∣g(t)− n+N

2

∣∣∣∣p dt

)1/p

≤
(∫ b

a

(
N − n

2

)p
dt

)1/p

=
N − n

2
(b− a)1/p,∥∥∥∥g − n+N

2

∥∥∥∥
[a,b],pα

=

(∫ b

a

∣∣∣∣g(t)− n+N

2

∣∣∣∣pα dt

)1/pα

≤ N − n
2

(b− a)1/pα

and ∥∥∥∥g − n+N

2

∥∥∥∥
[a,b],∞

≤ N − n
2

.

Utilising Theorem 2 we deduce the desired result of Corollary 2. �

When one function is of bounded variation, then we can state the following
result.

Corollary 3. If f : [a, b]→ R is Lebesgue integrable and g : [a, b]→ R is of bounded
variation, then

a) for f ∈ L∞[a, b]

|C(f, g)| ≤ 1

2

b∨
a

(g)

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

,

b) for f ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

2

b∨
a

(g)
1

(b− a)1/pβ

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

,

c) for f ∈ Lp[a, b]

|C(f, g)| ≤ 1

2

b∨
a

(g)
1

(b− a)1/p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

,

where
b∨
a

(g) is the total variation of the function g on the interval [a, b].
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Proof. Since g : [a, b]→ R is of bounded variation, then for any t ∈ [a, b] we have∣∣∣∣g(t)− g(a) + g(b)

2

∣∣∣∣ =

∣∣∣∣g(t)− g(a) + g(t)− g(b)

2

∣∣∣∣
≤ 1

2

[∣∣g(t)− g(a)
∣∣+
∣∣g(b)− g(t)

∣∣] ≤ 1

2

b∨
a

(g) .

Then ∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],p

=

(∫ b

a

∣∣∣∣g(t)− g(a) + g(b)

2

∣∣∣∣p dt

)1/p

≤
(∫ b

a

(
1

2

b∨
a

(g)

)p
dt

)1/p

=
1

2

b∨
a

(g) (b− a)1/p,

∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],pα

≤ 1

2

b∨
a

(g) (b− a)1/pα,

and ∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],∞

≤ 1

2

b∨
a

(g) .

Utilising Theorem 2 we deduce the desired result of Corollary 3. �

For functions h that are Lipschitzian in the middle point with the constant
L a+b

2
and the exponent q > 0, i.e. satisfying the condition∣∣∣∣h(t)− h

(
a+ b

2

)∣∣∣∣ ≤ L a+b
2

∣∣∣∣t− a+ b

2

∣∣∣∣q
for any t ∈ [a, b], we have the following result as well.

Corollary 4. If f : [a, b]→ R is Lebesgue integrable and g : [a, b]→ R is Lipschitzian
in the middle point with the constant L a+b

2
and the exponent q > 0, then

a) for f ∈ L∞[a, b]

|C(f, g)| ≤ L a+b
2

(b− a)q

2q(qp+ 1)
1/p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

, (10)

b) for f ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ L a+b
2

(b− a)q−1/pβ

2q(qpα+ 1)
1/pα

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

, (11)
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c) for f ∈ Lp[a, b]

|C(f, g)| ≤ L a+b
2

(b− a)q−1/p

2q

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

. (12)

Proof. We have∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],p

=

(∫ b

a

∣∣∣∣g(t)− g
(
a+ b

2

)∣∣∣∣p dt

)1/p

(13)

≤
(∫ b

a

Lpa+b
2

∣∣∣∣t− a+ b

2

∣∣∣∣qp dt

)1/p

= L a+b
2

(∫ b

a

∣∣∣∣t− a+ b

2

∣∣∣∣qp dt

)1/p

.

Observe that

(∫ b

a

∣∣∣∣t− a+ b

2

∣∣∣∣qp dt

)1/p

=

(∫ a+b
2

a

(
a+ b

2
− t
)qp

dt+

∫ b

a+b
2

(
t− a+ b

2

)qp
dt

)1/p

=

(
2

∫ b

a+b
2

(
t− a+ b

2

)qp
dt

)1/p

=

(
2

(
t− a+b

2

)qp+1

qp+ 1

∣∣∣∣b
a+b
2

)1/p

=

(
2

(
b−a

2

)qp+1

qp+ 1

)1/p

=

(
(b− a)qp+1

2qp(qp+ 1)

)1/p

=
(b− a)q+1/p

2q(qp+ 1)
1/p

.

Then by (13) we have

∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],p

≤ L a+b
2

(b− a)q+1/p

2q(qp+ 1)
1/p

.

Also ∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],pα

≤ L a+b
2

(b− a)q+1/pα

2q(qpα+ 1)
1/pα

and ∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],∞

≤ L a+b
2

(b− a)q

2q
.
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Utilising Theorem 2 we obtain

a) for f ∈ L∞[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

≤ 1

(b− a)1/p
L a+b

2

(b− a)q+1/p

2q(qp+ 1)
1/p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

= L a+b
2

(b− a)q

2q(qp+ 1)
1/p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

,

b) for f ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],pα

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

≤ 1

(b− a)1/p
L a+b

2

(b− a)q+1/pα

2q(qpα+ 1)
1/pα

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

= L a+b
2

(b− a)q−1/pβ

2q(qpα+ 1)
1/pα

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

,

c) and for f ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],∞

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

≤ 1

(b− a)1/p
L a+b

2

(b− a)q

2q

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

= L a+b
2

(b− a)q−1/p

2q

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

.

Thus the inequalities (10)–(12) are proved. �

Remark 2. If the function g is Lipschitzian with the constant L > 0, then

a) for f ∈ L∞[a, b]

|C(f, g)| ≤ L b− a
2(p+ 1)1/p

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],∞

, (14)

b) for f ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ L (b− a)1−1/pβ

2(pα+ 1)1/pα

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],pβ

, (15)
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c) for f ∈ Lp[a, b]

|C(f, g)| ≤ L (b− a)1−1/p

2

∥∥∥∥f − 1

b− a

∫ b

a

f(t) dt

∥∥∥∥
[a,b],p

. (16)

3 ∆-Seminorms and Related Inequalities
For f ∈ Lp[a, b], p ∈ [1,∞), we can define the functional (see [1] and [4])

‖f‖∆p :=

(∫ b

a

∫ b

a

∣∣f(t)− f(s)
∣∣p dtds

) 1
p

and for f ∈ L∞[a, b], we can define

‖f‖∆∞ := ess sup
(t,s)∈[a,b]2

∣∣f(t)− f(s)
∣∣.

If we consider f∆ : [a, b]2 → R,

f∆(t, s) = f(t)− f(s),

then obviously
‖f‖∆p = ‖f∆‖p, p ∈ [1,∞],

where ‖·‖p are the usual Lebesgue p-norms on [a, b]2.
Using the properties of the Lebesgue p-norms, we may deduce the following

seminorm properties for ‖·‖∆p :

(i) ‖f‖∆p ≥ 0 for f ∈ Lp[a, b] and ‖f‖∆p = 0 implies that f = c (c is a constant)
a.e. in [a, b] ,

(ii) ‖f + g‖∆p ≤ ‖f‖∆p + ‖g‖∆p if f, g ∈ Lp[a, b] ,

(iii) ‖αf‖∆p = |α| ‖f‖∆p .

We call ‖·‖∆p as ∆-seminorms.
We note that if p = 2, then

‖f‖∆2 =

(∫ b

a

∫ b

a

(
f(t)− f(s)

)2
dtds

) 1
2

=
√

2

(
(b− a)‖f‖22 −

(∫ b

a

f(t) dt

)2) 1
2

.

Using the inequalities (1), (3) and (5), we obtain the following estimate for ‖·‖∆2 :

a) for m ≤ f ≤M

‖f‖∆2 ≤
√

2

2
(M −m)(b− a) ,
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b) for f ′ ∈ L∞[a, b]

‖f‖∆2 ≤
√

2

2
√

3
‖f ′‖∞(b− a)2 ,

c) for f ′ ∈ L2[a, b]

‖f‖∆2 ≤
√

2

π
‖f ′‖2(b− a)

3
2 ,

since
‖f‖∆2 =

√
2(b− a)[C(f, f)]

1
2 .

If f : [a, b]→ R is absolutely continuous on [a, b], then we can point out the following
bounds for ‖f‖∆p in terms of ‖f ′‖p.

Theorem 3. Assume that f : [a, b]→ R is absolutely continuous on [a, b].

(i) If p ∈ [1,∞), then we have the inequality

a) for f ′ ∈ L∞[a, b]

‖f‖∆p ≤
2

1
p (b− a)1+ 2

p[
(p+ 1)(p+ 2)

] 1
p

‖f ′‖∞ ,

b) for f ′ ∈ Lα[a, b], α > 1, 1
α + 1

β = 1

‖f‖∆p ≤
(2β2)

1
p (b− a)

1
β+ 2

p[
(p+ β)(p+ 2β)

] 1
p

‖f ′‖α ,

c) for f ′ ∈ L1[a, b]

‖f‖∆p ≤ (b− a)
2
p ‖f ′‖1 .

(ii) If p =∞, then we have the inequality

a) for f ′ ∈ L∞[a, b]

‖f‖∆∞ ≤ (b− a)‖f ′‖∞ ,

b) for f ′ ∈ Lα[a, b], α > 1, 1
α + 1

β = 1

‖f‖∆∞ ≤ (b− a)
1
β ‖f ′‖α ,

c) for f ′ ∈ L1[a, b]

‖f‖∆∞ ≤ ‖f ′‖1 .

The following result of Grüss type holds, see [4].
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Theorem 4. Let f, g : [a, b] → R be measurable on [a, b]. Then we have the in-
equality

|C(f, g)| ≤ 1

2(b− a)2
‖f‖∆p ‖g‖∆q ,

where p = 1, q = ∞, or p > 1, 1
p + 1

q = 1, or q = 1, p = ∞, provided all integrals
involved exist.

The inequality is sharp in the sense that if we take f(x) = g(x) = sgn(x − α)
with α = a+b

2 , then the equality results.

Making use of the double integral inequality

|C(f, g)| ≤ 1

(b− a)2/p
inf
λ∈R

{∫ b

a

∫ b

a

∣∣f(x)− f(t)
∣∣p∣∣g(x)− λ

∣∣p dtdx

}1/p

,

obtained in (9) we can state the following result as well.

Theorem 5. Let f, g : [a, b]→ R be Lebesgue measurable functions on [a, b]. Then

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p
inf
λ∈R
‖g − λ‖[a,b],p‖f‖∆∞ , (17)

b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b] α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

(b− a)1/p+1/pβ
inf
λ∈R
‖g − λ‖[a,b],pα‖f‖∆pβ , (18)

c) for f ∈ Lp[a, b], g ∈ L∞[a, b]

|C(f, g)| ≤ 1

(b− a)2/p
inf
λ∈R
‖g − λ‖[a,b],∞‖f‖∆p . (19)

Proof. Utilising Hölder’s inequality for double integrals, we have

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]∫ b

a

∫ b

a

∣∣f(x)− f(t)
∣∣p∣∣g(x)− λ

∣∣p dtdx ≤ ess sup
(x,t)∈[a,b]2

∣∣f(x)− f(t)
∣∣p

×
∫ b

a

∫ b

a

∣∣g(x)− λ
∣∣p dtdx

=
(
‖f‖∆∞

)p
(b− a)‖g − λ‖p[a,b],p .

Then

|C(f, g)|p ≤ 1

(b− a)2

(
‖f‖∆∞

)p
(b− a)‖g − λ‖p[a,b],p

=
1

b− a
(
‖f‖∆∞

)p‖g − λ‖p[a,b],p .
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b) For f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1, we have

∫ b

a

∫ b

a

∣∣f(x)− f(t)
∣∣p∣∣g(x)− λ

∣∣p dtdx ≤
(∫ b

a

∫ b

a

∣∣f(x)− f(t)
∣∣pβ dtdx

)1/β

×
(∫ b

a

∫ b

a

∣∣g(x)− λ
∣∣pα dtdx

)1/α

=
(
‖f‖∆pβ

)p
(b− a)1/α‖g − λ‖p[a,b],pα .

Then

|C(f, g)|p ≤ 1

(b− a)2

(
‖f‖∆pβ

)p
(b− a)1/α‖g − λ‖p[a,b],pα

=
1

(b− a)1+1/β

(
‖f‖∆pβ

)p‖g − λ‖p[a,b],pα .
c) For f ∈ Lp[a, b], g ∈ L∞[a, b] we have∫ b

a

∫ b

a

∣∣f(x)− f(t)
∣∣p∣∣g(x)− λ

∣∣p dtdx ≤ ess sup
x∈[a,b]

∣∣g(x)− λ
∣∣p

×
∫ b

a

∫ b

a

∣∣f(x)− f(t)
∣∣p dtdx

= ‖g − λ‖p[a,b],∞
(
‖f‖∆p

)p
.

Then

|C(f, g)|p ≤ 1

(b− a)2
‖g − λ‖p[a,b],∞

(
‖f‖∆p

)p
.

Taking the power 1
p and then the infimum over λ ∈ R, we get the desired results.

�

Some particular cases of interest are as follows.

Corollary 5. Let f, g : [a, b]→ R be Lebesgue measurable functions on [a, b]. Then

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g − 1

b− a

∫ b

a

g(t) dt

∥∥∥∥
[a,b],p

‖f‖∆∞ ,

b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

(b− a)1/p+1/pβ

∥∥∥∥g − 1

b− a

∫ b

a

g(t) dt

∥∥∥∥
[a,b],pα

‖f‖∆pβ
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c) for f ∈ Lp[a, b], g ∈ L∞[a, b]

|C(f, g)| ≤ 1

(b− a)2/p

∥∥∥∥g − 1

b− a

∫ b

a

g(t) dt

∥∥∥∥
[a,b],∞

‖f‖∆p .

The case when one function is bounded is as follows.

Corollary 6. Assume that f, g : [a, b] → R are Lebesgue integrable functions on
[a, b]. If there exist constants n,N such that n ≤ g(t) ≤ N for a.e. t ∈ [a, b], then

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

2
(N − n)‖f‖∆∞ , (20)

b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

2
(N − n)

1

(b− a)2/pβ
‖f‖∆pβ (21)

c) for f ∈ Lp[a, b], g ∈ L∞[a, b]

|C(f, g)| ≤ 1

2
(N − n)

1

(b− a)2/p
‖f‖∆p . (22)

Proof. From (17)–(19) we have

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g − N + n

2

∥∥∥∥
[a,b],p

‖f‖∆∞ . (23)

Since ∥∥∥∥g − n+N

2

∥∥∥∥
[a,b],p

≤ N − n
2

(b− a)1/p

then by (23) we get (20).

b) For f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1, we have

|C(f, g)| ≤ 1

(b− a)1/p+1/pβ

∥∥∥∥g − N + n

2

∥∥∥∥
[a,b],pα

‖f‖∆pβ . (24)

Since ∥∥∥∥g − n+N

2

∥∥∥∥
[a,b],pα

≤ N − n
2

(b− a)1/pα

then by (24) we get (21).
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c) For f ∈ Lp[a, b], g ∈ L∞[a, b] we have

|C(f, g)| ≤ 1

(b− a)2/p

∥∥∥∥g − N + n

2

∥∥∥∥
[a,b],∞

‖f‖∆p . (25)

Since ∥∥∥∥g − n+N

2

∥∥∥∥
[a,b],∞

≤ N − n
2

,

then by (25) we get (22).
�

The case when one function is of bounded variation, is as follows.

Corollary 7. If f : [a, b]→ R is Lebesgue integrable and g : [a, b]→ R is of bounded
variation, then

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

2

b∨
a

(g) ‖f‖∆∞ ,

b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

2

b∨
a

(g)
1

(b− a)2/pβ
‖f‖∆pβ ,

c) for f ∈ Lp[a, b], g ∈ L∞[a, b]

|C(f, g)| ≤ 1

2

b∨
a

(g)
1

(b− a)2/p
‖f‖∆p .

Proof. From (17)–(19) we have

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],p

‖f‖∆∞ . (26)

Since ∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],p

≤ 1

2

b∨
a

(g) (b− a)1/p ,

then by (26) we get the desired result.
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b) For f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1, we have

|C(f, g)| ≤ 1

(b− a)1/p+1/pβ

∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],pα

‖f‖∆pβ . (27)

Since ∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],pα

≤ 1

2

b∨
a

(g) (b− a)1/pα ,

then by (27) we get the desired result.

c) For f ∈ Lp[a, b], g ∈ L∞[a, b] we have

|C(f, g)| ≤ 1

(b− a)2/p

∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],∞

‖f‖∆p . (28)

Since ∥∥∥∥g − g(a) + g(b)

2

∥∥∥∥
[a,b],∞

≤ 1

2

b∨
a

(g) ,

then by (28) we get the desired result.
�

Corollary 8. If f : [a, b]→ R is Lebesgue integrable and g : [a, b]→ R is Lipschitzian
in the middle point with the constant L a+b

2
and the exponent q > 0, then

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

2q
L a+b

2

(b− a)q

(qp+ 1)1/p
‖f‖∆∞ ,

b) for f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

2q
L a+b

2

(b− a)q−2/pβ

(qpα+ 1)1/pα
‖f‖∆pβ ,

c) for f ∈ Lp[a, b], g ∈ L∞[a, b]

|C(f, g)| ≤ 1

2q
L a+b

2
(b− a)q−2/p‖f‖∆p .

Proof. From (17)–(19) we have

a) for f ∈ L∞[a, b], g ∈ Lp[a, b]

|C(f, g)| ≤ 1

(b− a)1/p

∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],p

‖f‖∆∞ . (29)

Since ∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],p

≤ L a+b
2

(b− a)q+1/p

2q(qp+ 1)1/p
,

then from (29) we deduce the desired result.
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b) For f ∈ Lpβ [a, b], g ∈ Lpα[a, b], α > 1, 1
α + 1

β = 1, we have

|C(f, g)| ≤ 1

(b− a)1/p+1/pβ

∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],pα

‖f‖∆pβ . (30)

Since ∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],α

≤ L a+b
2

(b− a)q+1/pα

2q(qpα+ 1)1/pα
,

then from (30) we deduce the desired result.

c) For f ∈ Lp[a, b], g ∈ L∞[a, b] we have

|C(f, g)| ≤ 1

(b− a)2/p

∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],∞

‖f‖∆p . (31)

Since ∥∥∥∥g − g(a+ b

2

)∥∥∥∥
[a,b],∞

≤ L a+b
2

(b− a)q

2q
,

then from (31) we deduce the desired result.
�

Remark 3. If the function g is Lipshitzian with the constant L > 0, then

a) for f ∈ L∞[a, b]

|C(f, g)| ≤ 1

2
L

b− a
(p+ 1)1/p

‖f‖∆∞ ,

b) for f ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1

|C(f, g)| ≤ 1

2
L

(b− a)1−2/pβ

(pα+ 1)1/pα
‖f‖∆pβ ,

c) for f ∈ Lp[a, b]
|C(f, g)| ≤ 1

2
L(b− a)1−2/p‖f‖∆p .

4 Applications for Mid-point Inequalities
Consider absolutely continuous function h : [a, b]→ R. We have the following well
known representation

h

(
a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt =
1

b− a

∫ b

a

K(t)h′(t) dt,

where the kernel K : [a, b]→ R is defined by

K(t) :=

{
t− a if t ∈

[
a, a+b

2

]
,

t− b if t ∈
(
a+b

2 , b
]
.
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Since
∫ b
a
K(t) dt = 0, then

1

b− a

∫ b

a

K(t)h′(t) dt = C(K,h′).

Utilising Corollary 1 we have

a) for h′ ∈ L∞[a, b]∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

(b− a)1/p
‖K‖[a,b],p

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],∞

, (32)

b) for h′ ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

(b− a)1/p
‖K‖[a,b],pα

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],pβ

, (33)

c) for h′ ∈ Lp[a, b]∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

(b− a)1/p
‖K‖[a,b],∞

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],p

. (34)

Observe that for q > 0 we have

‖K‖[a,b],q =

[∫ b

a

|K(t)|q dt

]1/q

=

[∫ a+b
2

a

(t− a)q dt+

∫ b

a+b
2

(b− t)q dt

]1/q

=

[
(t− a)q+1

q + 1

∣∣∣∣ a+b2

a

− (b− t)q+1

q + 1

∣∣∣∣b
a+b
2

]1/q

=

[(
b−a

2

)q+1

q + 1
+

(
b−a

2

)q+1

q + 1

]1/q

=
(b− a)1+1/q

2(q + 1)1/q
.

Then

‖K‖[a,b],p =
(b− a)1+1/p

2(p+ 1)1/p
, ‖K‖[a,b],pα =

(b− a)1+1/pα

2(pα+ 1)1/pα
.

We also have

‖K‖[a,b],∞ =
1

2
(b− a).

Making use of (32)–(34) we get

a) for h′ ∈ L∞[a, b]∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ b− a
2(p+ 1)1/p

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],∞

,
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b) for h′ ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ (b− a)1−1/pβ

2(pα+ 1)1/pα

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],pβ

,

c) for h′ ∈ Lp[a, b]∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(b− a)1−1/p

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],p

.

For p = 1 we get the simpler inequalities

a) for h′ ∈ L∞[a, b]∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

4
(b− a)

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],∞

,

b) for h′ ∈ L1[a, b]∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(b− a)

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],1

.

Utilising Corollary 2 we have

a) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(Γ− γ)‖K‖[a,b],∞ ,

b) for α > 1, 1
α + 1

β = 1∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(Γ− γ)

1

(b− a)1/pβ
‖K‖[a,b],pβ ,

c) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(Γ− γ)

1

(b− a)1/p
‖K‖[a,b],p ,

provided that γ ≤ h′(t) ≤ Γ for a.e. t ∈ [a, b].
Utilising the above calculations we then have

a) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ (Γ− γ)(b− a) , (35)

b) for α > 1, 1
α + 1

β = 1∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(Γ− γ)

(b− a)1+1/pα−1/pβ

2(pα+ 1)1/pα
, (36)
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c) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(Γ− γ)

b− a
2(p+ 1)1/p

, (37)

provided that γ ≤ h′(t) ≤ Γ for a.e. t ∈ [a, b].
In particular, for p = 1 in (37) we have∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

8
(Γ− γ)(b− a) ,

which is the best inequality one can get from (35)–(37).
If we use Corollary 3 and assume that h′ is of bounded variation on [a, b], then

a) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ b∨
a

(h′) (b− a) ,

b) for α > 1, 1
α + 1

β = 1

∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2

b∨
a

(h′)
(b− a)1+1/pα−1/pβ

2(pα+ 1)1/pα
,

c) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2

b∨
a

(h′)
b− a

2(p+ 1)1/p
. (38)

From (38) for p = 1 we get∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

8
(b− a)

b∨
a

(h′).

If we use inequalities (14)–(16) and assume that h′ is Lipschitzian with the constant
U > 0, namely ∣∣h′(t)− h′(s)∣∣ ≤ U |t− s| for t, s ∈ (a, b),

then

a) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ U 1

4

(b− a)2

(p+ 1)1/p
,

b) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ U 1

4

(b− a)2−1/pβ+1/pα

(pα+ 1)2/pα
,
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c) ∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ U 1

4

(b− a)2

(p+ 1)1/p
.

In particular, we get for p = 1∣∣∣∣h(a+ b

2

)
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

8
(b− a)2U.

5 Applications for Trapezoid Inequalities
Consider absolutely continuous function h : [a, b]→ R. We have the following well
known representation

h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt =
1

b− a

∫ b

a

V (t)h′(t) dt

where the kernel V : [a, b]→ R is defined by

V (t) := t− a+ b

2
.

Since
∫ b
a
V (t) dt = 0, then

1

b− a

∫ b

a

V (t)h′(t) dt = C(V, h′).

Utilising Corollary 1 we have

a) for h′ ∈ L∞[a, b]∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

(b− a)1/p
‖V ‖[a,b],p

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],∞

, (39)

b) for h′ ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

(b− a)1/p
‖V ‖[a,b],pα

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],pβ

, (40)

c) for h′ ∈ Lp[a, b]∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

(b− a)1/p
‖V ‖[a,b],∞

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],p

. (41)

Observe that, for q > 0 we have

‖V ‖[a,b],q =

[∫ b

a

|V (t)|q dt

]1/q

=

[∫ a+b
2

a

(
a+ b

2
− t
)q

dt+

∫ b

a+b
2

(
t− a+ b

2

)q
dt

]1/q

=

[
2

∫ b

a+b
2

(
t− a+ b

2

)q
dt

]1/q

=

[
2
(
b−a

2

)q+1

q + 1

]1/q

=
(b− a)1+1/q

2(q + 1)1/q
.
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Then

‖V ‖[a,b],p =
(b− a)1+1/p

2(p+ 1)1/p
, ‖V ‖[a,b],pα =

(b− a)1+1/pα

2(pα+ 1)1/pα
.

We also have

‖V ‖[a,b],∞ =
1

2
(b− a).

Making use of (39)–(41) we get

a) for h′ ∈ L∞[a, b]∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ b− a
2(p+ 1)1/p

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],∞

,

b) for h′ ∈ Lpβ [a, b], α > 1, 1
α + 1

β = 1∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ (b− a)1−1/pβ

2(pα+ 1)1/pα

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],pβ

,

c) for h′ ∈ Lp[a, b]∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(b− a)1−1/p

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],p

.

For p = 1 we get the simpler inequalities

a) for h′ ∈ L∞[a, b]∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

4
(b− a)

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],∞

,

b) for h′ ∈ L1[a, b]∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(b− a)

∥∥∥∥h′ − h(b)− h(a)

b− a

∥∥∥∥
[a,b],p

.

Since the p-norms of the kernel V are the same as of K, then we can state the
following results as well.

If γ ≤ h′(t) ≤ Γ for a.e. t ∈ [a, b], then we have

a) ∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ (Γ− γ)(b− a) , (42)

b) for α > 1, 1
α + 1

β = 1∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(Γ− γ)

(b− a)1+1/pα−1/pβ

2(pα+ 1)1/pα
, (43)
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c) ∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2
(Γ− γ)

b− a
2(p+ 1)1/p

. (44)

In particular, for p = 1 in (44) we have∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

8
(Γ− γ)(b− a),

which is the best inequality one can get from (42)–(44).
If h′ is of bounded variation on [a, b], then

a) ∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ b∨
a

(h′) (b− a) ,

b) for α > 1, 1
α + 1

β = 1∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2

b∨
a

(h′)
(b− a)1+1/pα−1/pβ

2(pα+ 1)1/pα
,

c) ∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

2

b∨
a

(h′)
b− a

2(p+ 1)1/p
.

From (38) for p = 1 we get∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

8
(b− a)

b∨
a

(h′).

Assume that h′ is Lipschitzian with the constant U > 0 then

a) ∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ U 1

4

(b− a)2

(p+ 1)1/p
,

b) ∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ U 1

4

(b− a)2−1/pβ+1/pα

(pα+ 1)2/pα
,

c) ∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ U 1

4

(b− a)2

(p+ 1)1/p
.

In particular, we get for p = 1∣∣∣∣h(b) + h(a)

2
− 1

b− a

∫ b

a

h(t) dt

∣∣∣∣ ≤ 1

8
(b− a)2U.

Some similar inequalities may be stated in terms of the ∆-seminorms. However
the details are omitted.
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6 Some Exponential Inequalities
We can state the following result.

Theorem 6. Let f, g : [a, b] → R be Lebesgue integrable functions on [a, b]. If
Φ: R→ R is convex and monotonic nondecreasing on R then we have the inequality

Φ[C(f, g)] ≤ 1

b− a
inf
µ∈R

∫ b

a

Φ

[(
f(x) + g(x)

2
− µ

)2 ]
dx. (45)

Proof. From Theorem 1 we have

Φ[C(f, g)]

≤ 1

b− a

∫ b

a

Φ

[(
f(x)− 1

b− a

∫ b

a

f(t) dt

)(
g(x)− 2µ+

1

b− a

∫ b

a

f(t) dt

)]
dx

for any µ ∈ R.
Utilising the elementary inequality

αβ ≤
(
α+ β

2

)2

that holds for any α, β ∈ R, we have(
f(x)− 1

b− a

∫ b

a

f(t) dt

)(
g(x)− 2µ+

1

b− a

∫ b

a

f(t) dt

)
≤
(
f(x) + g(x)

2
− µ

)2

for any x ∈ [a, b].
Since Φ: R→ R is monotonic nondecreasing on R then

Φ

[(
f(x)− 1

b− a

∫ b

a

f(t) dt

)(
g(x)− 2µ+

1

b− a

∫ b

a

f(t) dt

)]
≤ Φ

[(
f(x) + g(x)

2
− µ

)2 ]
(46)

for any x ∈ [a, b].
Integrating (46) over x in [a, b] and taking the infimum over µ ∈ R, we deduce

the desired result (45). �

Remark 4. Writing the inequality (45) for Φ: R→ R, Φ(x) = expx we have

exp[C(f, g)] ≤ 1

b− a
inf
µ∈R

∫ b

a

exp

[(
f(x) + g(x)

2
− µ

)2 ]
dx. (47)

This inequality can provide some exponential inequalities as follows.
Assume that f : [a, b]→ R is Lipschitzian with constant L > 0 and g : [a, b]→ R

is Lipschitzian with constant K > 0. Then by taking

µ =
f
(
a+b

2

)
+ g
(
a+b

2

)
2
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we have(
f(x) + g(x)

2
−
f
(
a+b

2

)
+ g
(
a+b

2

)
2

)2

≤
(
L+K

2

)2(
x− a+ b

2

)2

and by (47) we have

exp[C(f, g)] ≤ 1

b− a

∫ b

a

exp

[(
L+K

2

)2(
x− a+ b

2

)2 ]
dx .
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A determinant formula for the relative class number
of an imaginary abelian number field

Mikihito Hirabayashi

Abstract. We give a new formula for the relative class number of an imagi-
nary abelian number field K by means of determinant with elements being
integers of a cyclotomic field generated by the values of an odd Dirichlet
character associated to K. We prove it by a specialization of determinant
formula of Hasse.

1 Introduction
There are lots of formulas for the relative class number of an imaginary abelian
number field K by means of determinant (see [5] for bibliography). In this paper
we give such a new formula. We prove it by a specialization of the determinant
formula for generalized group matrix which appears in [2, § 13]. The key idea is
a transformation of generalized Bernoulli numbers and a transformation of their
product over the odd characters to one over the even characters. In our formula,
elements of the determinant are integers of a cyclotomic field generated by the
values of an odd Dirichlet character associated to K, whereas elements of the
determinants are rational numbers for known formulas. We may regard our formula
as an imaginary version of Hasse’s formula [2, § 16, (3)], which expresses the class
number of a real abelian number field by means of determinant with elements being
logarithms of cyclotomic units of its cyclic subfields.

2 Results
Let K be an imaginary abelian number field of degree n and with conductor f , and
let K0 be the maximal real subfield of K. Let H0 be the subgroup of the group
(Z/fZ)× of reduced residue classes modulo f corresponding to K0. Let X0 be the
set of Dirichlet characters associated to K0.
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We assume that the Dirichlet characters χ associated to K, which we call char-
acters of K for short, are primitive and that, as usual, χ(x) = 0 for an integer x
not relatively prime to the conductor f(χ) of χ.

We classify the group X0 by the following equivalence ∼: for characters χ,
ψ ∈ X0 let χ ∼ ψ if and only if there exists an integer m such that m is relatively
prime to nχ and that ψ = χm, where nχ is the order of χ. We call the classes classi-
fied by this equivalence Frobenius classes. Let {ψ0} be a system of representatives
of the Frobenius classes. For a representative ψ0 let tψ0 be an integer such that
the quotient group (Z/fZ)×/Hψ0

is generated by a class represented by tψ0
mod f ,

where Hψ0
= {xmod f ∈ (Z/fZ)× ; ψ0(x) = 1}.

We fix an odd character χ∗1 of K. As we will see, the elements of the determinant
of our formula are integers of the field generated by the values of the character χ∗1.

For an even character χ0 of K and for an element amod f of (Z/fZ)× let

uχ0
(a) = −χ∗1(a)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (ax) ,

where Rf (a) is the least positive residue modulo f of a. Then we define a matrix U
by

U = (uψ0
(st−kψ0

))(smod f)H0 ;ψ0, 0≤k≤ϕ(nψ0
)−1 ,

where (smod f)H0 runs in the rows over the quotient group (Z/fZ)×/H0, which
is isomorphic to the Galois group G0 of K0; ψ0 and k run in the columns: {ψ0} is
a system defined above and ϕ is the Euler totient function. Here, t−kψ0

mod f is the

inverse of tkψ0
mod f , i.e., t−kψ0

is an integer satisfying t−kψ0
tkψ0
≡ 1 ( mod f).

With the notation above we have the following

Theorem 1. For an imaginary abelian number field K of degree n and with con-
ductor f , we have

detU = ± (2f)n/2c g∗

Qw
h∗

where h∗ is the relative class number of K, Q is the Hasse unit index of K, w is
the number of roots of unity in K, and g∗ is defined by

g∗ =
∏
χ1

∏
p|f

(
1− χ1(p)

)
where the products

∏
χ1

and
∏
p|f are taken over the odd characters χ1 of K and

the prime numbers p dividing f , respectively, and c is a natural number expressed
by

c =
∏
p|n0

p
1
2

∑
pk|n0

(
q(
n0
pk

)−n0
pk

)
,

where the product
∏
p|n0

and the sum
∑
pµ|n0

are taken over prime numbers p
dividing n0 = n/2 and the powers of p dividing n0, respectively, and q(m) is the
number of solutions of xm = 1 in G0.
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We remark here that the elements uχ0(a) and the matrix U depend on the
character χ∗1, as we see in the examples below, and that, in addition, U depends
on the choice of integers tψ0

. In fact, we have different U ’s for different tψ0
’s in the

case of K = Q(ζ7), the 7th cyclotomic field. Moreover, we note that the matrix U
never coincides with any matrix in known formulas, because U always contains a
constant column corresponding to the principal character ψ0 = 1.

As seen by definition, the number g∗ may be zero and then remains a problem
of how to construct such a formula in Theorem 1 in case of g∗ = 0.

For the cyclotomic fields of prime power conductor we have the following corol-
laries.

Corollary 1. For the cyclotomic field K = Q(ζpρ) of conductor pρ (ρ ≥ 1), p an
odd prime, we have

detU = det
(
uψ0(git−kψ0

)
)

0≤i≤ p
ρ−1(p−1)

2 −1 ;ψ0,0≤k≤ϕ(nψ0
)−1

= ±(2pρ)
pρ−1(p−1)

2 −1h∗,

where g is a primitive root modulo pρ.

For the field K = Q(ζpρ) we can take tψ0
= g for every ψ0 6= 1 and tψ0

= 1 for
ψ0 = 1.

Corollary 2. For the cyclotomic field K = Q(ζ2ρ) of conductor 2ρ (ρ ≥ 2) we have

detU =
(
uψ0(5it−kψ0

)
)

0≤i≤2ρ−2−1 ;ψ0,0≤k≤ϕ(nψ0
)−1

= ± 2(ρ+1)2ρ−2−ρ h∗.

For the field K = Q(ζ2ρ) we can take tψ0
= 5 for every ψ0 6= 1 and tψ0

= 1 for
ψ0 = 1.

Here we give examples. We adopt the basic characters which Hasse used in [2].
For an odd prime p let χp be an odd character modulo p of order p − 1 and
ψpρ (ρ ≥ 2) an even character modulo pρ of order pρ−1; in addition ψppρ = ψpρ−1 .
For the prime 2 let χ4 be the odd character modulo 4 and ψ2ρ (ρ ≥ 3) an even
character modulo 2ρ of order 2ρ−2; in addition ψ2

2ρ = ψ2ρ−1 . The subscript of a
basic character denotes the conductor.

For the following calculation of the values of uχ0(a), we use the identity

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (ax) =

[f/2]∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)
(
2Rf (ax)− f

)
.

Example 1. Let K = Q(ζ5), i.e., p = 5, ρ = 1. Take g = 2 and χ∗1 = χ5. Then
{ψ0} = {1, χ2

5} and

u1(a) = −χ5(a)
(
2R5(a)− 5 + i

(
2R5(2a)− 5

))
,

uχ2
5
(a) = −χ5(a)

(
2R5(a)− 5

)
.
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Consequently

U =

(
u1(1) uχ2

5
(1)

u1(2) uχ2
5
(2)

)
=

(
3 + i 3
3 + i i

)
and hence detU = −2 · 5. Otherwise, by Corollary 1 and [2, Tafel II], detU =

±(2 · 5)
5−1
2 −1 · 1 = ±2 · 5.

Taking g = 2 and χ∗1 = χ3
5, we have

U =

(
3− i 3
3− i −i

)
and hence detU = −2 · 5.

Example 2. Let K = Q(ζ23), i.e., p = 2, ρ = 3. Take χ∗1 = χ4. Then {ψ0} =
{1, ψ23} and

u1(a) = −2χ4(a)
(
R23(a)−R23(3a)

)
,

uψ23
(a) = −2χ4(a)

(
R23(a)− 4

)
.

Consequently

U =

(
u1(1) uψ23

(1)
u1(5) uψ23

(5)

)
=

(
4 6
4 −2

)
and hence detU = −25. Otherwise, by Corollary 2 and [2, Tafel II], detU =

±2(3+1)23−2−3 · 1 = ±25.
Taking χ∗1 = χ4ψ8, we have

U =

(
8 6
8 2

)
and hence detU = −25.

Example 3. Let K = Q(
√
−3,
√

5). Take χ∗1 = χ3. Then {ψ0} = {1, χ2
5} and

u1(a) = −2χ3(a)
(
R15(a)−R15(2a) +R15(4a) +R15(7a)− 15

)
,

uχ2
5
(a) = −2χ3(a)

(
R15(a) +R15(4a)− 15

)
.

Consequently

U =

(
u1(1) uχ2

5
(1)

u1(2) uχ2
5
(2)

)
=

(
10 20
10 −10

)
and hence detU = −22 ·3 ·52. Otherwise, since c = 1, g∗ = 2, w = 2 ·3 and Q = 1,
which is obtained by [2, Tafel II], we have by Theorem 1

detU = ± (2f)n/2c g∗

Qw
h∗ = ± (2 · 15)2 · 1 · 2

1 · 2 · 3
· 1 = ±22 · 3 · 52.

Taking χ∗1 = χ3χ
2
5, we have

U =

(
30 20
30 10

)
and hence detU = −22 · 3 · 52.
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3 The determinant of a generalized group matrix
In the second chapter of the book [2] Hasse gave two transformations of the class
number formula for a real abelian number field; the first transformation is an
application of summations

∑
x χ(x)Af (x) to the group matrix, Af (x) an ordinary

distribution (cf. [2, p. 18] or [4, Lemma 12.15]), and the second transformation is
one for summations

∑
s χ(s)uχ(s) and for the matrix UG (see Lemma 1).

By the first transformation, replacing the distribution Af (x) in [2, p. 18] with

Af (x) = −
(
Rf (x)

f
− 1

2

)
,

we can obtain the formula of Girstmair [1] with Maillet determinant for the relative
class number of an imaginary abelian number field with conductor f .

For the proof of our formula we need the following lemmas. Let G be an abelian
group of order n and X the group of characters of G. For χ ∈ X let

Hχ = {x ∈ G;χ(x) = 1}.
For s ∈ G and χ ∈ X let uχ(s) be a complex-valued function satisfying the

following conditions:
(i) uχ(s) = uχν (s) for s ∈ G and ν ∈ Z relatively prime to the order nχ of χ.
(ii) uχ(s) = uχ(s′) for s, s′ ∈ G with χ(s) = χ(s′).
We classify the group X by the Frobenius equivalence defined as in § 2. Let {ψ}

be a system of representatives of the Frobenius classes of X. For a character ψ let
tψ be a representative of a generator tψHψ of the cyclic group G/Hψ. Then we
define a matrix UG by

UG =
(
uψ(st−kψ )

)
s∈G;ψ,0≤k≤ϕ(nψ)−1

,

where s runs in the rows, and ψ and k run in the columns.

Lemma 1. [2, §14] For the matrix UG we have

detUG = ± cG
∏
χ∈X

∑
smodHχ

χ(s)uχ(s),

where cG is a positive number defined by

cG = ± 1

det(χ(s))s∈G,χ∈X

∏
ψ

( n

nψ

)ϕ(nψ)

det
(
ψ(tψ)ik

)
1≤i≤nψ
(i,nψ)=1

0≤k≤ϕ(nψ)−1


and smodHχ in the sum

∑
smodHχ

runs over the quotient group G/Hχ.

Lemma 2. [2, §14 and §15] For an abelian group G of order n the number cG is a
natural number and holds

cG =
∏
p|n

p
1
2

∑
pk|n

(
q( n
pk

)− n

pk

)
,

where the product and summation are taken over the prime numbers p dividing n
and over the powers of p dividing n, and q(m) is the number of solutions of xm = 1
in G. Therefore cG = 1 if and only if G is cyclic.
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4 Proof of Theorem 1
Proof of Theorem 1. We start with the arithmetic class number formula for h∗,

h∗ = Qw
∏
χ1

(
−1

2
B1,χ1

)
.

For any odd character χ1 of K we have

B1,χ1
=

1

f(χ1)

f(χ1)∑
a=1

χ1(a)a =
1

f

f∑
a=1

χ1(a)a

and like as [4, Lemma 8.7] we have

f∑
a=1

(a,f)=1

χ1(a)a =
∏
p|f

(
1− χ1(p)

)
·
f∑
a=1

χ1(a)a .

In fact, if p | f , we have χ(p)
∑f
a=1 χ(a)a =

∑f/p
b=1 χ(pb)(pb) and hence

∏
p|f

(1− χ1(p)) ·
f∑
a=1

χ1(a)a =

f∑
a=1

χ(a)a+
∑
d|f
d>1

(∑
d′|d
d′>1

µ(d′)
)
χ(d)d

=

f∑
a=1

χ(a)a−
∑
d|f
d>1

χ(d)d =

f∑
a=1

(a,f)=1

χ1(a)a ,

where µ(·) is the Möbius function.
Therefore, putting

S(χ1) =

f∑
a=1

(a,f)=1

χ1(a)a ,

we have by the arithmetic class number formula for h∗

(−2f)n/2g∗h∗

Qw
=
∏
χ1

S(χ1)

and hence our task is to show that the product of the right-hand side is ±c−1 detU .
Recall that χ∗1 is a fixed odd character of K. For an even character χ0 of K let

Hχ0 = {xmod f ∈ (Z/fZ)× : χ0(x) = 1} .

Choose a system of representatives smod f of (Z/fZ)×/Hχ0
. Then, for an odd

character χ1 = χ0χ
∗
1 of K we have

S(χ1) = S(χ0χ
∗
1) =

∑
smodHχ0

χ0(s)uχ0
(s) ,
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where

uχ0
(s) = χ∗1(s)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (sx) .

Therefore we have ∏
χ1

S(χ1) =
∏
χ0

∑
smodHχ0

χ0(s)uχ0
(s) ,

where the product
∏
χ0

is taken over the even characters χ0 of K.
Here we use Lemmas 1 and 2 by letting G be the group (Z/fZ)×/H0 and by

replacing n by n/2, χ by χ0, UG by U , cG by c, and uψ(s) by uψ0
(s).

To use Lemma 1, we need to check the uχ0
(s) for meeting the conditions (i)

and (ii) in § 3. First let ν be an integer relatively prime to the order of χ0. Then
χν0(x) = 1 if and only if χ0(x) = 1. Hence

uχν0 (s) = χ∗1(s)

f∑
x=1

(x,f)=1
χν0 (x)=1

χ∗1(x)Rf (sx)

= uχ0
(s).

Secondly let s, s′ be integers relatively prime to f satisfying χ0(s) = χ0(s′). Hence

uχ0
(s′) = χ∗1(s′)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (s′x)

= χ∗1(s′)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1
(
s(s′)−1x

)
Rf
(
s′ · s(s′)−1x

)

= χ∗1(s′)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(s)χ∗1(s′)−1χ∗1(x)Rf (sx)

= χ∗1(s)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (sx)

= uχ0
(s) .

Here (s′)−1 mod f is the inverse of s′mod f . Therefore we have checked the condi-
tions.
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Consequently, by Lemma 1 we obtain

(−2f)n/2g∗h∗

Qw
=
∏
χ1

S(χ1) =
1

±c
detU ,

that is,

detU = ± (2f)n/2c g∗

Qw
h∗

and by Lemma 2 we immediately obtain the expression of c. This completes the
proof.

Corollaries 1 and 2 are directly obtained by Theorem 1, because for the cyclo-
tomic fields K of prime power conductors we have g∗ = 1 by definition, c = 1 by
Lemma 2 and Q = 1 by [2, Satz 27].
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Discontinuity of the Fuglede-Kadison determinant on
a group von Neumann algebra

Benjamin Küster

Abstract. We show that in contrast to the case of the operator norm topol-
ogy on the set of regular operators, the Fuglede-Kadison determinant is not
continuous on isomorphisms in the group von Neumann algebra N (Z) with
respect to the strong operator topology. Moreover, in the weak operator
topology the determinant is not even continuous on isomorphisms given by
multiplication with elements of Z[Z]. Finally, we define T ∈ N (Z) such that
for each λ ∈ R the operator T +λ · idl2(Z) is a self-adjoint weak isomorphism
of determinant class but limλ→0 det(T + λ · idl2(Z)) 6= det(T ).

1 Introduction
Fuglede and Kadison [1] introduce their determinant for operators in a finite factor.
They prove that, for regular (i.e. invertible) operators, the new determinant shares
many algebraic and analytic properties with the usual matrix determinant (which
it generalises). That includes continuity with respect to the operator norm. We
consider the continuity properties of the generalised Fuglede-Kadison determinant
which is used for example by Lück [4, p. 127] to define the topological invariant
“L2-torsion”. Let f be an element of a finite von Neumann algebra (N, τ). The
(generalised) Fuglede-Kadison determinant of f is

det(f) :=

{
exp

(∫∞
0+

ln(λ) dF (f)
)
, if

∫∞
0+

ln(λ) dF (f) > −∞,
0 , otherwise.

(1)

In this definition, F (f) : [0,∞)→ [0,∞) is the spectral density function of f which
is defined by F (f)(λ) = τ(Ef

∗f
λ2 ), where Ef

∗f
λ2 is a spectral projection of the self-

-adjoint operator f∗f . The associated measure on the Borel σ-algebra of R is given
by dF (f) ((a, b]) = F (f)(b) − F (f)(a) for a, b ∈ R, a < b. The notation “0+”
in 1 means that we omit the possible atom 0 in the domain of integration. The

2010 MSC: 47C15
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omission of that atom is the reason why definition (1) is slightly more general than
the original analytic extension of the Fuglede-Kadison determinant to non-regular
operators [1, p. 528]. In that extension, all operators with non-zero kernel have
determinant zero. In contrast, the generalised Fuglede-Kadison determinant (1)
completely ignores the kernel, which leads for example to the odd equation det 0 =
1. However, for injective operators in a finite factor, the original Fuglede-Kadison
determinant and its generalisation (1) agree.

Applications
An example of a finite von Neumann algebra is the group von Neumann algebra
N (G) of a discrete group G. It is defined as the set of all operators in B(l2(G))
that commute with the G-action on l2(G) given by left multiplication. The trace
is

τ = trN (G) : N (G)→ C ,
T 7→ 〈Te, e〉l2(G) , (2)

where e is the neutral element of G. In [4, chapter 1], Lück extends that example to
the more general theory of morphisms of finite-dimensional Hilbert N (G)-modules.
In that context, the Fuglede-Kadison determinant is the main technical ingredient
in the definition of L2-torsion (see [4, chapter 3]).

An important class of operators in N (G) are those which are given by left
multiplication with an element of the integer group ring ZG. Let (a : G→ Z) ∈ ZG,
i.e. a(g) 6= 0 for only finitely many g ∈ G. The operator in N (G) defined by a is

A : l2(G)→ l2(G)

(cg)g∈G 7→
(
(Ac)g

)
g∈G , (Ac)g =

∑
h∈G

ahch−1g .

Matrices of such operators are exactly the morphisms of Hilbert N (G)-modules
that occur in the study of L2-invariants of finite free G-CW-complexes. Therefore,
determinants of those operators are an important special case of research.

A different example of application of the determinant is the case of the von Neu-
mann algebra associated to an equivalence relation in a probability space, see [2].

Motivation
The motivation to study the continuity properties of the determinant springs from
the desire to understand the behaviour under limits of all constructions that use
the determinant, e.g. the L2-torsion invariant.

The few positive results about the continuity properties of the determinant
of morphisms of finite-dimensional Hilbert N (G)-modules [4, p. 129] all consider
operator norm convergence and follow essentially from the classical dominated or
monotone convergence theorems of Lebesgue and Levi. For example, there is the
result that for an injective positive morphism f : U → U in a finite-dimensional
Hilbert N (G)-module, we have

lim
λ→0+

det(f + λ · idU ) = det(f) . (3)
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Naturally, for such continuity results one expects non-trivial counterexamples when
the conditions of no classical convergence theorem for integrals are fulfilled. By non-
-trivial counterexamples, we mean operators which are as regular as possible. By
the latter we shall mean that the kernel and the cokernel are as small as possible,
the operator has useful properties such as being self-adjoint, and the operator is of
determinant class, i.e. has strictly positive determinant.

For the strong and weak operator topologies, positive results are much harder
to obtain since the convergence of operators in those topologies does not imply con-
vergence of the spectral density functions of the operators in any usable sense. We
are not aware of any published research in the study of the continuity of the deter-
minant with respect to other topologies than the one induced by the operator norm.

Main results
Our three main results are: The determinant is not continuous on all isomorphisms
in N (Z) with respect to the strong operator topology. In the case of the weak
operator topology, the example of discontinuity can be constructed within the class
of operators inN (Z) given by left multiplication with elements of Z[Z]. Considering
the operator norm topology, the Fuglede-Kadison determinant can be discontinuous
at λ = 0 on a line {T+λ·idl2(Z) |λ ∈ R} that consists entirely of weak isomorphisms
of determinant class. That is a non-trivial counterexample to (3) in absence of
positivity. In all cases the operators are constructed explicitly and the short proofs
of their properties suggest how one might construct similar “pathologic” examples
in other situations.

Method
The basis for the construction of our examples is the following model for the group
von Neumann algebra of the integers. Lück remarks in [4, p. 15] that there is an
isometric ?-algebra-isomorphism N (Z) ∼= L∞(S1), where L∞(S1) is identified with
the set of pointwise multiplication operators {Mg | g ∈ L∞(S1)} ⊂ B(L2(S1)) and
the involution on L∞(S1) is pointwise complex conjugation. That isomorphism of
algebras is induced by an isometry of Hilbert spaces

l2(Z)
∼=7−→ L2(S1) ,

(ak)k∈Z 7−→
(
z 7→

∑
k∈Z

akz
k
)
, z = eiϕ ∈ C . (4)

Note that (4) implies that an operator in N (Z) given by left multiplication with
an element (ak)k∈Z ∈ C[Z] is identified with the polynomial

∑
k∈Z akz

k in L∞(S1).
The identification N (Z) ∼= L∞(S1) allows for simple constructions of concrete mor-
phisms in N (Z) with prescribed spectral density functions. Moreover, under the
identification there is the following simple formula for the determinant [4, p. 128]:

ln det g =

∫
S1

ln |g(z)| · χ{u∈S1 | g(u) 6=0} d volz, g ∈ L∞(S1) (5)

where d volz is the usual “round” measure on S1, scaled such that vol(S1) = 1.
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At this point we would like to remark that although N (Z) ∼= L∞(S1) is not a
type II factor (because Z has no infinite conjugacy classes, see [3, Theorem 6.7.5]),
L∞(S1) can be embedded into a type II factor as a maximal commutative subal-
gebra, by the classical group measure space construction. Therefore, operators in
N (Z) can be regarded as elements in a type II factor. Moreover, since all operators
involved in our counterexamples are injective, their determinant agrees in fact with
the original Fuglede-Kadison determinant from [1], which means that our results
apply in particular to the original Fuglede-Kadison determinant.

2 Discontinuity in the Weak Operator Topology
Proposition 1. There is a sequence (An)n∈N ⊂ N (Z) of isomorphisms, given by
left multiplication with elements in Z[Z], which converges to idl2(Z) with respect to
the weak operator topology but limn→∞ det(An) 6= 1 = det(idl2(Z)).

Proof. Define An to be left multiplication with (nak)k∈Z, where na0 = 1, nan = 2
and nak = 0 for all k ∈ Z other than 0 and n. Under the isometric isomorphism
N (Z) ∼= L∞(S1), An corresponds to the polynomial

pn(z) := 1 + 2zn, z ∈ S1 ⊂ C .

The polynomial 1 + 2zn on S1 is bounded away from zero for each n ∈ N. Hence
An is invertible with inverse the operator corresponding to 1/pn ∈ L∞(S1). In [4,
p. 136], Lück proves an example that implies det(An) = 2 for all n ∈ N. From (2)
follows immediately that det(idl2(Z)) = 1. What is left to show is that (An)n∈N
converges to idl2(Z) in the weak operator topology as n→∞. Let f, g ∈ C∞(S1).
Then we have∣∣∣∣12〈(pn − 1)f, g

〉
L2(S1)

∣∣∣∣ =

∣∣∣∣∣
∫
S1

znf(z) g(z) d volz

∣∣∣∣∣
=

∣∣∣∣∣
2π∫
0

eintf
(
exp(it)

)
g
(
exp(it)

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
2π∫
0

1

in
eint d

dt
(fg)

(
exp(it)

)
dt

∣∣∣∣∣
≤ 1

n

∥∥(fg)
′∥∥
∞

n→∞−→ 0 . (6)

Now, since C∞(S1) is dense in L2(S1) with respect to its Hilbert space norm, we can
conclude from (6) that the sequence of operators in B(L2(S1)) given by pointwise
multiplication with pn converges to idL2(S1) in the weak operator topology as n→
∞. The corresponding claim about the sequence (An)n∈N follows immediately. �

Note that the sequence (An)n∈N from the previous proof does not converge to
idl2(Z) in the strong operator topology: For each polynomial pn corresponding to
An, we have ‖(pn − 1)f‖L2(S1) = 2 ‖f‖L2(S1) for all f ∈ L2(S1).
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3 Discontinuity in the Strong Operator Topology
Proposition 2. Let r = (rn)n∈N be a sequence of non-negative real numbers (e.g.
rn = sin(n) + 1). There is a sequence of isomorphisms (frn)n∈N ⊂ N (Z) such that
frn → idl2(Z) in the strong operator topology as n→∞ and det(frn) = exp(−rn).

Proof. We use the identification L∞(S1) ∼= N (Z). Let for n ∈ N the operator frn
correspond to the function grn ∈ L∞(S1) given by

grn (exp(2πit)) :=

{
exp (−n · rn) , 0 < t ≤ 1

n ,

1, 1
n < t ≤ 1.

Then frn is self-adjoint, as grn is real, and invertible with inverse the operator cor-
responding to the well-defined function 1/grn ∈ L∞(S1).

We prove first that frn converges to idl2(Z) in the strong operator topology.
This is equivalent to proving that the pointwise multiplication operator Mgrn

∈
B(L2(S1)) converges to idL2(S1).

Let h ∈ L2(S1).∥∥Mgrn
(h)− h

∥∥
L2(S1)

=

∫
S1

∣∣grn(z)h(z)− h(z)
∣∣2 d volz

=

1∫
0

∣∣∣grn(exp(2πit)
)
h
(
exp(2πit)

)
− h
(
exp(2πit)

)∣∣∣2dt

=

1/n∫
0

∣∣∣h(exp(2πit)
)(

exp(−n · rn)− 1
)∣∣∣2dt

≤
1/n∫
0

∣∣∣h(exp(2πit)
)∣∣∣2dt .

The final integral converges to zero as n → ∞ due to σ-additivity of Lebesgue
measure. The calculation of the determinant of frn is a very easy task using (5):

ln det(frn) =

∫
S1

ln
(
|grn(z)|

)
· χ{u∈S1 | grn(u)6=0} d volz

=

1∫
0

ln
(
grn(exp(2πit))

)
dt

=

1/n∫
0

ln
(
exp (−n · rn)

)
dt

= −rn . �
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4 Discontinuity in the Operator Norm Topology
Define T ∈ N (Z) as the operator corresponding to g ∈ L∞(S1), where

g (exp(2πix)) :=

(
1

n
− x
)n(n+1)

− e−
√
n−1, x ∈

(
1

n+ 1
,

1

n

]
, n ∈ N. (7)

The shape of the graph of g is illustrated in Figure 1 below. One property of g is
that for all x ∈ ( 1

n+1 ,
1
n ], n ∈ N, there is a δn > 0 such that

−e−
√
n − δn ≥ g (exp(2πix)) ≥ −e−

√
n−1.

The statement in line (4) can be verified using∣∣∣∣∣
(

1

n
− x
)n(n+1)

∣∣∣∣∣ ≤
(

1

n
− 1

n+ 1

)n(n+1)

=

(
1

n(n+ 1)

)n(n+1)

≤ 1

2

(
e−
√
n−1 − e−

√
n
)
,

where the second inequality is a straightforward check. For example, we can set
δn := 1

3 (e−
√
n−1− e−

√
n). Note that (4) implies that x 7→ g (exp(2πix)) is a strictly

decreasing function since it is strictly decreasing on each interval ( 1
n+1 ,

1
n ].

Figure 1: Qualitative picture of the graph of g. The slope

of the
(

1
n − x

)n(n+1)
-segments is strongly exaggerated.

4.1 Verification of the properties of T

Note that for λ ∈ R, the operator T + λ · idl2(Z) corresponds to g+ λ · 1, where 1 is
the “constant 1” function on S1.

Proposition 3. For each λ ∈ R the operator T + λ · idl2(Z) is a weak isomorphism.
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Proof. As T is self-adjoint, the claim is equivalent to the claim that T + λ · idl2(Z)

is injective, i.e. for λ ∈ R the zero locus of g + λ · 1 is a null set in S1. Since
x 7→ g (exp(2πix)) is strictly decreasing, g + λ · 1 can have at most one zero. �

Proposition 4. For each λ ∈ R the operator T + λ · idl2(Z) is of determinant class.

Proof. To simplify notation, set γλ(x) := g (exp(2πix)) + λ for x ∈ (0, 1].
Case λ = 0: We use equation (5).

ln det(T ) =

∫
S1

ln (|g(z)|) · χ{u∈S1 | g(u)6=0} d volz =
∑
n∈N

1
n∫

1
n+1

ln |γλ(x)| dx

(4)

≥
∑
n∈N

1
n∫

1
n+1

ln
(

e−
√
n
)

dx

=
∑
n∈N

(
1

n
− 1

n+ 1

)
·
(
−
√
n
)

=
∑
n∈N

−1√
n(n+ 1)

> −∞ .

Case λ = e−
√
m−1, m ∈ N : Again, we use equation (5).

ln det
(
T + λm · idl2(Z)

)
=
∑
n∈N

1
n∫

1
n+1

ln |γλ(x)| dx

≥

1
m∫

1
m+1

ln |γλ(x)| dx+

1∫
0

ln min{δm, δm−1} dx

=

1
m∫

1
m+1

ln

((
1

m
− x
)m(m+1)

)
dx+ ln min{δm, δm−1}

= ln

(
1

m(m+ 1)

)
− 1 + ln (min{δm, δm−1})

> −∞ . (8)

Case λ = e−
√
m−1 + ( 1

m −
1

m+1 )m(m+1), m ∈ N : The point ( 1
m+1 , 0) is a limit

point of the graph of γλ. We have |γλ(x)| ≥ δm for all x ∈ ( 1
m+2 ,

1
m+1 ]. Note

that γλ|( 1
m+1 ,

1
m ] is a polynomial whose derivative has a right limit for x → 1

m+1

+

which is strictly greater than zero. If dm is that limit, we can find ε > 0 such that
|γλ(x)| ≥ dm

2 |x−
1

m+1 | for all x ∈ [ 1
m+1 − ε,

1
m+1 + ε]. On (0, 1]\[ 1

m+1 − ε,
1

m+1 + ε],
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γλ is bounded away from zero by some bound δ > 0. We can estimate using (5):

ln det
(
T + λ · idl2(Z)

)
=
∑
n∈N

1
n∫

1
n+1

ln |γλ(x)| dx

≥

1
m+1 +ε∫
1

m+1−ε

ln

∣∣∣∣12dm
(
x− 1

m+ 1

)∣∣∣∣ dx+

1∫
0

ln δ dx

= 2ε

(
ln

(
1

2
dm

)
+ ln (ε)− 1

)
+ ln δ

> −∞ .

Case e−
√
m−1 < λ < e−

√
m−1 +

(
1
m −

1
m+1

)m(m+1)

, m ∈ N : The graph of γλ

cuts the x-axis at some x0 ∈ ( 1
m+1 ,

1
m ). We can proceed as in the previous case.

For other λ ∈ R : The function γλ is bounded away from 0 so the case is trivial.
�

Proposition 5. There is a sequence (λm)m∈N ⊂ (0, 1] converging to zero such that
det
(
T + λm · idl2(Z)

)
< 1

m(m+1) . So limm→∞ det
(
T + λm · idl2(Z)

)
= 0 6= det (T ).

Proof. Set λm := e−
√
m−1. Similarly as in the previous proof, use (5):

ln det
(
T + λm · idl2(Z)

)
=
∑
n∈N

1
n∫

1
n+1

ln
∣∣∣g(exp(2πix)

)
+ λm

∣∣∣dx

≤

1
m∫

1
m+1

ln
∣∣∣g(exp(2πix)

)
+ λm

∣∣∣dx (9)

= ln

(
1

m(m+ 1)

)
− 1 . (10)

In line (9) we used that the summands in the previous line are non-positive. In
line (10) we used the estimate (8). �
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On a binary recurrent sequence of polynomials

Reinhardt Euler, Luis H. Gallardo, Florian Luca

Abstract. In this paper, we study the properties of the sequence of polyno-
mials given by g0 = 0, g1 = 1, gn+1 = gn+∆gn−1 for n ≥ 1, where ∆ ∈ Fq[t]
is non-constant and the characteristic of Fq is 2. This complements some
results from [2].

1 Introduction
Let Fq be the finite field with q = 2k elements for some k ≥ 1. Given ∆ ∈ Fq[t]
non constant define {gn}n≥0 by g0 = 0, g1 = 1 and

gn+2 = gn+1 + ∆gn for n ≥ 0 . (1)

This sequence was studied in [2]. In this paper, we correct an oversight from [2],
answer an open question about this sequence asked there and prove a few more
properties of this sequence.

In [2], it was shown that gn = 0 holds infinitely often. Here, we correct this
statement and show that in fact gn = 1 holds infinitely often and gn = 0 for n = 0
only. At the end of [2] it was asked whether the sequence {gn}n≥0 is periodic. Here,
we show that this is not the case by proving in fact that lim supn→∞ deg(gn) =∞.
We also find explicit formulas for gn when n = 2m, 2m−1, 2m+1 for some m ≥ 0.
We also find more properties of the polynomials {gn}n≥0. For example, it is easy to
show by induction that the degree of gn is at most n−1 and that gn is a polynomial
in ∆ with coefficients in {0, 1}. We let `(gn) be the length of gn as a polynomial in
Fq[∆], namely the sum of its coefficients and compute this number. We find that
`(gn) = an, where {an}n≥0 is the Stern-Brocot sequence given by a0 = 0, a1 = 1
and

a2n = an and a2n+1 = an+1 + an for all n ≥ 0 .

We also compute how many of the an monomials in gn have odd degree in ∆. Let
bn be this number. We find that b2n = 0 and b2n+1 = an for all n ≥ 0.

2010 MSC: 11T55, 11T06, 11B39
Key words: sequences of binary polynomials, Stern-Brocot sequence, perfect fields of charac-

teristic 2
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All these results are summarized in the theorem below.

Theorem 1. The following holds:

(i) g2m = 1 for all m ≥ 0 ,

(ii) g2m+1 = 1 + ∆ + ∆2 + · · ·+ ∆2m−1

for all m ≥ 1 ,

(iii) g2m−1 = 1 + ∆ + ∆3 + · · ·+ ∆2m−1−1 for all m ≥ 1 ,

(iv) `(gn) = an ,

(v) b2n = 0 ,

(vi) b2n+1 = an for all n ≥ 0 .

2 The proof of Theorem 1
We first prove a lemma.

Lemma 1. For all n ≥ 0:

(i) g2n+4 = g2n+2 + ∆2g2n ,

(ii) g2n = g2
n .

Proof. For (i), we write using (1) (with n replaced by 2n and by 2n + 2) and the
fact that the characteristic of Fq is 2:

g2n+1 = g2n+2 + ∆g2n and g2n+3 = g2n+4 + ∆g2n+2 . (2)

Inserting the above relations into (1) with n replaced by 2n+ 1, we get

g2n+4 + ∆g2n+2 = g2n+3 = g2n+2 + ∆g2n+1 = g2n+2 + ∆(g2n+2 + ∆g2n) ,

or
g2n+4 = g2n+2 + ∆2g2n

as desired. For (ii), we use induction on n. The cases n = 0, 1 are clear. Assuming
that n ≥ 2 and that (ii) holds for all m ≤ n, we have, by (i),

g2n+2 = g2n + ∆2g2n−2 = g2
n + ∆2g2

n−1 = (gn + ∆gn−1)2 = g2
n+1 ,

which completes the induction and the proof of (ii). �

We are now ready to prove Theorem 1. We first prove (i)–(iii) by induction
on m ≥ 0. The cases m = 0, 1 can be verified by hand. Assume that m ≥ 2 and
(i)–(iii) hold for all n < m. Then, by Lemma 1 (ii) and the induction hypothesis,
we have

g2m = (g2m−1)2 = 12 = 1 .

Further,
1 = g2m = g2m−1 + ∆g2m−2 = g2m−1 + ∆(g2m−1−1)2,
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so

g2m−1 = 1 + ∆g2
2m−1−1

= 1 + ∆(1 + ∆ + ∆3 + · · ·+ ∆2m−2−1)2

= 1 + ∆ + ∆3 + · · ·+ ∆2m−1−1.

Finally,

g2m+1 = g2m + ∆g2m−1

= 1 + ∆(1 + ∆ + ∆3 + · · ·+ ∆2m−1−1)

= 1 + ∆ + ∆2 + · · ·+ ∆2m−1

.

For (iv), we check that the statement is true for n = 0, 1. Since

g2n = g2
n

we have a2n = `(g2n) = `(g2
n) = `(gn) = an. Since

g2n+1 = g2n+2 + ∆g2n = g2
n+1 + ∆g2

n (3)

and every monomial appearing in either g2
n+1 or g2

n appears with even degree, we
have that

`(g2n+1) = `(g2
n+1) + `(g2

n) = `(gn+1) + `(gn) = an+1 + an ,

which is what we wanted.
We now prove (v) and (vi). By (ii) of Lemma 1, we have that

g2n = g2
n

is a polynomial in ∆ whose monomials have even degree. Hence, b2n = 0. For the
odd n, note that bn = `(g′n), where g′n denotes the derivative of gn as a polynomial
in ∆. Taking the derivative in relation (1) and using the fact that the characteristic
of Fq is 2, we get

gn = g′n+2 + g′n+1 + ∆g′n .

Inserting the above relation with n replaced by n+ 1 and n+ 2 in (1), we get

g′n+4 + g′n+3 + ∆g′n+2 = gn+2 = gn+1 + ∆gn

= g′n+3 + g′n+2 + ∆g′n+1 + ∆(g′n+2 + g′n+1 + ∆g′n) ,

which leads to
g′n+4 = g′n+2 + ∆2g′n .

Since g0 = 0, g1 = 1, g2 = 1, g3 = 1 + ∆, we have that g′1 = 0 and g′3 = 1. Thus,
we get that g′2n+1 = gn(∆2), where gn(∆2) is the same sequence of polynomials
{gn}n≥0 but with ∆ replaced by ∆2. Now (vi) follows from (iv).
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A simpler argument for (vi) suggested by the referee goes as follows: since

g2
n+1 = g2n+2 = g2n+1 + ∆g2n = g2n+1 + ∆g2

n ,

taking derivatives yields

0 = (g2
n+1)′ = g′2n+1 + g2

n + ∆(g2
n)′ = g′2n+1 + g2

n ,

and therefore g′2n+1 = g2n. Hence,

b2n+1 = `(g′2n+1) = `(g2n) = a2n = an .

Of course, the even case can be treated similarly:

b2n = `(g′2n) = `((g2
n)′) = `(0) = 0 .

Remark 1. Another approach to (iv)–(vi) of Theorem 1 due to the referee is as
follows. First let us define the sequence {gn}n≥0 of polynomials in Z[∆] given by
the same recurrence

gn+2 = gn+1 + ∆gn

with g0 = 0, g1 = 1. Then we have the following representation of the general
term gn.

Lemma 2. We have for n ≥ 0,

gn+1 =

bn/2c∑
k=0

(
n− k
k

)
∆k. (4)

Proof. For n = 0, 1, we have g1 = 1, g2 = 1 + ∆ which are consistent with what is
shown at (4) when n = 0, 1. Assuming now that n ≥ 1 and that (4) holds both for
n and for n replaced by n− 1, then

gn+2 = gn+1 + ∆gn (5)

=

bn/2c∑
k=0

(
n− k
k

)
∆k + ∆

b(n−1)/2c∑
k=0

(
n− 1− k

k

)
∆k


=

(
n

0

)
+

bn/2c∑
k=1

((
n− k
k

)
+

(
(n− 1)− (k − 1)

k − 1

))
∆k

+

b(n−1)/2c+1∑
k=bn/2c+1

(
n− 1− (k − 1)

k − 1

)
∆k

= 1 +

bn/2c∑
k=1

(
n+ 1− k

k

)
∆k +

b(n−1)/2c+1∑
k=bn/2c+1

(
n− k
k − 1

)
∆k. (6)
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In the above formula we used the fact that(
n− k
k

)
+

(
(n− 1)− (k − 1)

k − 1

)
=

(
n− k
k

)
+

(
n− k
k − 1

)
=

(
n+ 1− k)

k

)
.

The left-most term 1 in (5) equals

(
n+ 1− 0

0

)
, the last term is 0 when n is even

because then bn/2c = b(n−1)/2c+1 = b(n+1)/2c, while in case when n = 2m+1
is odd, then the last term is the monomial in k = m + 1 = b(n + 1)/2c with

coefficient

(
2m−m
m

)
= 1 =

(
n+ 1− k

k

)
. This completes the induction. �

By Lemma 2, we have, in characteristic 2,

gn+1 =

bn/2c∑
k=0

[(
n− k
k

)
mod 2

]
∆k. (7)

Hence,

`(gn+1) =

bn/2c∑
k=0

[(
n− k
k

)
mod 2

]
= an+1 ,

which is (iv) for all n ≥ 1 (the fact that `(g0) = a0 = 0 is clear). The last equality
is Theorem 4.1 in [4] (see also sequence A002487 in [5]). Letting

bn+1 :=

bn/2c∑
k=0
k odd

[(
n− k
k

)
mod 2

]
,

we have, since

(
even
odd

)
= even (which can be easily checked by invoking Lucas’

theorem on binomial coefficients modulo p for the prime p = 2), we get

b2n :=

bn/2c∑
k=0
k odd

[(
2n− k − 1

k

)
(mod 2)

]
= 0 ,

which is (v). Further, because

(
2n

2k

)
≡
(
n

k

)
mod 2 (again by Lucas’s theorem),

we have

a2n+1 − b2n+1 =

n∑
k=0

[(
2n− 2k

2k

)
mod 2

]
=

n∑
k=0

[(
n− k
k

)
mod 2

]
= an+1 ,

from where we get that b2n+1 = a2n+1 − an+1 = an, which is (vi).
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3 Comments and Open questions
First of all, observe that our results hold more generally for the finite field Fq, with
q even, replaced by any infinite field of characteristic 2, since we have not used the
property hq = h for the elements h of our field. There are many questions one can
ask about the sequence {gn}n≥0. For example, what can we say about the number
of irreducible factors of gn as a polynomial in ∆? Is it true that all roots of g2n+1

are simple? We leave such questions to the reader. As for the degree of gn, writing
n = 2ab, where b is odd, gives deg(gn) = 2a(b− 1)/2. One may recognize this last
quantity as n ∗ (n − 1)/2, where for nonnegative integers m and n, the quantity
m ∗ n denotes the nonnegative integer whose binary representation is the bitwise
AND operation of the binary representations of m and n. Indeed, since g2n = g2

n,
we get that gn = g2ab = g2a

b , so it suffices to show that if m is odd, then gm has
degree (m− 1)/2. But this follows by replacing n by m− 1 in (7):

gm =

(m−1)/2∑
k=0

[(
m− 1− k

k

)
mod 2

]
∆k,

and noting that the last term of the above sum corresponding to k = (m − 1)/2

has coefficient

(
(m− 1)/2

(m− 1)/2

)
= 1.

The above questions may be asked in the more general context of the field F[∆].
A restriction to perfect fields of characteristic 2 may be useful since then we have
for all polynomials C ∈ F[t] the simple relation

C = A2 + tB2

for some polynomials A,B ∈ F[t]. By construction, the elements of our sequence
with odd subscripts satisfy a relation of this type (see (3) in the proof of (iv)).

Observe also that this sequence can be easily dealt with over fields of charac-
teristic p > 2 by the Binet formulae. However, in our case p = 2 and F finite, we
were not able to use these formulae to describe our sequence since we do not know
explicitly the solutions of the quadratic equation

x2 + x+ ∆ = 0

in the ring Fq[t]. This motivates our new approach to study the sequence in the
present paper.

Moreover, the reader may try to check which of the properties in [3], that hold
for the classical case in which the coefficients are integers, are still true in our
characteristic 2 case by using the tools of [1].
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Symmetries and currents in nonholonomic mechanics

Michal Čech, Jana Musilová

Abstract. In this paper we derive general equations for constraint Noether-
-type symmetries of a first order non-holonomic mechanical system and
the corresponding currents, i.e. functions constant along trajectories of the
nonholonomic system. The approach is based on a consistent and effective
geometrical theory of nonholonomic constrained systems on fibred mani-
folds and their jet prolongations, first presented and developed by Olga
Rossi. As a representative example of application of the geometrical theory
and the equations of symmetries and conservation laws derived within this
framework we present the Chaplygin sleigh. It is a mechanical system sub-
ject to one linear nonholonomic constraint enforcing the plane motion. We
describe the trajectories of the Chaplygin sleigh and show that the usual
kinetic energy conservation law holds along them, the time translation gen-
erator being the corresponding constraint symmetry and simultaneously
the symmetry of nonholonomic equations of motion. Moreover, the expres-
sions for two other currents are obtained. Remarkably, the corresponding
constraint symmetries are not symmetries of nonholonomic equations of
motion. The physical interpretation of results is emphasized.

1 Introduction
While a wide variety of problems within the mechanics of first order systems with-
out constraints or with holonomic constraints is solved, mechanics of nonholo-
nomic systems is still studied relatively intensively by various authors using var-
ious approaches. Bibliography concerning nonholonomic constraints is very rich,
see e.g. famous books by Neimark and Fufaev [26], Bloch and coworkers [2], Cortés
Monforte [7], and Bullo [3], and others, or many papers as e.g. [9], [23], [24], [29],
[34], [35], [39], [40], or recently e.g. [28] (for nonlinear constraints), to mention just
a few. Most of the above cited works are concerned with linear or affine nonholo-
nomic constraints, relevant a.e. for technical applications. A geometrical theory of

2010 MSC: 49S05, 58E30
Key words: nonholonomic mechanical systems, nonholonomic constraint submanifold, canon-

ical distribution, reduced equations of motion, symmetries of nonholonomic systems, conservation
laws, Chaplygin sleigh
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nonholonomic systems on fibred manifolds and their jet prolongations was proposed
by Olga Rossi (Krupková) in [14] and elaborated in her later works among which
we can emphasize e.g. [15], [16], [19]. This theory differs from other approaches
by the idea that a nonholonomic constraint is a fibred submanifold of the first
jet prolongation of the underlying fibred manifold. The nonholonomic mechanical
system is considered as a dynamical system on this constraint submanifold which
is its true phase space. The equations of motion called the reduced equations are
equivalent with the well known Chetaev equations [6] based on the standardly used
d’Alembert’s principle. In this sense the geometrical model is a generalization of
the d’Alembert’s principle to nonlinear as well as higher order constraints. A de-
tailed explanation of the theory based on the nonholonomic variational principle
can be found in [19].

The geometrical theory is an effective tool for solving a wide variety of problems
connected with nonholonomic systems. One of them is the nonholonomic inverse
problem, see e.g. [22] and [30]. The relevance and applicability of the theory was
verified on examples (see [37]) and practical situations (see [8], [10], [11], [12], [13]),
including the experimental verification in [12] and [13]. An interesting realistic
case of a nonlinear constraint is represented by the mechanical system consisting
of a mass particle in the special relativity theory. This problem is solved in [21]
and [31]. Explicit results of this kind should be compared with usually applied an-
alytic and geometric techniques which provide mostly only conclusions concerning
equilibria.

Some questions concerning nonholonomic systems are still not satisfactorily
understood. One of them is the problem of nonholonomic symmetries and con-
servation laws. On the other hand, a proper understanding of symmetries and
conservation laws is a key question in mechanics including nonholonomic systems
in particular. Here we emphasize a new concept of nonholonomic symmetry of
a Lagrangian system and generalization of Noether theorem formulated by Olga
Rossi [18] within the framework of her geometrical theory. An interesting example
of the projectile motion controlled by the constant speed constraint was discussed
and completely solved in [38].

In the present paper we derive general equations of constraint Noether-type
symmetries for a Lagrangian first order mechanical system subjected to a quite
general nonholonomic constraint and the expressions for corresponding currents,
i.e. quantities conserved along trajectories. It should be emphasized that the con-
straint symmetries of a Lagrangian in the generalized Noether theorem need not
be symmetries of the constraint equations of motion. So they play similar role as
“pseudosymmetries” in nonconservative mechanics (see [4], [33], [36]). More gen-
erally, in [36] the solution of the problem of symmetries is based on the idea of
generating first integrals through so called adjoint symmetries (a dual concept of
pseudosymmetries). We focus to Noether-type symmetries defined as vector fields
leaving invariant (up to a constraint form) the constraint Lepage equivalent of a
Lagrangian. We illustrate the results on an example interesting from the physical
point of view: the Chaplygin sleigh. It appears that the solution of the problem
is technically not so simple. We present the solutions of reduced equations of the
sleigh including graphical outputs, as well as conservation laws and corresponding
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symmetries. Moreover, we find the (non-variational) Chetaev constraint forces ex-
plicitly and emphasize the physical interpretation of the results. A brief overview
(following the page restriction requirements) has been submitted for publication in
the proceedings of the VIII-th International Conference Differential Geometry and
Dynamical Systems (DGDS) 2014 where the results were reported, see [5].

2 Elements of the geometrical theory of nonholonomic
mechanics

In this section we summarize elements of the geometrical theory of first order
nonholonomic mechanical systems arising from initially Lagrangian unconstrained
ones.

2.1 Underlying structures and notations
The geometrical theory of nonholonomic mechanical systems is developed on an
(m+ 1)-dimensional underlying fibred manifold (Y, π, X) with the total space Y ,
the one-dimensional base X and the projection (surjective submersion) π. The
dimension of fibres m represents the number of degrees of freedom of an un-
constrained system. We use the standard notation for jet prolongations of this
manifold, (JrY, πr, X), r = 0, 1, 2, Y = J0Y , π = π0 and for fibred manifolds
(JrY, πr,s, J

sY ), s = 0, 1. We denote as (V, ψ) a fibred chart on Y , where V ⊂ Y is
an open set, ψ = (t, qσ), 1 ≤ σ ≤ m. Then (U, ϕ), U = π(V ), ϕ = (t), is the associ-
ated chart on X, and (Vr, ψr), Vr = π−1

r,0 (V ), ψ1 = (t, qσ, q̇σ), ψ2 = (t, qσ, q̇σ, q̈σ),
are the associated fibred charts on J1Y and J2Y , respectively. Let U ⊂ X be an
open set. A section δ : U 3 t → δ(t) ∈ JrY , r = 1, 2, is called holonomic if there
exists a section γ : U 3 t → γ(t) ∈ Y such that δ = Jrγ.

We also use the standard concept of a vector field on Y and its prolongations
connected with the fibred structure. The standard concept of differential forms
is used as well. A vector field ξ on JrY is called πr-projectable if there exists a
vector field ξ0 on X such that Tπr ξ = ξ0 ◦ πr. A vector field ξ is called πr-vertical
if Tπr ξ = 0. A vector field ξ on JrY is called πr,s-projectable if there exists a
vector field ζ on JsY such that Tπr,s ξ = ζ ◦ πr,s. A vector field on JrY is called
πr,s-vertical if Tπr,s ξ = 0. The chart expressions of the above mentioned vector
fields are (for r = 0, 1, 2, s = 0, 1, s < r)

ξ = ξ0(t)
∂

∂t
+

r∑
j=0

ξσ(j)(t, q
ν , . . . , qνr )

∂

∂qσj
,

with ξ0 = 0 for a πr-vertical vector field, and

ξ = ξ0(t, qν , . . . , qνs )
∂

∂t
+

s∑
j=0

ξσj (t, qν , . . . , qνs )
∂

∂qσj
+

r∑
j=s+1

ξσj (t, qν , . . . , qνr )
∂

∂qσj
,

with ξ0 = 0 and ξσj = 0, j = 0, . . . , s, for a πr,s-vertical vector field. In the
preceding expressions we denoted qσ = qσ0 , q̇σ = qσ1 , q̈σ = qσ2 .

A differential q-form η on JrY is called πr-horizontal if iξη = 0 for every
πr-vertical vector field ξ on JrY . A q-form η on JrY is called πr,s-horizontal if
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iξη = 0 for every πr,s-vertical vector field ξ on JrY . πr-horizontal 1-forms have a
chart expression

η = η0(t, qσ, . . . , qσr ) dt .

Every π-projectable vector field ξ = ξ0(t) ∂∂t + ξσ(t, qν) ∂
∂qσ on Y can be prolonged

on JrY , r = 1, 2,

J1ξ = ξ0 ∂

∂t
+ ξσ

∂

∂qσ
+ ξ̃σ

∂

∂q̇σ
, or J2ξ = ξ0 ∂

∂t
+ ξσ

∂

∂qσ
+ ξ̃σ

∂

∂q̇σ
+ ξ̂σ

∂

∂q̈σ
,

where ξ̃σ = dξσ

dt − q̇σ dξ0

dt , and ξ̂σ = dξ̃σ

dt − q̈σ dξ0

dt . A q-form η on JrY is called
contact if Jrγ∗η = 0 for every section γ of π. Contact forms on JrY form a differ-
ential ideal IC called the contact ideal. For expressing differential forms in coordi-
nates we use the basis of 1-forms adapted to the contact structure, (t, ωσ, dq̇σ)
and (t, ωσ, ω̇σ, dq̈σ) on J1Y and J2Y , respectively, where ωσ = dqσ − q̇σ dt,
ω̇σ = dq̇σ − q̈σ dt. There exists a unique decomposition of a q-form η on JrY
into its (q − 1)-contact and q-contact component π∗r+1,rη = pq−1η + pqη. The
chart expression of pq−1η in the basis adapted to the contact structure is a linear
combination of terms with just (q − 1) factors of the type ωσ or ω̇σ and the chart
expression of pqη is a linear combination of terms with just q such factors. (The
only contact form on Y is the trivial (zero) one.) Notice that jet prolongations of
π-projectable vector fields are closely related to the contact ideal being its symme-
tries: ∂Jrξω ∈ IC for every ω ∈ IC . Here ∂Jrξ denotes the Lie derivative along a
vector field Jrξ.

A distribution on JrY is a mapping D : JrY 3 x → D(x) ⊂ TxJ
rY , where

D(x) is a vector subspace of TxJrY . A distribution is generated by local vector
fields ξι on JrY , ι ∈ I, where I is a set of indices. Equivalently, the distribution D
can be annihilated by 1-forms η on JrY such that iξη = 0 for every vector field ξ
belonging to the distribution D.

2.2 Unconstrained systems
The geometrical theory of nonholonomic systems, as introduced in [14], is uni-
versal in the following sense: It concerns all types of nonholonomic mechanical
systems given by equations of motion of the initial unconstrained system and the
nonholonomic constraint, independently whether the equations of motion of the
initial system are variational (Lagrangian) or not. In this paper we concentrate
on the first of both situations because the concept of nonholonomic symmetries is
formulated for constrained Lagrangians, not for equations.

Let λ be a first order Lagrangian, i.e. a horizontal form on J1Y , λ = L(t, qσ, q̇σ) dt.
The pair (π, λ) represents a Lagrange structure. The first order Lagrangean me-
chanics studies a.e. extremals of the Lagrange structure, i.e. sections γ of π repre-
senting critical sections γ of the variational integral (action function)

SΩ : Γ(π) 3 γ → SΩ[γ] =

∫
Ω

J1γ∗ λ

where Γ(π) is a set of all sections of the projection π defined on open subsets of
the base X, and Ω is a compact set included in the domain of γ. Critical sections
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of S are zero points of the variational derivative of S, i.e. integral

dS[γu]

du

∣∣∣∣
u=0

=

∫
Ω

J1γ∗ ∂J1ξλ ,

where ξ is a π-projectable vector field called the variation and {γu}, u ∈ (−ε, ε),
is a one-parameter system of sections generated by ξ such that γ0 = γ, i.e. γu =
φu ◦ γ ◦ φ−1

0u , where (φu, φ0u) is the one-parameter group of the vector field ξ. The
variational derivative of the variational integral leads to the first variation formula∫

Ω

J1γ∗∂J1ξλ =

∫
Ω

J1γ∗iJ1ξ dθλ +

∫
∂Ω

J1γ∗iJ1ξθλ , (1)

where θλ = Ldt+ ∂L
∂q̇σ ω

σ is the Lepage equivalent of the Lagrangian (the Poincaré-
-Cartan form). The condition for an extremal leads to Euler-Lagrange equations—
equations of motion of the system. The coordinate free expression of these equa-
tions reads J1γ∗ iJ1ξ dθλ = 0 or J2γ∗Eλ = 0, where in coordinates

Eλ = Eσ ω
σ ∧ dt , Eσ =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
, (2)

or equivalently
Eσ ◦ J2γ = (Aσ +Bσν q̈

ν) ◦ J2γ = 0 ,

Aσ =
∂L

∂qσ
− d′

dt

∂L

∂q̇
, Bσν = − ∂2L

∂q̇σ∂q̇ν
.

(3)

Here
d′

dt
=

d

dt
− q̈σ ∂

∂q̇σ
=

∂

∂t
+ q̇

∂

∂qσ
.

A π-projectable vector field ξ on Y is called a symmetry of the Lagrange structure
(π, λ) if it holds ∂J1ξλ = 0. This condition is the Noether equation. For a given
Lagrangian it is interpreted as a set of equations for symmetries, for a given vector
field ξ it represents a functional equation for Lagrangians having the symmetry ξ.
(For our purposes the first of both interpretations will be relevant.) The chart
expression of the Noether equation is

∂L

∂t
ξ0 +

∂L

∂qσ
ξσ +

∂L

∂q̇σ

(
dξσ

dt
− q̇σ dξ0

dt

)
+ L

dξ0

dt
= 0 . (4)

Taking into account the first variation formula we can see that if ξ is a symmetry
of the Lagrange structure then the quantity

iJ1ξθλ =

(
L− q̇σ ∂L

∂q̇σ

)
ξ0 +

∂L

∂q̇σ
ξσ (5)

(called the current) is constant along extremals. This result representing conser-
vation laws is well known as the Emmy Noether theorem.
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2.3 Nonholonomic dynamics
Suppose that an unconstrained first order Lagrangian mechanical system is sub-
jected to a nonholonomic constraint given by k equations, 1 ≤ k ≤ m− 1,

fa(t, qσ, q̇σ) = 0 , 1 ≤ a ≤ k , where rank

(
∂fa

∂q̇σ

)
= k ,

or in a normal form

q̇m−k+a = ga(t, qσ, q̇l) , 1 ≤ l ≤ m− k .

These equations define a constraint submanifold Q ⊂ J1Y of codimension k fibred
over Y (and, of course, over X as well). The corresponding projections π̄1,0 and
π̄1 are the mappings π1,0 and π1 restricted to Q, respectively. Denote

ι : Q 3 (t, qσ, q̇l) −→ (t, qσ, q̇l, ga(t, qν , q̇s)) ∈ J1Y

the canonical embedding of Q into J1Y . On the submanifold Q there arise the
induced contact ideal ĨC generated by forms ω̄σ = ι∗ωσ and the canonical distri-
bution

C = {spanϕa | 1 ≤ a ≤ k} , ϕa = ι∗ωm−k+a − ∂ga

∂q̇l
ι∗ ωl. (6)

The π̄1-projectable vector fields belonging to the canonical distribution are called
Chetaev vector fields. They represent admissible variations in the nonholonomic
variational principle (first introduced in [19]). Let us briefly recall this principle
and its consequences. Let (π, λ) be an unconstrained Lagrangian structure and θλ
the corresponding Poincaré-Cartan form. By the constraint system on Q defined
by λ we mean the differential form ι∗θλ. Denote λ̄ = ι∗λ = (L◦ ι) dt and θλ̄ = θι∗λ.
Calculating ι∗θλ we obtain

ι∗θλ = L̄dt+
∂L̄

∂q̇l
ω̄l + L̄aϕ

a = θι∗λ + L̄aϕ
a ,

L̄ = L ◦ ι , L̄a =
∂L

∂q̇m−k+a
◦ ι .

Let δ be a section of the projection π̄1 : Q → X defined on an open subset U ⊂ X
containing a compact set Ω ⊂ X. Let Z ∈ C be a π̄1-projectable vector field and
let (φu, φ0u) its one-parameter group and {δu} = {φu ◦ δ ◦ φ−1

0u }, δ0 = δ, the one-
parameter family of sections generated by Z. The constraint variational integral
and its variational derivative are

SΩ[δ] =

∫
Ω

δ∗ι∗θλ,
dS[δu]

du

∣∣∣∣
u=0

=

∫
Ω

δ∗∂Zι
∗θλ .

If we restrict to holonomic sections we obtain the variational derivative of the
variational integral in the form

dS[γu]

du

∣∣∣∣
u=0

=

∫
Ω

J1γ∗∂Zι
∗θλ .



Symmetries and currents in nonholonomic mechanics 165

Nonholonomic first variation formula reads (taking into account that iZ(L̄aϕa) = 0,
because Z ∈ C)∫

Ω

J1γ∗ ∂Zι
∗θλ =

∫
Ω

J1γ∗iZ dι∗θλ +

∫
∂Ω

J1γ∗iZθι∗λ . (7)

By a direct calculation we can justify that the integrand in the first integral on the
right-hand side of (7) depends only on components of Z on Y . The requirement of
vanishing of this integral (for arbitrary Ω) leads to equations of motion

J1γ∗iZ dι∗θλ = 0 =⇒
(
εs(L̄)− L̄aεs(ga)

)
◦ J2γ = 0 , (8)

for 1 ≤ s ≤ m− k. In the expressions of the type

εs(f) =
∂cf

∂qs
− dc

dt

∂f

∂q̇s
, where f = f(t, qσ, q̇l) ,

the constraint derivative operators are used

∂c
∂qs

=
∂

∂qs
+
∂ga

∂q̇s
∂

∂qm−k+a
,

dc
dt

=
∂

∂t
+ q̇l

∂

∂ql
+ ga

∂

∂qm−k+a
+ q̈l

∂

∂q̇l
=

d′c
dt

+ q̈l
∂

∂q̇l
.

Note that these operators have an important geometrical meaning: Vector fields

∂c
∂t

=
d′c
dt
− q̇l ∂c

∂ql
,

∂c
∂ql

,
∂

∂q̇l
, 1 ≤ l ≤ m− k ,

generate the canonical distribution C. The equations (8) can be written as follows

Ās + B̄sr q̈
r = 0 , 1 ≤ s ≤ m− k , (9)

Ās =
∂cL̄

∂qs
− d′c

dt

∂L̄

∂q̇s
− L̄a

(
∂cg

a

∂qs
− d′c

dt

∂ga

∂q̇s

)
, B̄sr = − ∂2L̄

∂q̇s∂q̇r
+ L̄a

∂2ga

∂q̇s∂q̇r
,

or, via functions Aσ and Bσν (3),

Ās =

[
As +

k∑
a=1

Am−k+a
∂ga

∂q̇s

+

k∑
a=1

(
Bs,m−k+a +

k∑
b=1

Bm−k+b,m−k+a
∂gb

∂q̇s

)(
∂ga

∂t
+
∂ga

∂qσ
q̇σ
)]
◦ ι

B̄sr =

[
Bsr +

k∑
a=1

(
Bs,m−k+a

∂ga

∂q̇r
+Bm−k+a,r

∂ga

∂q̇s

)

+

k∑
a,b=1

Bm−k+b,m−k+a
∂gb

∂q̇s
∂ga

∂q̇r

]
◦ ι .
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The last relations are universal in the following sense: They hold for both types of
equations of motion of an initial unconstrained mechanical system, i.e. variational
as well as non-variational ones.

We obtained m− k reduced equations of a nonholonomic system. These equa-
tions together with k equations of the constraint form a complete set of equations of
motion of the system for its trajectories γ : t→ γ(t) = (t, qσγ(t)) ∈ Y , 1 ≤ σ ≤ m.

2.4 Chetaev equations
In the framework of the geometrical theory of nonholonomic systems the well known
Chetaev equations of motion can be derived. We present them for completeness.
These equations are obtained by introducing the Chetaev constraint force into
equations of motion. Suppose that Aσ + Bσν q̈

ν = 0, 1 ≤ σ, ν ≤ m, are equations
of motion of an unconstrained system. The Chetaev force is defined as the form
φ = µa ∂f

a

∂q̇σ ω
σ∧ dt. The coefficients µa, 1 ≤ a ≤ k, on J1Y are Lagrange multipliers.

The Chetaev equations read(
Aσ +Bσν q̈

ν − µa ∂f
a

∂q̇σ

)
◦ J2γ = 0 . (10)

Together with the equations of the constraint fa = 0, 1 ≤ a ≤ k, we obtain m+ k
equations for trajectories and Lagrange multipliers. Knowing the Lagrange multi-
pliers we can determine the constraint force φ which is important for interpretation
of results from the point of view of physics.

3 Nonholonomic constraint symmetries
In this section we present the definition of a (nonholonomic) constraint symmetry
and derive general equations for symmetries of a constrained mechanical system
arising from an initially unconstrained first order Lagrangian structure.

3.1 The concept of constraint symmetries
Let Z be a Chetaev vector field, i.e. Z ∈ C. The chart expression of Z is

Z = Z0 ∂

∂t
+ Zl

∂

∂ql
+ Zm−k+a ∂

∂qm−k+a
+ Z̃l

∂

∂q̇l
,

Zm−k+a = Z0ga + (Zs − q̇sZ0)
∂ga

∂q̇s
. (11)

The condition for components Zm−k+a follows from the assumption that Z belongs
to the canonical distribution, i.e. iZϕa = 0 for 1 ≤ a ≤ k. We say that Z is a con-
straint symmetry of the nonholonomic mechanical system arising from a primarily
unconstrained Lagrangean structure (π, λ) subjected to nonholonomic constraints
q̇m−k+a = ga(t, qσ, q̇l) if the constrained system ι∗θλ on Q defined by λ remains
invariant under transformations given by the one-parameter group of the vector
field Z up to a constraint form. This means that

∂Zι
∗θλ = iZ dι∗θλ + diZι

∗θλ = Faϕ
a, (12)
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where Fa are some functions on Q. Relation (12) represents the constraint Noether
equation. From the nonholonomic variation formula (7) we can see that if Z is a
constraint symmetry of a nonholonomic mechanical system and γ is a solution of the
corresponding reduced equations together with constraints, then dJ1γ∗iZι

∗θλ = 0,
i.e. (iZι

∗θλ)◦J1γ = const. This means that the quantities Φ = iZι
∗θλ are constant

along solutions. We obtain

Φ =

(
L̄− q̇l ∂L̄

∂q̇l

)
Z0 +

∂L̄

∂q̇l
Zl. (13)

The quantities Φ are called Noether-type currents and the conditions Φ = const.
are the corresponding conservation laws.

3.2 Equations for constraint symmetries
Using the definition of constraint symmetries and relations (9) we obtain after
some tedious calculations the following set of partial differential equations for
(2(m− k) + 1) components of these symmetries:

Z0

[
d′cL̄

dt
−
(
∂cL̄

∂ql
− L̄aε′l(ga)

)
q̇l

]
+ Zl

(
∂cL̄

∂ql
− L̄aε′l(ga)

)
+

d′cZ
0

dt

(
L̄− ∂L̄

∂q̇l
q̇l
)

+
d′cZ

l

dt

∂L̄

∂q̇l
= 0 , (14)

Z0

[
d′c
dt

(
∂L̄

∂q̇l

)
− ∂c
∂qs

(
∂L̄

∂q̇l

)
q̇s + L̄aε

′
l(g

a)

−L̄aq̇s
(
∂c
∂ql

)(
∂ga

∂q̇s
− ∂c
∂qs

(
∂ga

∂q̇l

))]

+Zs

[
∂c
∂qs

(
∂L̄

∂q̇l

)
+ L̄a

(
∂c
∂ql

(
∂ga

∂q̇s

)
− ∂c
∂qs

(
∂ga

∂q̇l

))]

+Z̃s
(

∂2L̄

∂q̇l∂q̇s
− L̄a

∂2ga

∂q̇l∂q̇s

)
+
∂cZ

0

∂ql

(
L̄− ∂L̄

∂q̇s
q̇s
)

+
∂cZ

s

∂ql
∂L̄

∂q̇s
= 0 , (15)

L̄a
∂2ga

∂q̇l∂q̇s
(Zs − q̇sZ0) +

(
L̄− ∂L̄

∂q̇s
q̇s
)
∂Z0

∂q̇l
+
∂L̄

∂q̇s
∂Zs

∂q̇l
= 0 , (16)

for 1 ≤ l ≤ m − k. The following expression represents the coefficients Fa of the
constraint form Faϕ

a (we present them for completeness):

Fa = iZ dL̄a + L̄b

(
∂gb

∂qm−k+a
Z0 +

∂2gb

∂qm−k+a∂q̇s
(Zs − q̇sZ0)

)
+

(
L̄− ∂L̄

∂q̇s
q̇s
)

∂Z0

∂qm−k+a
+
∂L̄

∂q̇s
∂Zs

∂qm−k+a
.

For a special but in practical situations frequent case of a semiholonomic constraint
(linear constraint with ε′l(g

a) = 0, 1 ≤ l ≤ m − k, 1 ≤ a ≤ k) the equations for
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symmetries take a simplified form

d′cL̄

dt
Z0 +

∂cL̄

∂ql
(Zl − q̇lZ0) +

(
L̄− q̇l ∂L̄

∂q̇l

)
d′cZ

0

dt
+
∂L̄

∂q̇l
d′cZ

l

dt
= 0 ,

d′

dt

(
∂L̄

∂q̇l

)
Z0 +

∂c
∂qs

(
∂L̄

∂q̇l

)
(Zs − q̇sZ0)

+Z̃s
∂2L̄

∂q̇l∂q̇s
+
∂L̄

∂q̇s
∂cZ

s

∂ql
+
∂cZ

0

∂ql

(
L̄− q̇s ∂L̄

∂q̇s

)
= 0 ,(

L̄− q̇s ∂L̄
∂q̇s

)
∂Z0

∂q̇l
+
∂L̄

∂q̇s
∂Zs

∂q̇l
= 0 ,

1 ≤ l, s ≤ m−k. These relations are fully consistent with equations for symmetries
of Poincaré-Cartan form of unconstrained systems, ∂J1ξθλ = 0, taking into account
that for unconstrained systems ξ is a π-projectable vector field on Y , i.e. ξ0 =
ξ0(t), ξσ = ξσ(t, qν), 1 ≤ σ, ν ≤ m, and components ξ̃σ are uniquely given by ξ0

and ξν (see relations in Section 2.1). It is obvious that for a nonholonomic case
the constraint differential operators are used instead of the usual ones.

Using the expressions for currents and for coefficients of reduced equations Āl
and B̄ls given by (9) we obtain a more suitable form of equations (14)–(16):

d′cΦ

dt
+ Āl(Z

l − q̇lZ0) = 0 , (17)

∂cΦ

∂ql
− ĀlZ0 +

{
∂Ās
∂q̇l

+
∂L̄a
∂q̇l

ε′s(g
a)

}
alt(l,s)

(Zs − q̇sZ0)− B̄lsZ̃s = 0 , (18)

∂Φ

∂q̇l
+ B̄ls(Z

s − q̇sZ0) = 0 , (19)

where 1 ≤ l, s ≤ m − k. (The equations are expressed via currents, for clar-
ity. Nevertheless, the constraint derivatives of the current Φ depend on symmetry
components and their derivatives. There arises, of course, the problem of solution
of these equations for concrete situations.)

Equations (17)–(19) enable us to obtain symmetries of the mechanical system
via currents: For a regular matrix B denote B = B̄−1. Multiplying the system of
equations (19) by the matrix B we get

Zl − q̇lZ0 = −Bls ∂Φ

∂q̇s
.

Putting the obtained expressions for Zl − q̇lZ0 into (13) we can express the com-
ponent Z0 explicitly. Putting the result into (17)–(19) we finally obtain explicit
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expressions for the components of symmetries:

Z0 =
1

L̄

(
Φ + Bls ∂L̄

∂q̇l
∂Φ

∂q̇s

)
,

Zl = q̇lZ0 − Bls ∂Φ

∂q̇s
, (20)

Z̃l = Bls
(
∂cΦ

∂qs
− ĀsZ0 +

{
∂Ār
∂q̇s

+
∂L̄a
∂q̇s

ε′r(g
a)

}
alt(r,s)

(Zr − q̇rZ0)

)
.

The problem of computing symmetries simplifies if we know the currents (constants
of motion). This might happen during the process of solving the equations of
motion. It is obvious that for vector fields obtained by such a way the verification
of conditions (14)–(16) should be made. In particular we take advantage of this
simplification in the example presented in Section 4.

3.3 Classification of constraint symmetries
There is a possibility to classify the constraint Noether-type symmetries in the
context of constraint equations of motion. For a regular matrix B̄ the equations of
motion (9) can be written in the explicit form q̈l = −BlsĀs (recall that B = B̄−1).
The holonomic paths of these equations in Q are integral sections of local vector
field belonging to the canonical distribution C called constraint semispray (see [14])

Γ =
∂

∂t
+ q̇l

∂

∂ql
+ ga

∂

∂qm−k+a
+ Γ̃l

∂

∂q̇l
, Γ̃l = −BlsĀs . (21)

The constraint semispray Γ spans a distribution DΓ of rank one called a constraint
connection. Let Z be a vector field on Q. It is a symmetry of equations of motion
of the corresponding nonholonomic mechanical system if [Γ, Z] = fΓ, where [Γ, Z]
is the Lie bracket of vector fields Γ and Z and f = f(t, qσ, q̇l) is a function on Q.
Let Φ be a current, i.e. quantity conserved along trajectories of the nonholonomic
system (not necessarily a Noether-type current). Then Γ(Φ) = ∂ΓΦ = 0. If Z is a
symmetry of equations of motion then [Γ, Z](Φ) = fΓ(Φ) = 0. On the other hand,
[Γ, Z](Φ) = ∂Γ∂ZΦ − ∂Z∂ΓΦ = ∂Γ(∂ZΦ). This means that ∂ZΦ is the current as
well.

Let Z be a constraint symmetry of a nonholonomic system. Let us discuss
possible relationship between distributions spanned by vector fields Γ, Z and [Γ, Z].
First of all let us answer the question whether and under what conditions a vector
field belonging to the distribution DΓ can be a constraint symmetry. Putting
components of the vector field fΓ, f = f(t, qσ, q̇l) being a function on Q, into
conditions (14)–(16) we obtain

d′cL̄

dt
= 0 ,

∂cL̄

∂ql
= 0 ,

∂L̄

∂q̇l
= 0 , 1 ≤ l ≤ m− k .

Because of the relation

dF =
d′cF

dt
dt+

∂cF

∂ql
ωl +

∂F

∂q̇l
dq̇l +

∂F

∂qm−k+a
ϕa



170 Michal Čech, Jana Musilová

for every function F = F (t, qσ, q̇l) on Q this means that dL̄ ∈ annih C and L̄ is
constant along the distribution DΓ. In the following considerations we exclude this
trivial situation.

Another question is whether and under what conditions the Lie bracket [Γ, Z]
belongs to the canonical distribution. For general vector fields ξ, ζ ∈ C it holds
i[ξ,ζ]ϕ

a = −dϕa(ξ, ζ). As dϕa need not belong to the constraint ideal IC , it is
evident that [ξ, ζ] need not belong to C. For dϕa we obtain from (6)

dϕa =− ε′s(ga) ω̄s ∧ dt+
∂c
∂qr

(
∂ga

∂q̇s

)
ω̄s ∧ ω̄r +

∂2ga

∂q̇r∂q̇s
ω̄s ∧ dq̇r

− ∂ga

∂qm−k+b
ϕb ∧ dt− ∂

∂qm−k+b

(
∂ga

∂q̇s

)
ϕb ∧ ω̄s.

Calculating the Lie bracket [Γ, Z] using relations (20) and (21) we obtain after
some technical calculations

i[Γ,Z] ϕ
a = −dϕa(Γ, Z) (22)

= Bls
[
ε′l(g

a)
∂Φ

∂q̇s

+ q̇p
∂2ga

∂q̇p∂q̇l

(
∂cΦ

∂qs
− ∂Φ

∂q̇v
Brv
{
∂Ār
∂q̇s

+ ε′r(g
a)
∂L̄a
∂q̇s

}
alt(r,s)

)]
,

where Φ is the Noether-type current corresponding to the constraint symmetry Z.
We can see that for a semiholonomic constraint this condition is fulfilled and thus
[Γ, Z] ∈ C. For a general linear constraint this conditions reduces to

i[Γ,Z] ϕ
a = Blsε′l(ga)

∂Φ

∂q̇s
. (23)

There can be, of course, special cases with a general constraint for which the
condition is fulfilled too. We shall see various situations in the example presented
in Section 4.

Now let us discuss the relation of the Lie bracket [Γ, Z] with respect to dis-
tributions spanned by vector fields Γ and Z. Let Φ be again the Noether-type
current corresponding to the constraint symmetry Z (not belonging to DΓ). Then
∂ZΦ = 0 and thus ∂[Γ,Z]Φ = ∂Γ∂ZΦ − ∂Z∂ΓΦ = 0. This means that the quan-
tity Φ is conserved along the vector field [Γ, Z]. On the other hand, let ζ be a
vector field belonging to the distribution D(Γ, Z) spanned by vector fields Γ and Z,
i.e. ζ = aΓ+bZ, where a = a(t, qσ, q̇l) and b = b(t, qσ, q̇l) are functions on Q. Then
ζ(Φ) = ∂ζΦ = a ∂ΓΦ + b ∂ZΦ = 0 and Φ is conserved along the distribution D(Γ,Z).
Moreover, because of the relation [Γ, Z](Φ) = 0 it is conserved along the distribu-
tion D spanned by vector fields Γ, Z and [Γ, Z]. There are three possibilities for
the relation of a symmetry Z to the vector field Γ:

1) Z is a symmetry of equations of motion, i.e. [Γ, Z] = aΓ, a = a(t, qσ, q̇l).

2) The Lie bracket of vector fields Γ and Z belongs to the distribution spanned
by these vector fields, i.e. [Γ, Z] = aΓ + bZ, where a = a(t, qσ, q̇l) and b =
b(t, qσ, q̇l) are functions on Q.
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3) There is no specific relation of the symmetry Z to the vector field Γ.

In the cases 1) and 2) the the distribution spanned by vector fields Γ, Z and [Γ, Z]
has the rank two, in the case 3) its rank is three. (Recall that this distribution
need not be a subdistribution of the canonical distribution C, because [Γ, Z] need
not belong to C.) We shall derive the conditions under which situations 1) take
place. After some tedious technical calculations we obtain components of the vec-
tor field Ξ = [Γ, Z] for a vector field Z belonging to the canonical distribution
(i.e. relations (11) are considered). It holds

Ξ = Ξ0 ∂

∂t
+ Ξl

∂

∂ql
+ Ξm−k+a ∂

∂qm−k+a
+ Ξ̃l

∂

∂q̇l
, (24)

Ξ0 = −d′cZ
0

dt
+ BsrĀr

∂Z0

∂q̇s
,

Ξl = −d′cZ
l

dt
+ BsrĀr

∂Zl

∂q̇s
+ Z̃l,

Ξm−k+a = Ξ0ga + (Ξl − q̇lΞ0)
∂ga

∂q̇l
+

[
(Zl − q̇lZ0)ε′l(g

a)− Z0BsrĀr q̇l
∂ga

∂q̇l∂q̇s

]
,

Ξ̃l = Z0 d′c
dt

(−BlrĀr) + (Zs − q̇sZ0)
∂c
∂qs

(−BlrĀr)

+ Z̃s
∂

∂q̇s
(−BlrĀr)−

d′cZ̃
l

dt
+
∂Z̃l

∂q̇s
BsrĀr .

The requirement [Γ, Z] = aΓ (in such a case the constraint symmetry Z is a
symmetry of equations of motion as well) means that there exists a function
a = a(t, qσ, q̇l) on the constraint submanifold Q such that Ξ0 = a, Ξl = aq̇l,
Ξm−k+a = aga, Ξ̃l = −BlsĀs, 1 ≤ l, s ≤ m − k, 1 ≤ a ≤ k. This leads to
conditions (

d′c
dt
− BsrĀr

∂

∂q̇s

)
(Zl − q̇lZ0)− BlrĀrZ0 − Z̃l = 0 , (25)

(Zl − q̇lZ0)ε′l(g
a)− q̇lZ0BsrĀr

∂2ga

∂q̇l∂q̇s
= 0 , (26)

−d′c
dt

(BlrĀrZ0)− (Zs − q̇sZ0)
∂c
∂qs

(BlrĀr) + Z̃s
∂

∂q̇s
(BlrĀr)

−d′cZ̃
l

dt
+
∂Z̃l

∂q̇s
(BsrĀr) + BlrBspĀrĀp

∂Z0

∂q̇s
= 0 . (27)

It is evident that the condition (26) is automatically satisfied if the constraint is
semiholonomic. The constraint symmetries (vector fields Z ∈ C which are solutions
of equations (14)–(16)) are simultaneously symmetries of constraint equations of
motion iff they obey the above derived conditions (25)–(27).

4 Example: Chaplygin sleigh
In this section we use the geometrical theory for solving the motion of so called
Chaplygin sleigh. This example is exposed in [26], where the motion of Chaplygin



172 Michal Čech, Jana Musilová

sleigh is described in another way without considering the problem of symmetries
and conservations laws. We study this problem using our results obtained in Sec-
tion 3.

4.1 Chaplygin sleigh and its motion
The sleigh consists of a rigid body sliding on the horizontal plane without friction
(see the figure 1). The constraint is imposed by a sharp blade placed at a point A

 

y  

x  

A  
A  

C  
C  

      

t  

t t   

a  a  

Figure 1: Chaplygin sleigh.

such that the distance between this point and the center of mass of the body C is
AC = a. The blade prevents the sleigh to move in the direction perpendicular to
the straight line AC. The constraint defining the constraint submanifold Q in the
fibred chart with coordinates (t, ϕ, x, y, ϕ̇, ẋ, ẏ), i.e. m = 3, reads

ẏ cosϕ− ẋ sinϕ = 0 =⇒ ẏ = ẋ tanϕ . (28)

The canonical embedding ι : Q→ J1Y has the form

ι : Q 3 (t, ϕ, x, y, ϕ̇, ẋ)→ (t, ϕ, x, y, ϕ̇, ẋ, ẋ tanϕ) ∈ J1Y .

The canonical distribution is annihilated by the form ϕ1 obtained by putting the
constraint equation into the general expression (6). We obtain

ϕ1 = dy − tanϕdx .

The unconstrained Lagrangian is λ = Ldt, with

L =
1

2
m
[
(ẋ− aϕ̇ sinϕ)2 + (ẏ + aϕ̇ cosϕ)2

]
+

1

2
Jϕ̇2,

where m and J are the mass and inertia (with respect to the axis perpendicular to
the coordinate plane xy and going through C) of the sleigh, respectively. Constraint
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Lagrangian functions are

L̄ = L ◦ ι =
m

2

(
ẋ2

cos2 ϕ
+ a2k2ϕ̇2

)
, (29)

L̄1 =
∂L

∂ẏ
◦ ι = m(ẋ tanϕ+ aϕ̇ cosϕ) , k2 = 1 +

J

ma2
.

Putting this into (9) we obtain the matrices Ā, B̄ and B = B̄−1,

Ā =
(
−maϕ̇ẋcosϕ , maϕ̇2

cosϕ −
mϕ̇ẋ sinϕ

cos3 ϕ

)
, (30)

B̄ =

(
−ma2k2 0

0 − m
cos2 ϕ

)
B =

(
− 1
ma2k2 0

0 − cos2 ϕ
m

)
,

and the equations of motion

0 = −ma2k2ϕ̈− ma

cosϕ
ϕ̇ẋ =⇒ ϕ̈+

ϕ̇ẋ

ak2 cosϕ
= 0 , (31)

0 = − m

cos2 ϕ
ϕ̈− m sinϕ

cos3 ϕ
ϕ̇ẋ =⇒ ẍ− aϕ̇2 cosϕ+ ϕ̇ẋtanϕ = 0 . (32)

Solutions of these equations take the following form:

ϕ(t) = k arcsin tanh

(
C1

k2
(t− C2)

)
+ C3 , ϕ = kψ + C3 ,

x(t) = ak2

∫
cos (kψ + C3) tanψ dψ ,

y(t) = ak2

∫
sin (kψ + C3) tanψ dψ ,

where C1, C2 and C3 are integration constants. Using the initial conditions ϕ(0) =
0, ϕ̇(0) = ω0 > 0, ẋ(0) = 0 we obtain constants C1 = kω0, C2 = 0, C3 = 0 and the
corresponding particular solution

ϕ(t) = k arcsin tanh
ω0t

k
, tanψ = sinh

ω0t

k
,

x(t) = ak2

∫
cos kψ tanψ dψ , (33)

y(t) = ak2

∫
sin kψ tanψ dψ .

The graphical outputs for some special situations (a = 1, ω0

k = 1, m = 2, values
k = 1, 2, 3, 4) are presented in figures 2–5 for illustration.
Notice that in [26] equivalent equations of motion are obtained for variables u
and v representing components of the sleigh velocity with respect to non-inertial
reference frame connected with the sleigh, and the variable ω representing the
angular velocity ϕ̇. The equations of motion are obtained by formulating the
second Newton’s law in the above mentioned non-inertial reference frame. Thus
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t x

y

x

y

asymptote: x = 1

Figure 2: Chaplygin sleigh motion: k = 1.

t x

y

x

y

asymptote: y = 2π

Figure 3: Chaplygin sleigh motion: k = 2.

they contain the “fictive” forces ~F ∗. Moreover, the “reaction” force ~R normal to
the straight line AC and representing the constraint is included. Its magnitude is
considered as an unknown quantity and it is obtained by solving the equations of
motion as well. The solution of these equations of motion is then transformed into
the inertial reference frame. Our solution is the same as the last cited one. Recall
that in [26] the conservation laws are not discussed.
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t x

y

x

y

asymptote: x = – 15

Figure 4: Chaplygin sleigh motion: k = 3.

t x

y

x

y

asymptote: y = –8π
po

Figure 5: Chaplygin sleigh motion: k = 4.
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4.2 Constraint symmetries and currents
Putting the expressions (29) for constraint Lagrange functions into equations (17),
(18), (19) we obtain

d′cΦ

dt
− maϕ̇ẋ

cosϕ
(Zϕ − ϕ̇Z0) +m

(
aϕ̇2

cosϕ
− ϕ̇ẋ tanϕ

cos2 ϕ

)
(Zx − ẋZ0) = 0 ,

∂cΦ

∂ϕ
+
mẋ2 tanϕ

cos2 ϕ
Z0 −m

(
ẋ tanϕ

cos2 ϕ
− aϕ̇

cosϕ

)
Zx +ma2k2Z̃ϕ = 0 ,

∂cΦ

∂x
+m

(
ẋ tanϕ

cos2 ϕ
− aϕ̇

cosϕ

)
Zϕ +

m

cos2 ϕ
Z̃x = 0 , (34)

∂Φ

∂ϕ̇
−ma2k2(Zϕ − ϕ̇Z0) = 0 ,

∂Φ

∂ẋ
− m

cos2 ϕ
(Zx − ẋZ0) = 0 .

Expressing the components (Zϕ− ϕ̇Z0) and (Zx− ẋZ0) from the last two of these
equations, putting them into the first equation and substituting v = ẋ

cosϕ we obtain(
∂

∂t
+ ϕ̇

∂

∂ϕ
+ v cosϕ

∂

∂x
+ v sinϕ

∂

∂y
− ϕ̇v

ak2

∂

∂ϕ̇
+ aϕ̇2 ∂

∂v

)
Φ = 0 . (35)

So, we have the characteristics ODE’s

dt

1
=

dϕ

ϕ̇
=

dx

v cosϕ
=

dy

v sinϕ
= −ak2 dϕ̇

ϕ̇v
=

dv

aϕ̇2
.

Integrating the last equation we obtain

1

2
v2 +

1

2
a2k2ϕ̇2 = const., i.e.

1

2

ẋ2

cos2 ϕ
+

1

2
a2k2ϕ̇2 = const.

This quantity multiplied by the sleigh mass m represents the total mechanical
energy E0 of the sleigh which is the sum of the translational energy ET = 1

2
mẋ2

cos2 ϕ

and the rotational energy ER = 1
2 (J + ma2)ϕ̇2 with respect to the vertical axis

going through the point A. Recall that due to the Steiner theorem J +ma2 is the
inertia of the sleigh with respect to this axis. More precisely, the total mechanical
energy of the sleigh expressed via the components of the velocity of the center od
mass (xC , yC) is

E =
m

2

(
ẋ2
C + ẏ2

C

)
+

1

2
Jϕ̇2.

Taking into account that xC = x + a cosϕ, yC = y + a sinϕ and considering the
constraint we can immediately see that E = E0. For the particular solution of
equations of motion presented in the previous section we have

E0 =
1

2
ma2k2ω2

0 , C1 = kω0 =

√
2E0

ma2
.
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The corresponding conserved current can be obtained using the equations of motion
and the fact that the constrained Lagrange function L̄ does not depend on time
explicitly,

Φ1 = −m
2

(
ẋ2

cos2 ϕ
+ a2k2ϕ̇2

)
. (36)

Putting this expression into equations (20) we can verify that the corresponding
symmetry is Z = ∂

∂t . Taking into account the solution of equations of motion
(section 4.2) we obtain the following expressions for the translational and rotational
energy and the angle ϕ as functions of time (see also figure 6):

ET = E0 tanh 2ω0t

k
, ER = E0 cosh−2 ω0t

k
, sin

ϕ

k
= tanh

ω0t

k
. (37)

time [s]time [s]

φ [rad]

ω [rad s–1]

ET/E0

ER/E0

energy
ratio

asymptote: / 2φ = π

Figure 6: Conservation of energy, damping of rotation.

The graphs show the asymptotic behavior of the sleigh motion: the translational
motion accelerates at the expense of the rotational motion which is asymptotically
damped.
The decomposition of the energy into the term corresponding to translational mo-
tion of the point A and the energy corresponding to the rotation of the sleigh
around the axis going through this point is “induced” by the formulation of the
problem itself (the constraint concerns the motion of the point A). On the other
hand, more correct from the point of view of physics is the energy decomposition
into the translational energy of the center of mass C, ET,C = 1

2m(ẋ2
C+ ẏ2

C), and the
rotational energy of the sleigh with respect to the center of mass, ER,C = 1

2Jϕ̇
2.
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time [s]time [s]

ET,C/E0

ER,C/E

0

energy 
ratio

ET,C/E0

ER,C/E

0

energy 
ratio

k2 = 4 k2 = 2

Figure 7: Energy decomposition with respect to the center of mass.

Considering the solution of equations of motion we obtain

ET,C = E0

(
tanh2 ω0t

k
+

1

k2 cosh2 ω0t
k

)
, ER,C =

E0

cosh2 ω0t
k

(
1− 1

k2

)
. (38)

Figure 7 shows the behavior of both types of kinetic energy during the time for two
different values k. Relations (37) represent the limit case of (38) for J � ma2, i.e.
k →∞, as expected. Notice that for k = 1 (zero inertia with respect to the center
of mass, or, more exactly, J � ma2) we have ET,C = E0 and ER,C = 0. This
result is not in contradiction with the initial conditions. ER,C vanishes because of
zero inertia, even though ω0 6= 0. (Figures 6 and 7 are drawn for ω0/k = 1 for
simplicity.)

Expressing the quantities C2 and C3 (the fact that they are zeros for the chosen
initial conditions does not affect their general meaning of integration constants) we
obtain the following currents

Φ2 =
mẋ

cosϕ
sin
(ϕ
k

)
+makϕ̇ cos

(ϕ
k

)
Φ3 =

1

2
ma2k2 ln


√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 + ẋ
a cosϕ√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 − ẋ
a cosϕ

−ma2t

√
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2,

and in shortened notation with help of energies

Φ3 =
1

2
ma2k2 ln

√
E0 +

√
ET√

E0 −
√
ET
− at

√
2mE0

For the special case of zero inertia J , i.e. k = 1, the current Φ2 represents the
y-component of the impulse of the sleigh, pC,y = mẏC = m(ẋ tanϕ + aϕ̇ cosϕ).
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(We shall see later that in such a case the component pC,x must be conserved as
well.)

The corresponding symmetries are (denoting ψ = ϕ
k as above)

Z(Φ2) =
1

ak
cosψ

∂

∂ϕ
+ cosϕ sinψ

∂

∂x
+ sinϕ sinψ

∂

∂y

− ẋ cosψ

a2k3 cosϕ

∂

∂ϕ̇
+

1

ak
(aϕ̇ cosϕ− ẋ tanϕ) cosψ

∂

∂ẋ
,

Z(Φ3) =
k2

ẋ2

a2 cos2 ϕ + k2ϕ̇2
ln


√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 + ẋ
a cosϕ√

ẋ2

a2 cos2 ϕ + k2ϕ̇2 − ẋ
a cosϕ

Γ

−
ϕ̇t+ ẋ

aϕ̇ cosϕ√
ẋ2

a2 cos2 ϕ + k2ϕ̇2

(
∂

∂ϕ
− (aϕ̇ cosϕ− ẋtanϕ)

∂

∂ẋ

)

+
ak2 cosϕ− ẋt√

ẋ2

a2 cos2 ϕ + k2ϕ̇2

(
∂

∂x
+ tanϕ

∂

∂y
+

ϕ̇

ak2 cosϕ

∂

∂ϕ̇

)
,

or, in shortened notation via energies

Z(Φ3) =
ma2k2

2E0
ln

(√
E0 +

√
ET√

E0 −
√
ET

)
Γ

−

√
ma2

2E0

(
ϕ̇t+

ẋ

aϕ̇ cosϕ

)(
∂

∂ϕ
− (aϕ̇ cosϕ− ẋtanϕ)

∂

∂ẋ

)

+

√
ma2

2E0
(ak2 cosϕ− ẋt)

(
∂

∂x
+ tanϕ

∂

∂y
+

ϕ̇

ak2 cosϕ

∂

∂ϕ̇

)
where the vector field Γ reads

Γ =
∂

∂t
+ ϕ̇

∂

∂ϕ
+ ẋ

∂

∂x
+ ẋ tanϕ

∂

∂y
− ϕ̇ẋ

ak2 cosϕ

∂

∂ϕ̇
+ (aϕ̇2 cosϕ− ϕ̇ẋ tanϕ)

∂

∂ẋ
,

which is the vector field representing the equations of motion on the submanifold Q.
Keep in mind that the above presented shortened notation via energies is given only
for better clarity. For eventual further calculations the full expression in coordinates
(t, ϕ, x, y, ϕ̇, ẋ) on Q must be used, i.e. it is necessary to put

E0 =
ma2

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
, ET =

mẋ2

2 cos2 ϕ
, ψ =

ϕ

k

into corresponding expressions.
The equations (14)–(16) take the form

− ẋϕ̇

a cosϕ
Zϕ +

(
ẋϕ̇ sinϕ

a2 cos3 ϕ
+

ϕ̇2

a cosϕ

)
Zx

− 1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
d′cZ

0

dt
+ k2ϕ̇

d′cZ
ϕ

dt
+

ẋ

a2 cos2 ϕ

d′cZ
x

dt
= 0 , (39)
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(
ẋ sinϕ

a2 cos3 ϕ
+

ϕ̇

a cosϕ

)
Zx + k2Z̃ϕ

−1

2

(
ẋ2

a2 cosϕ
+ k2ϕ̇2

)
∂cZ

0

∂ϕ
+ k2ϕ̇

∂cZ
ϕ

∂ϕ
+

ẋ

a2 cos2 ϕ

∂cZ
x

∂ϕ
= 0 , (40)(

ẋ sinϕ

a2 cos3 ϕ
− ϕ̇

a cosϕ

)
Zϕ +

1

a2 cos2 ϕ
Z̃x

−1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
∂cZ

0

∂x
+ k2ϕ̇

∂cZ
ϕ

∂x
+

ẋ

a2 cos2 ϕ

∂cZ
x

∂x
= 0 , (41)

−1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
∂Z0

∂ϕ̇
+ k2ϕ̇

∂Zϕ

∂ϕ̇
+

ẋ

a2 cos2 ϕ

∂Zx

∂ϕ̇
= 0 , (42)

−1

2

(
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2

)
∂Z0

∂ẋ
+ k2ϕ̇

∂Zϕ

∂ẋ
+

ẋ

a2 cos2 ϕ

∂Zx

∂ẋ
= 0 . (43)

Putting the components of vector fields Z(Φ1), Z(Φ2) and Z(Φ3) into equations
(39)–(43) we can verify that they are constraint symmetries. Thus Φ1, Φ2 and Φ3

are Noether-type currents. Nevertheless, the physical interpretation of symmetries
Z(Φ2) and Z(Φ3) and their currents is not completely clear in a general situation.

The relation for the current Φ2 is linear in variables velocity and angular veloc-
ity. This enables us to conclude that for a general description of the sleigh motion it
is satisfactory to consider special initial conditions ẋ(0) = 0 and ϕ̇(0) = ω(0) 6= 0.
If v(0) 6= 0 and ϕ̇ = ω0, then v(τ) = 0 and ϕ̇(τ) = Ω0 6= ω0 at some other time τ .

Calculating [Γ, Z] for all three obtained symmetries Z(Φ1), Z(Φ2) and Z(Φ3)
we can see that only the symmetry Z(Φ1) = ∂

∂t is simultaneously the symme-
try of constrained (reduced) equations of motion. Concretely, it is evident that
[Γ, ∂

∂t ] = 0. Moreover, using the condition (23) we can check that it holds

i[Γ,Z1]ϕ
1 = 0 , i[Γ,Z2]ϕ

1 = − ẋ

ak cos2 ϕ
cos

ϕ

k
+

ϕ̇

cosϕ
sin

ϕ

k
,

i[Γ,Z3]ϕ
1 = − a

ϕ̇ cosϕ

√
ẋ2

a2 cos2 ϕ
+ k2ϕ̇2.

This means that for the symmetry Z1 the vector field [Γ, Z1] belongs to the canon-
ical distribution unlike the vector fields [Γ, Z2] and [Γ, Z3].

4.3 Chetaev equations and constraint forces

Finally, let us express Chetaev equations of motion and the constraint forces as
exposed in section 2.4 (equations (10)). Rewriting the constraint as

f(t, ϕ, x, y, ϕ̇, ẋ, ẏ) ≡ ẏ − ẋ tanϕ = 0
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we obtain the following equations:

−mak2ϕ̈+mẍ sinϕ−mÿ cosϕ =
µ

a

∂f

∂ϕ̇
,

∂f

∂ϕ̇
= 0 ,

maϕ̈ sinϕ−mẍ+maϕ̇2 cosϕ = µ
∂f

∂ẋ
,

∂f

∂ẋ
= −tanϕ , (44)

−maϕ̈ cosϕ−mÿ +maϕ̇2 sinϕ = µ
∂f

∂ẏ
,

∂f

∂ẏ
= 1 ,

µ being a Lagrange multiplier. The constraint force is

φ = µ

(
1

a

∂f

∂ϕ̇
,
∂f

∂ẋ
,
∂f

∂ẏ

)
= µ(0,−tanϕ, 1) . (45)

It has a clear physical meaning in the reference frame connected with the point
A and rotating with the sleight: Denote ~r ′ = (0, a cosϕ, a sinϕ), ~ω = (ϕ̇, 0, 0),
~ε = (ϕ̈, 0, 0), ~A(0, ẍ, ÿ). (Note that ~r ′ determines the position of the center of
mass C of the sleigh with respect to the point A.) Denoting φ as ~F ∗ as it is usual
in physics, we obtain

~F ∗ =
(
maϕ̈ sinϕ−mẍ+maϕ̇2 cosϕ, −maϕ̈ cosϕ−mÿ +maϕ̇2 sinϕ, 0

)
,

~F ∗ = −m~ε× ~r ′ −m~ω × (~ω × ~r ′)−m~A . (46)

This force is the sum of three terms: the Euler force, the centrifugal force and the
translational force. The Coriolis force is missing because the velocity of the center
of mass with respect to the reference system connected with the point A is zero.

Using the constraint to write ÿ = ẍ tanϕ+ ϕ̇ẋ
cos2 ϕ and substituting into (44) we

obtain after some calculations the Lagrange multiplier µ and the constraint force φ:

µ = − mJ

J +ma2
ϕ̇ẋ, φ =

mJ

J +ma2
(0, ϕ̇ẋ tanϕ, −ϕ̇ẋ) . (47)

Notice that these forces are not variational in the sense of e.g. [17], [25], [27], [32].
Thus the Chaplygin sleigh cannot be alternatively described as an unconstrained
variational system with an appropriately modified Lagrangian. For k = 1 the
constraint force vanishes. This is consistent with the (non-realistic, of course)
limit case J → 0 in relations (38): The motion of the center of mass is uniform
and straightforward (both components of the impulse of the center of mass are
conserved), while the sleigh rotates around it with the initial angular velocity ω0

but with zero energy due to J = 0.
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Super Wilson Loops and Holonomy on Supermanifolds

Josua Groeger

Abstract. The classical Wilson loop is the gauge-invariant trace of the par-
allel transport around a closed path with respect to a connection on a vector
bundle over a smooth manifold. We build a precise mathematical model
of the super Wilson loop, an extension introduced by Mason-Skinner and
Caron-Huot, by endowing the objects occurring with auxiliary Graßmann
generators coming from S-points. A key feature of our model is a supergeo-
metric parallel transport, which allows for a natural notion of holonomy on
a supermanifold as a Lie group valued functor. Our main results for that
theory comprise an Ambrose-Singer theorem as well as a natural analogon
of the holonomy principle. Finally, we compare our holonomy functor with
the holonomy supergroup introduced by Galaev in the common situation of
a topological point. It turns out that both theories are different, yet related
in a sense made precise.

1 Introduction
Gluon scattering amplitudes have been known to be dual to Wilson loops along
lightlike polygons [1], [2], [7], [11]. While these quantum expectation values, which
are formally calculated by means of the path integral, remain problematic from a
mathematical point of view, the underlying classical theory has been well under-
stood. In fact, a Wilson line refers to parallel transport with respect to a connection
on a vector bundle along a path in the underlying smooth manifold. In the usual
context of flat spacetime (Minkowski space) with a single global coordinate chart,
the corresponding solution operator can be written in terms of a path-ordered
exponential.

Recently, a similar duality (at weak coupling) between the full superamplitude
of N = 4 super Yang-Mills theory and two variants of a supersymmetric exten-
sion of the Wilson loop has been claimed. The first approach [21] originates in
momentum twistor space and translates into the integral over a superconnection
in spacetime, while the second [9] attaches to lightlike polygons certain edge and

2010 MSC: 58A50, 53C29, 18F05
Key words: supermanifolds, holonomy, group functor
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vertex operators, whose shape is determined by supersymmetry constraints [15].
Both approaches agree, in the common domain of definition, up to a term depend-
ing on the equations of motion [6] and indeed satisfy the conjectured duality upon
subtracting an anomalous contribution [5].

The first purpose of the present article is to build a supergeometric model of
super Wilson loops that leads to the same characteristic formulas as summarised
in Section 2.2 of [6]. The main idea is to give the objects occurring an inner
structure through auxiliary Graßmann generators coming from S-points. While
the resulting additional degrees of freedom come without physical significance, this
approach is well-justified mathematically and has been performed successfully in
modelling other aspects of superfield theory. Notably, consider “maps with flesh”
as introduced by Hélein in [18] as models for superfields including bosons and
fermions. See also [10], [16], [19] for the same concept under different terminology
and [14] for their differential calculus.

A key feature of our model is the supergeometric parallel transport introduced
in Section 2, which allows for a natural notion of holonomy at an S-point of a
supermanifold as a Lie group valued functor. A different notion of holonomy on
supermanifolds was introduced by Galaev in [12] by taking a suitable generalisa-
tion of the Ambrose-Singer theorem as the definition of a super Lie algebra and
endowing this to a Harish-Chandra pair, thus obtaining a super Lie group for every
topological point of the manifold. Developing a new holonomy theory by means of
our parallel transport, and comparing it to Galaev’s, is the second objective of this
article.

In Section 3, we establish two main results generalising properties of classical
holonomy. The first is an Ambrose-Singer theorem, which describes the holonomy
Lie algebra in terms of curvature, while the second formulates a natural analogon
of the holonomy principle relating parallel sections to holonomy-invariant vectors.

Our Ambrose-Singer theorem facilitates the comparison of our holonomy functor
with Galaev’s theory, which is the subject matter of Section 4. Since this functor is,
in general, not representable, both theories are different in the common situation
of a topological point. Nevertheless, we show that they are related in that the
generators of Galaev’s holonomy algebra can be extracted as certain coefficients by
considering special S-points. This construction is based on the knowledge of the
geometric significance of the elements and, in this sense, is not algebraic.

2 Super Wilson Loops and Parallel Transport
The super Wilson loop described in [6] and [21] is constructed as follows. Consider
n “superpoints” (xi, θi) in chiral superspace, which are symbolic quantities in that
their exact mathematical type is not important, only their calculation rules such
as

xµi · x
ν
j = xνj · x

µ
i , θαAi · θβBj = −θβBj · θαAi (1)

These superpoints are connected by “straight lines”

x(ti) = xi − tixi,i+1 , θ(ti) = θi − tiθi,i+1 (2)
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thus yielding a closed “superpath” γ parametrised by one bosonic variable t, which
enters the Wilson loop via

Wγ = tr

(
X 7→ P exp

(∫ 1

0

igB(t) dt

)
[X]

)
, B(t) = Bξ · γ̇ξ(t) (3)

where P exp denotes a path-ordered exponential, and Bξ is a connection one-form
in coordinates ξ. This connection has a very specific form due to supersymmetry
conditions which, however, is not relevant for our purposes.

As a mathematical model for a more general situation, let M be a supermanifold
of dimension dimM = (dimM)0|(dimM)1 (such as chiral superspace), and let S
be another supermanifold which should be thought of as auxiliary. Throughout, we
employ the definitions of Berezin-Kostant-Leites [20]. A supermanifold M is thus,
in particular, a ringed space M = (M0,OM ), and a morphism ϕ : M → N consists
of two parts ϕ = (ϕ0, ϕ

]) with ϕ0 : M0 → N0 a smooth map and ϕ] a generalised
pullback of superfunctions f ∈ ON . Modern monographs on the general theory of
supermanifolds include [8] and [27].

Definition 1. An S-point of M is a morphism x = (x0, x
]) : S → M . A (smooth)

S-path γ connecting S-points x and y is a morphism

γ = (γ0, γ
]) : S × [0, 1]→M such that ev|t=0γ

] = x] , ev|t=1γ
] = y]

which we shall denote, by a slight abuse of notation, by γ : x → y. It is called
closed (or an S-loop) if x = y.

In the following, we will exclusively consider superpoints

S = R0|L =
(
{0},

∧
RL
)
,

∧
RL = 〈η1, . . . , ηL〉 , L ∈ N . (4)

Although most of our results should continue to hold accordingly for general S,
this restriction will turn out to suffice for reproducing the characteristic formulas
of super Wilson loops as well as allowing for a powerful holonomy theory. This
significance of superpoints does not come unexpected. According to [25], an inner
Hom object Hom(M,N) in the category of supermanifolds is determined by its∧

RL-points

Hom(M,N)
(∧

RL
)
∼= HomSMan

(
R0|L ×M, N

)
in the sense of Molotkov-Sachse theory [22], [24]. The morphisms on the right are
the aforementioned “maps with flesh” [18].

Definition 2. Let x, y, z : S → M be S-points and γ : x → y and δ : y → z be
S-paths. For fixed t0 ∈ [0, 1], we prescribe

ev|t=t0(δ ? γ)] :=

{
ev|t=2t0γ

] t0 ≤ 1/2 ,

ev|t=2(t0− 1
2 )δ

] t0 ≥ 1/2 .



188 Josua Groeger

This defines an S-point which coincides with x,y,z for t0 = 0, 1
2 , 1, respectively.

Similarly, we define

ev|t=t0(γ−1)] := ev|t=(1−t0)γ
] .

Considering all t0 ∈ [0, 1] at a time, the previous definition yields S-paths
δ ? γ : x→ z and γ−1 : y → x, referred to as the concatenation of γ and δ and the
inverse of γ, respectively. The concatenation is, however, only piecewise smooth in
the sense of the following definition.

Definition 3. Let x, y be S-points. A piecewise smooth S-path γ : x→ y connect-
ing x with y is a tuple (γj : S× [tj , tj+1]→M)lj=0 with t0 = 0, tl = 1 and tj < tj+1

such that ev|t=tj+1
γ]j = ev|t=tj+1

γ]j+1 and ev|t=0γ
]
0 = x] and ev|t=1γ

]
l = y], and

such that γj |S×[tj ,tj+1] is a morphism.

The concatenation (δ ? γ) and inverse γ−1 of piecewise smooth paths δ and γ
are defined analogously. The construction is such that the underlying path (δ ? γ)0

is the classical concatenation of δ0 and γ0, and (γ−1)0 = (γ0)−1.

Example 1. Comparing with the objects in [6], we state the following diction-
nary. Let (xµ, θαA) denote (global) coordinates on M ∼= Rn|m (using space-
time indices µ rather than spinor indices α̇α). Then a superpoint is an S-point
ξ = (ξ0, ξ

]) : S →M , identified with (ξ](xµ), ξ](θαA)) ∈ (OS)n|m. The latter tuple
is then abbreviated (x, θ) = (xµ, θαA), for which (1) is satisfied. The straight line
connecting superpoints (xi, θi) and (xi+1, θi+1) is the S-path ξi,i+1 : S× [0, 1]→M
defined as follows.(

ξ]i,i+1(xµ), ξ]i,i+1(θαA)
)

:=
(
ξ]i (x

µ)− t
(
ξ]i (x

µ)− ξ]i+1(xµ)
)
, ξ]i (θ

αA)− t
(
ξ]i (θ

αA)− ξ]i+1(θαA)
))

∈ (OS×[0,1])
n|m.

In this sense, we can understand (2). The last line is ξn,0. Concatenation thus
yields a loop.

2.1 Super Vector Bundles and Connections
A super vector bundle E over a supermanifold M is a sheaf of locally free OM super-
modules on M . We shall denote its even and odd parts by E0 and E1, respectively.
An important example is the super tangent bundle SM := Der(OM ), which is the
sheaf of OM -superderivations. E(U) is, for U ⊆M0 sufficiently small, by definition
isomorphic to OM (U)rk E with rk E = (rk E)0|(rk E)1 the rank of E . Let (T j)rk E

j=1 be
an adapted local basis such that X ∈ E(U) is identified with the tuple (Xj)rk E

j=1 of
functions Xj ∈ OM (U) with respect to right coefficients X = T j · Xj (sum con-
vention). In general, it is preferable to consider right coordinates on supermodules
over supercommutative superalgebras, for then superlinear maps can be identified
with matrices. For example, the matrix of the differential dϕ[X] := X ◦ ϕ] for
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X = ∂ξk ·Xk ∈ SM of a map ϕ : M → N with respect to coordinates (ξj) and (ζj)
is given by

dϕik := (−1)(|ξk|+|ζi|)·|ζi| ∂ϕ
](ζi)

∂ξk
s.th. dϕ[X] =

∑
i,k

(
ϕ] ◦ ∂

∂ζi

)
· dϕik ·Xk

(5)

Lemma 1 (Chain Rule). Let ϕ : M → N and ψ : N → P be morphisms. Then

d(ψ ◦ ϕ)[X] =

(
ϕ] ◦ ψ] ◦ ∂

∂πl

)
· ϕ](dψli) · dϕik ·Xk

with (πl) coordinates on P and indices k, i referring to (unlabelled) coordinates
on M and N , respectively.

Proof. This is proved by a straightforward calculation in local coordinates. �

Definition 4. For a super vector bundle E , and S as in (4), we define

ES := E ⊗OM OS×M .

An S-connection on M is an even R-linear sheaf morphism

∇ : ES → SM∗S ⊗OS×M ES , ∇(fe) = df ⊗OS×M e+ f · ∇e for f ∈ OS×M .

In particular, ES can be considered as a super vector bundle on S ×M and,
in this sense, ∇ is an ordinary superconnection. The local picture is as follows.
Let ξ = (x, θ) be coordinates on M and (T j) be an E-basis. Then X ∈ ES can be
expaned as X = T j ·Xj with Xj ∈ OS×M ({0} × U), and

∇∂ξiX = (−1)|ξ
i||T j |T j∂ξi(X

j) + Γξi [T
j ] ·Xj , Γξi [T

j ] := ∇∂ξiT
j (6)

where Γξi ∈ Matrk E×rk E(OS×M ({0} × U)), which has an expansion

Γξi =
∑

I=(i1,...,i|I|)

θI · (Γξi)I , (Γξi)I ∈ Matrk E×rk E(OS×M0
({0} × U)) .

Example 2. Consider the trivial vector bundle E := su(N)⊗R OM with N ∈ N of
rank rk E = dim su(N)|0 over flat superspace with global coordinates ξ = (xµ, θαA).
Define Aµ := Γxµ and FαA := ΓθαA . With this notation, the θ-expansion assumes
the form

Aµ = (Aµ)0 + θβB(Aµ)βB + θβBθγC(Aµ)βB γC + . . .

FαA = (FαA)0 + θβB(FαA)βB + θβBθγC(FαA)βB γC + . . .

Since ∇ is, by definition, even it follows that Aµ and FαA are even respectively odd.
The parity of the θ-coefficients in the expansion is thus alternating. This is the
situation considered in [6]. In case of a plain connection on E , the odd coefficients
in the Aµ-expansion would be missing, and analogous for FαA.
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Let E → N be a super vector bundle over N and ϕ : M → N be a morphism of
supermanifolds. The pullback of E under ϕ is defined as

ϕ∗E(U) := OM (U)⊗ϕ (ϕ∗0E)(U) , U ⊆M0 open . (7)

Here, ϕ∗0E is the pullback of the sheaf E under the continuous map ϕ0 which, in
terms of its sheaf space, is the bundle of stalks Eϕ0(x) attached to x ∈M0. In this
context, one can define the pullback ϕ∗0X ∈ ϕ∗0E of X ∈ E . (7) indeed yields a
super vector bundle on M of rank rk E . For details, consult [16] and [26].

A local frame (T k) of E gives rise to a local frame (ϕ∗0T
k) of ϕ∗0E and a local

frame (ϕ∗T k := 1 ⊗ϕ ϕ∗0T k) of ϕ∗E such that, locally, every section X ∈ ϕ∗E can
be written X = ϕ∗T k ·Xk with Xk ∈ OM (U). For Y = T kY k ∈ E , we find

ϕ∗Y = ϕ∗(T kY k) = ϕ∗T k · ϕ](Y k) .

Definition 5. In the following, we shall identify maps ϕ : S ×M → N with maps
ϕ̂ : S ×M → S ×N by composing ϕ with the canonical inclusion N ↪→ S ×N .

In particular, we will use this identification for S-points x : S →M and S-paths
γ : S × [0, 1] → M . In terms of generators ηj as in (4), the construction is such
that ϕ̂](ηj) = ηj .

Lemma 2. Let ϕ : S × M → N and E → N be a super vector bundle. Then
ϕ∗E ∼= ϕ̂∗ES .

Locally, this isomorphism is such that X = (ϕ̂∗T k)·Xk ∈ ϕ̂∗ES is identified with
X = ϕ∗T k ·Xk ∈ ϕ∗E . We define the pullback of X ∈ ES under ϕ : S×M → N by

ϕ∗X := ϕ̂∗X ∈ ϕ̂∗ES ∼= ϕ∗E . (8)

Similarly, an endomorphism E ∈ EndOS×N (ES) is pulled back under ϕ to an endo-
morphism along ϕ as follows.

Eϕ ∈ EndOS×M (ϕ̂∗ES) , Eϕ(ϕ∗Y ) := ϕ∗E(Y ) (9)

and analogous for other tensors.
Let ∇ be a connection on E → N and ϕ : M → N be a morphism. There are

two types of pullback connections. With respect to coordinates (ξk) of M , we write
X = (ϕ∗∂ξi) ·Xi ∈ ϕ∗SN and prescribe

(ϕ∗∇) : ϕ∗0E → (ϕ∗SN)∗ ⊗OM ϕ∗E (10)

(ϕ∗∇)(ϕ∗∂i)Xi(ϕ
∗Z) := (−1)|X

i||∂i|Xi · ϕ∗(∇∂iZ)

The local representations glue together to a well-defined object satisfying a Leibniz
rule. For the second, more common, pullback note that X ∈ ϕ∗SN acts naturally
on sections f ∈ ON as the superderivation X(f) := (−1)|X

i||f |(ϕ] ◦ ∂ξi)(f) · Xi

along ϕ. We define

(ϕ∗∇) : ϕ∗E → SM∗ ⊗OM ϕ∗E (11)

(ϕ∗∇)X((ϕ∗T k)Zk) := (−1)|X||T
k|(ϕ∗T k) ·X(Zk) + (ϕ∗∇)dϕ[X]ϕ

∗T k · Zk
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using (5) and (10) for the second summand. Again, this prescription is independent
of coordinates and E-bases and yields a connection on ϕ∗E →M .

Let now ∇ be an S-connection on ES over N and ϕ : S ×M → N . We may
consider ∇ as an ordinary connection over S ×N and apply (10) to obtain

(ϕ̂∗∇) : ϕ̂∗0ES → (ϕ̂∗S(S ×N))
∗ ⊗OS×M ϕ̂∗ES .

Concatenating this with the adjoint of the inclusion SNS ⊆ S(S ×N), and using
ϕ̂∗0ES = ϕ∗0E ⊗OS as well as ϕ̂∗SNS = ϕ∗SN , we yield the first pullback, denoted

(ϕ∗∇) : ϕ∗0E ⊗ OS → (ϕ∗SN)∗ ⊗OS×M ϕ∗E . (12)

The second pullback is the connection

(ϕ∗∇) : ϕ∗E → SM∗S ⊗OS×M ϕ∗E (13)

defined verbatim to (11) by means of (12) The local picture is as follows.

(ϕ∗∇)XZ = (−1)|X||T
k|(ϕ∗T k)X(Zk) +X(ϕ∗(ξl))ϕ̂∗(∇∂

ξl
T k) · Zk (14)

2.2 Parallel Transport
Definition 6. A section X ∈ γ∗E is called parallel if (γ∗∇)∂tX ≡ 0.

The local form is as follows. As above, we write X = (γ∗T k) ·Xk, thus identi-
fying X with the t-dependent column vector X(t) ∈ (OS)rk E . We further use the
notation Γmlk · Tm := Γξl [T

k] with Γξl as in (6). By (14), the parallelness condition
in local coordinates reads

∂tX(t) = −B(t) ·X(t) , B(t)mk = (−1)|T
m|(|Tk|+1)∂t(γ

∗(ξl)) · γ̂∗(Γmlk) (15)

with B(t) ∈ EndOS (γ∗E)0
∼= Matrk E×rk E(OS)0.

Example 3. In the situation of Example 2, the matrix B(t) can be written in the
form

B(t) = ẋµ(t)Aµ + θ̇αA(t)FαA .

This is equation (17) of [6].

The next result follows from standard facts on ODEs applied to (15).

Lemma 3. Let Xx ∈ x∗E be a section along an S-point x : S → M , and γ be a
piecewise smooth S-path with ev|t=0γ

] = x]. Then there exists a unique parallel
section X ∈ γ∗E along γ such that ev|t=0X = Xx.

Definition 7. Let γ : x→ y be a smooth S-path and let Xx ∈ x∗E be a vector field
along x : S →M . We define the parallel transport

Pγ : x∗E → y∗E , Pγ(Xx) := evt=1X

where X ∈ γ∗E denotes the parallel vector field such that evt=0X = Xx.
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For smooth S-paths γ : x→ y and δ : y → z, we define parallel transport of the
concatenation by Pδ?γ := Pδ ◦ Pγ . If δ ? γ happens to be smooth, this definition
agrees with the one from Definition 7 by the following lemma.

Lemma 4. Let a < b < c and γ : S × [a, c]→M be a smooth S-path. Then

Pγ|S×[b,c]
◦ Pγ|S×[a,b]

= Pγ .

Proof. Let Xx ∈ x∗E . We define X ∈ γ∗E by setting

X(t) := Pγ|S×[a,t]
[Xx] (t ∈ [a, b]) ,

X(t) := Pγ|S×[b,t]
◦ Pγ|S×[a,b]

[Xx] (t ∈ [b, c]) .

Then X(t) satisfies (γ∗∇)∂tX = 0 for every t ∈ [a, c] and has the initial condi-
tion X(0) = Xx. By uniqueness of the solution, we thus conclude that X(t) =
Pγ|S×[a,t]

[Xx]. �

Lemma 5. Pγ is even (i.e. parity-preserving), OS-superlinear and invertible such
that (Pγ)−1 = Pγ−1 .

Proof. This is shown by standard ODE arguments as follows. Parallel transport is
even since the matrix B(t) in (15) is even. From the same equation, OS-linearity
is clear. It is invertible since both Pγ and Pγ−1 satisfy the same equation (15) at t
and 1− t, respectively. �

By restriction, an S-connection ∇ on ES induces a connection

∇E : E → SM∗ ⊗OM E .

By further restriction, we obtain a classical connection

∇0 : Γ(E)→ Γ(TM0)⊗ Γ(E)

on the vector bundle E :=
⋃
x∈M0

Ex →M0 (denoted ∇̃ in [12]). Let Pγ0 : Eγ0(0) →
Eγ0(1) denote parallel transport along a path γ0 : [0, 1]→M0 (denoted τγ in [12]).
On the other hand, let (Pγ)0 : Eγ0(0) → Eγ0(1) denote the restriction of ∇-parallel
transport along γ : S × [0, 1]→M .

Lemma 6. Let γ : x→ y be an S-path. Then (Pγ)0 = Pγ0 .

Proof. This follows immediately from (15). Note that ∂t(γ∗(ξl)) is odd, for ξl an
odd coordinate, and thus projected to zero, leaving only even indices l in γ∗(Γmlk).

�

By Lemma 5, Pγ is an isomorphism from x∗E to y∗E . With respect to local
bases (T k) and (T̃ k) of E around γ0(0) and γ0(1), respectively, it can thus be
identified with a matrix in GLrk E(OS).



Super Wilson Loops and Holonomy on Supermanifolds 193

Lemma 7. The solution to (15) is given by

X(t) = P exp

(
−
∫ t

0

B(τ)dτ

)
[Xx]

:=

∞∑
j=0

(−1)j
∫ t

0

dτj . . .

∫ τ2

0

dτ1B(τj) · . . . · B(τ1)Xx

where Xx ∈ x∗E and x] = ev|t=0γ
].

Proof. By assumption, γ0 takes values in U0 ⊆M0 such that both M |U0 and E|U0

are trivial. We may thus identify (as vector spaces), for every t ∈ [0, 1], ev|tγ∗E
with Rrk E ⊗

∧
RL ∼= RM for some M ∈ N. With this identification, the R-linear

operator B(t) becomes a matrix in Mat(M ×M,R), and ∂tX(t) = −B(t) · X(t)
can be considered as a classical first order linear ordinary differential equation. It
remains to show that the series stated converges absolutely in the Banach space
C1([0, 1],Mat(M × M,R)). Then, differentiating termwise, it follows that it is
indeed the solution operator. These steps are standard. See Lemma 2.6.7 of [4] for
a similar treatment. �

Remark 1. Redefining (6) as Γξi [T
j ] := i

g∇∂ξiT
j , we get the parallelness equation

∂tX(t) = igB(t) ·X(t), and thus the solution operator

X(t) = P exp

(
ig

∫ t

0

B(τ)dτ

)
[Xx]

:=

∞∑
j=0

(ig)j
∫ t

0

dτj . . .

∫ τ2

0

dτ1B(τj) · . . .B(τ1)Xx

as in (3). This convention is more usual in the physical literature.

An important property of the Wilson loop is its gauge-invariance. We close this
chapter showing that the trace of parallel transport around an S-loop is gauge-
-invariant, thus qualifying as a model for the super Wilson loop. We restrict at-
tention to local gauge transformations in a coordinate chart U ⊆ M , which is
sufficient for the situation M ∼= Rn|m considered in [6] and avoids the theory of
super principal bundles.

Definition 8. A (local) gauge transformation is a morphism of supermanifolds

V : S × U → GLrk E identified with
(
V ](ζkl)

)
kl
∈ GLrk E

(
OS×M (U)

)
where ζkl denote the global standard coordinates of the super Lie group GLrk E . It
acts on sections ψ ∈ ES(U) and connections ∇ via

ψ 7→ V · ψ , Γξi 7→ V · Γξi · V −1 − (∂ξiV )V −1

where Γξi is as in (6).
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Consider an S-path γ : S × [0, 1]→ U and the concatenation

Vγ := V ◦ γ̂ : S × [0, 1]→ GLrk E .

Let B(t) be as in (15) with respect to the original connection ∇ (and γ) and B̃(t)
be its gauge transformed counterpart. Then

B̃(t) = ∂t(γ̂
∗(ξl)) · γ̂∗

(
V ΓξlV

−1 − (∂ξlV )V −1
)

= Vγ · B(t) · V −1
γ − (∂tVγ) · V −1

γ

It follows that

(γ∗∇̃)∂t(Vγ ·X) =
(
∂t + Vγ · B(t) · V −1

γ − (∂tVγ) · V −1
γ

)
Vγ ·X = Vγ · (γ∗∇)∂tX

In particular, X ∈ γ∗E is ∇-parallel if and only if Vγ ·X ∈ γ∗E is ∇̃-parallel.
Now let Xx ∈ x∗E , and let γ : x → y connect the S-points x and y. Then,

Vx ·Xx with Vx := V ◦ x̂ is moved by ∇̃-parallel transport to Vy times ∇-parallel
transport of Xx. We thus arrive at the following result.

Proposition 1. Let P̃ denote parallel transport with respect to the gauge trans-
formed connection ∇̃. Then P̃ = Vy · P · V −1

x . In particular, if γ : x→ x is closed,

P̃ = Vx · P · V −1
x

and the trace trP = tr P̃ is a gauge invariant quantity.

By now, we have achieved the first aim of this article of constructing a mathe-
matical model of super Wilson loops. Superpoints are S-points, and a super Wilson
loop is the gauge-invariant trace of parallel transport around an S-loop. The exact
choice of S = R0|L is not important, except that L should be sufficiently large to
make calculations consistent. By means of S, the super Wilson loop acquires an
(unphysical) inner structure.

3 The Holonomy of an S-Point
Let E continue to denote a super vector bundle over a supermanifold M and ∇ be
an S-connection on ES with S a superpoint (4). In this section, we define the
holonomy group of an S-point x : S →M and prove an analogon of the Ambrose-
-Singer theorem. After endowing the holonomy group to a functor, we establish
a holonomy principle in this context, whose proof makes use of at least (dimM)1

additional Graßmann generators.

Definition 9. A piecewise smooth S-homotopy is a map

Ξ: S × [0, 1] \ {t0, . . . , tl} × [0, 1]→M

such that, denoting the real coordinates by t and s, respectively,

(i) the prescription Ξ]s0 := ev|s=s0Ξ] yields a piecewise smooth S-path Ξs0 for
every s0 ∈ [0, 1], and
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(ii) Ξ](f) is smooth in s for every f ∈ OM .

Ξ is called proper if evs,t=0Ξ] = p] and evs,t=1Ξ] = q] for all s ∈ [0, 1] and S-points
p and q.

Definition 10 (S-Holonomy). Let x : S →M be an S-point. We set

Holx := {Pγ
∣∣ γ : x→ x piecewise smooth} ⊆ EndOS (x∗E)

Hol0x := {Pγ
∣∣ γ : x→ x piecewise smooth and contractible}

with contractible in the sense that there exists a piecewise smooth proper homo-
topy Ξ such that Ξ0 = x and Ξ1 = γ.

By Lemma 5, Holx is a group which can be identified with a subgroup of
GLrk E(OS) with respect to a local basis (T k) of E . By Theorem 1 below, it is
indeed a Lie group. For S = R0|0, it follows by Lemma 6 that Holx = Hol∇0(x0(0))
is the holonomy group with respect to the underlying connection ∇0.

We call M path-connected if, for any two S-points x, y, there is an S-path
γ : x → y. By the following result this, as well as contractability, is determined
by the classical counterparts such that, in particular, Holx does not depend on the
restriction of M to any connected component of M0 different from that of x0(0).

Lemma 8. M is path-connected if and only if M0 is. Moreover, a piecewise smooth
S-loop γ : x→ x is contractible to x if and only if γ0 is contractible to x0.

Proof. It is clear that path-connectedness of M implies that of M0. Conversely,
let x, y : S → M and γ0 : x0(0) → y0(0) be a connecting classical path. Let
tj ∈ [0, 1] be such that γ0|[tj ,tj+1] is smooth and its image is contained in the
open set U0 for a coordinate chart U ⊆ M with coordinates (ξk). Any (smooth)
morphism γj : S × [tj , tj+1] → U can be identified with (dimM)0 + (dimM)1

smooth maps γj](ξk) : [tj , tj+1]→
∧
RL or, equivalently, with a single smooth map

γ̃j : [tj , tj+1]→ RM for some M ∈ N. An S-path γ : x→ y with underlying path γ0

can then be constructed by glueing together suitable maps γ̃j . The details are stan-
dard and thus omitted. The proof of the second statement is similar.

�

3.1 An Ambrose-Singer Theorem
The classical Ambrose-Singer theorem characterises the holonomy Lie algebra in
terms of the curvature of the connection considered. In this section, we show that
this theorem continues to hold in the more general situation of S-holonomy in the
sense of Definition 10. Our proof is modelled on a classical proof due to Levi-Civita
as presented in [3]. We define the curvature of ∇ as usual by

R (X, Y )Z := ∇X∇Y Z − (−1)|X||Y |∇Y∇XZ −∇[X,Y ]Z

for X,Y ∈ SMS and Z ∈ ES , where [X, Y ] := XY − (−1)|X||Y |Y X is the super-
commutator. This definition is such that

R ∈ HomOS×M
(
SMS ⊗OS×M SMS ⊗OS×M ES , ES

)
0
.
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The curvature is skew-symmetric

R (Y, X) = −(−1)|X||Y |R (X, Y )

which is inherited to the pullback. Let ϕ : S × N → M be a supermanifold mor-
phism. Then

Rϕ (A, B) = −(−1)|A||B|Rϕ (B, A) (16)

for A,B ∈ ϕ∗SM . This is shown by a straightforward calculation in coordinates,
writing A = (ϕ∗∂ξk) ·Ak etc.

Definition 11. Let x : S →M be an S-point. Let gx denote the Lie subalgebra of
(glrk E(

∧
RL))0 which is generated by the following set of endomorphisms.

{P−1
γ ◦Ry (u, v) ◦ Pγ

∣∣ y : S →M , γ : x→ y piecewise smooth , u, v ∈ (y∗SM)0}

Holx is contained in GLrk E(
∧
RL). By the following lemma, this is a Lie group.

In general, every Lie subalgebra of the Lie algebra of a Lie group is the Lie algebra
of a unique immersed connected Lie subgroup (see Chapter 2 of [13]). Let Gx ⊆
GLrk E(

∧
RL) denote this Lie subgroup corresponding to gx ⊆ (glrk E(

∧
RL))0.

Lemma 9. GLn|m(
∧
RL) is a real Lie group with Lie algebra (gln|m(

∧
RL))0.

Proof. M ∈ (gln|m(
∧
RL))0 is invertible if and only if its image under the canonical

projection to gln|m(R) is (Lemma 3.6.1 in [27]). Therefore

GLn|m

(∧
RL
)

= (GLn(R)×GLm(R))⊕
(
gln|m

(∧
(RL)nilpotent

))
0

which is open in (gln|m(
∧
RL))0 and as such a submanifold with a group structure

such that the tangent space at 1 can be identified with (gln|m(
∧
RL))0. Writing

the matrix entries of a product M ·L in terms of real coefficients of odd generators,
it is clear that multiplication is smooth, and similar for inversion. One further
shows that the Lie algebra commutator coincides with the commutator [X, Y ] =
XY − Y X. �

Theorem 1 (Ambrose-Singer Theorem). The Lie groups Gx = Hol0x coincide. In
particular, Holx is a Lie group with identity component Hol0x and Lie algebra
holx = gx.

We defer the proof of the theorem to the end of the present section. It is based
on Proposition 2 and Proposition 3 below. The following two lemmas are needed
in the proof of the first proposition.

Lemma 10. Let f : S× [a, b]× [b, c]→M be a morphism and X ∈ f∗E be a section
along f . Then

(f∗∇)∂s(f
∗∇)∂tX − (f∗∇)∂t(f

∗∇)∂sX = Rf (df [∂s], df [∂t])X

where (s, t) denote the standard coordinates on [a, b]× [b, c].
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Proof. This is shown by a direct calculation in local coordinates (ξk) of M and a
trivialisation (T k) of E , writing X = (ϕ∗T l) ·X l with X l ∈ O(S × [a, b]× [b, c]). �

Let x, y : S → M and γ : x → y. A tuple (e1, . . . , ek) of sections ej ∈ γ∗E is a
basis of γ∗E if and only if (ev|t=t0e1, . . . , ev|t=t0ek) is a basis of ev|t=t0γ∗E for every
t0 ∈ [0, 1]. It is called parallel if all ei are parallel. Such a basis is determined by
its evaluation at t = 0 via ev|t=t0ej = Pγ|S×[0,t0]

(ev|t=0e
j). In particular, a parallel

basis, as used in the proof of the following lemma, exists.

Lemma 11. Let X ∈ γ∗E be a section along γ. Let Pt := P−1
γ|S×[0,t]

be the parallel

displacement from ev|tγ] to x] = ev|t=0γ
]. Then

Ptev|t(γ∗∇)∂tX = ∂tPt(ev|tX) ∈ x∗E

Proof. Let (ej) be a parallel basis along γ. Writing X = ei ·Xi with Xi ∈ OS×[0,1],
it follows that Pt(ev|tX) = evt=0e

i · ev|tXi, and

∂tPt(ev|tX) = ev|t=0e
i · ev|t(∂tXi)

On the other hand, (γ∗∇)∂tX = ei · ∂t(Xi) implies

Ptev|t(γ∗∇)∂tX = Pt(ev|tei · ev|t(∂tXi)) = ev|t=0e
i · ev|t(∂tXi)

such that both sides agree. �

For the following proposition note that, for a proper S-homotopy Ξ, we may
identify ev|t=0Ξ] and ev|t=1Ξ] with single S-points x, y : S →M , respectively.

Proposition 2. Let Ξ be a proper S-homotopy, and let Ps,t := PΞs|S×[t,1]
denote

parallel transport along the restriction of the S-path Ξs to S × [t, 1]. Then

∂sPs,0 =

(∫ 1

0

Rs,tdt

)
Ps,0 ∈ HomOS×[0,1]

(x∗E , y∗E)

with Rs,t := Ps,tev|s,tRΞ (dΞ[∂t], dΞ[∂s])P
−1
s,t

Proof. Let Z ∈ Ξ∗E . For Ξ proper, the term ∂s(Ξ
∗
s(ξ

l)) in (15) vanishes for t = 0
as well as t = 1, such that

ev|s,t=0(Ξ∗∇)∂sZ = ∂sev|s,t=0Z , ev|s,t=1(Ξ∗∇)∂sZ = ∂sev|s,t=1Z

Consider Z such that the first term vanishes and, moreover, (Ξ∗∇)∂tZ ≡ 0. By
Lemma 11 and Lemma 10, we yield

∂tPs,tev|s,t(Ξ∗∇)∂sZ = Ps,tevs,t(Ξ
∗∇)∂t(Ξ

∗∇)∂sZ

= Ps,tev|s,tRΞ (dΞ[∂t], dΞ[∂s])Z

= Rs,tevs,t=1Z
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since evs,tZ = P−1
s,t evs,t=1Z by assumption. This, together with the assumptions

on Z and Ps,1 = id, implies the following.

∂sPs,0ev|s,t=0Z = ∂sev|s,t=1Z

= Ps,1ev|s,t=1(Ξ∗∇)∂sZ − Ps,0ev|s,t=0(Ξ∗∇)∂sZ

=

∫ 1

0

∂t (Ps,tevs,t(Ξ
∗∇)∂sZ) dt

=

(∫ 1

0

Rs,tdt

)
Ps,0ev|s,t=0Z

Let Zx ∈ x∗E .Then, setting Z(s, t) := PΞs|S×[0,t]
Zx, defines a section Z ∈ Ξ∗E that

satisfies the assumptions made in the beginning of the proof as well as ev|s,t=0Z =
Zx, such that the equation to be proved holds applied to Zx. Since Zx was arbitrary,
it holds in general. �

Let a : S → M be an S-point and u, v ∈ (a∗SM)0. With respect to local
coordinates (ξi) on U ⊆ M around a0(0), we write u = (a∗∂ξi) · ui with ui ∈ OS
and likewise for v. Let (x, y) denote standard coordinates of R2. Then the map

f : S × R2 → U , f ](ξi) := a](ξi) + (−1)|ξ
i|ui · x+ (−1)|ξ

i|vi · y

is such that

ev|(x,y)=(0,0)f
] = a] , ev|(0,0)df [∂x] = u , ev|(0,0)df [∂y] = v (17)

Consider also the following piecewise smooth homotopy g : S × [0, 1]× [0, 1]→ R2.

g0(s, t) :=


(4st, 0) 0 ≤ t ≤ 1/4
(s, s(4t− 1)) 1/4 ≤ t ≤ 1/2
(s(3− 4t), s) 1/2 ≤ t ≤ 3/4
(0, 4s(1− t)) 3/4 ≤ t ≤ 1

,
g](x) := g∗0(x)
g](y) := g∗0(y)

Proposition 3. Let a : S → M be an S-point and u, v ∈ (a∗SM)0. Let f be such
that (17), and let Ps denote parallel translation along Ξs for

Ξ := f ◦ ĝ : S × [0, 1]× [0, 1]→ U ⊆M

Then

ev|s=0∂sPs = 0 , ev|s=0∂s∂sPs = 2Ra (v, u)

Proof. By Lemma 1, we have dΞ[∂t] = (Ξ∗∂l)g
](df li)∂tg

](xi) where xi runs over x
and y. For t ≤ 1/4,

RΞ (dΞ[∂t], dΞ[∂s]) = RΞ

(
(Ξ∗∂l)g

](df lx)4s, (Ξ∗∂m)g](dfmx)4t
)

= 0

vanishes by skew-symmetry (16), and analogous for t ≥ 3/4. For 1/4 ≤ t ≤ 3/4,
we find

RΞ (dΞ[∂t], dΞ[∂s]) = −RΞ

(
(Ξ∗∂l)g

](df lx), (Ξ∗∂m)g](dfmy)
)
· 4s .
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Using (17), we further calculate, for 1/4 ≤ t ≤ 3/4,

Rs,t = Ps,tev|s,tRΞ (dΞ[∂t], dΞ[∂s])P
−1
s,t

= 4s · Ps,tev|s,tRΞ

(
(Ξ∗∂l)g

](df ly), (Ξ∗∂m)g](dfmx)
)
P−1
s,t

= 4s · Ps,tRa
(
(a∗∂l)v

l, (a∗∂m)um
)
P−1
s,t .

Proposition 2 now yields

∂sPs = 4s

(∫ 3
4

1
4

Ps,tRa (v, u)P−1
s,t dt

)
Ps

which vanishes for s→ 0. Likewise

evs=0∂s(∂sPs) = lim
s→0

(
1

s
4s

(∫ 3
4

1
4

Ps,tRa (v, u)P−1
s,t dt

)
Ps

)
= 2Ra (v, u) . �

Proof. [Proof of Theorem 1] Let γ : x → x be piecewise smooth and contractible.
We choose a piecewise smooth proper homotopy Ξ such that Ξ0 = x and Ξ1 =
γ, and let Ps := PΞs ∈ GLrk E(

∧
RL) denote parallel translation along Ξs. By

Proposition 2, it satisfies the differential equation

∂sPs = g(s) · Ps , g(s) :=

(∫ b

a

Rs,tdt

)
∈ gx

By standard Lie group theory (cf. Chapter 2 of [13]), we conclude that Ps ∈ Gx
and, in particular, Pγ = P1 ∈ Gx. Therefore, Hol0x ⊆ Gx is a path-connected
subgroup. By a theorem of Yamabe [28], it is a Lie subgroup.

Let a be an S-point, γ : x→ a and u, v ∈ (a∗SM)0. Let Ξ be as in Proposition 3,
and let Ps ∈ Hol0x denote parallel translation along Ξ̂s := γ ? Ξs ? γ

−1. Then

∂sPs|s=0 = Pγ ◦ ∂sPΞs |s=0 ◦ P−1
γ = 0

∂s∂sPs|0 = Pγ ◦ ∂s∂sPΞs |0 ◦ P−1
γ = 2Pγ ◦R (v, u) ◦ P−1

γ

by Proposition 3. Hol0x can be identified with a submanifold of some RM . By
the vanishing of the first derivative we can thus conclude that ∂s∂sPs|0 ∈ holx =
Te(Hol0x). Therefore, all generators of gx are contained in holx. It follows that
gx = holx and Hol0x = Gx. �

3.2 The Holonomy Group Functor
So far, we have considered a fixed superpoint S = R0|L along with an S-connection
∇ on an S-bundle ES . In Section 2, it was argued that having S-connections
(compared to plain connections in E) is necessary to model superconnections as
in [6], whereas the exact value of L cannot have any physical significance. But also
for purely mathematical reasons, it is desirable to allow for extending the number of
auxiliary Graßmann generators, as will become clear in the proof of the holonomy
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principle (Theorem 2) below. This extension results in a categorical theory to be
described next.

Let ∇ be an S-connection on ES with respect to S = R0|L, and let T = R0|L′

be another superpoint. By
∧
RL′ -linear extension, ∇ can be considered as an

S × T -connection on ES×T . Similarly, an S-point x : S → M canonically induces
an S × T -point xT : S × T → M by composing x with the canonical projection
S × T → S. For the next proposition, note that a morphism ϕ : T → T ′ can be
identified with a Graßmann algebra morphism ϕ∗ and as such acts naturally on
GLrk E(OT ′).

Proposition 4. The assignment

T 7→ Holx(T ) := HolxT , (ϕ : T → T ′) 7→
(
L 7→ ϕ∗(L), HolxT ′ → HolxT

)
defines a group-valued functor.

In the following, we will denote both the holonomy with respect to x and the
induced holonomy functor by Holx. We will also use the notation holx(T ) := holxT .

Proof. Let L ∈ HolxT ′ . We must show that the pullback ϕ∗(L) is indeed contained
in HolxT . Then the induced map HolxT ′ → HolxT is clearly a group homomorphism.

Let γ : xT ′ → xT ′ be such that L = Pγ , and prescribe

xϕ := xT ′ ◦ (idS × ϕ) : S × T →M ,

γϕ := γ ◦ ϕ := γ ◦ (idS × ϕ× id[0,1]) : xϕ → xϕ .

It is clear that xϕ = xT independent of ϕ. Let B(t) be as in (15) with respect to γ.
It follows that the local parallelness condition with respect to γϕ reads

∂tX(t) = −
(
ϕ∗B(t)

)
·X(t) .

We can, therefore, conclude that X ∈ γ∗E parallel along γ implies that ϕ∗X ∈ γ∗ϕE
is parallel along γϕ. Therefore

ϕ∗
(
Pγ [XxT ′ ]

)
= Pγϕ

[
ϕ∗(XxT ′ )

]
for all XxT ′ ∈ x

∗
T ′E

and ϕ∗(L) = ϕ∗Pγ = Pγϕ ∈ HolxT . �

The Molotkov-Sachse theory defines a supermanifold to be a certain functor
from the category Gr of Graßmann algebras to that of smooth manifolds [22], [24]
such that, in the finite-dimensional case, the resulting category is equivalent to
that of Berezin-Kostant-Leites supermanifolds. It is thus natural to conjecture
that Holx is representable in that it defines such a supermanifold. If this was true,
a neighbourhood of 1 in Holx(T ) would be isomorphic to (V ⊗

∧
RL′)0 for a fixed

finite-dimensional super vector space V . It would follow that

holx(T ) ∼= Te(Holx(T )) ∼= (V ⊗
∧

RL
′
)0

such that, in particular, holx(
∧
R0) = V0. The following example shows that the

holonomy functor is, in general, not representable.
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Example 4. Consider S := R0|0 and M := R0|1 with the (S-)connection defined
by ∇∂θ∂θ = θ∂θ on ES := SMS = SM such that R (∂θ, ∂θ) ∂θ = 2∂θ. Let 0 denote
the unique S-point corresponding to 0 ∈ R0. By Theorem 1, hol0(T ) is generated
by P−1

γ ◦ Ry (u, v) ◦ Pγ for y : T → M , γ : x → y and u, v ∈ (y∗SM)0. We write
u = (y∗∂θ) ·uθ with uθ ∈ (OT )1 and analogous for v. Let w ∈ y∗SM . Then a short
calculation yields

P−1
γ ◦Ry (u, v)Pγ [w] = −2uθvθ · w .

For T = R0|0, uθ and vθ vanish, such that hol0 = {0} is trivial, while

hol0(T ) = gl(0|1)⊗ ((OT )1)
2 ⊆ gl(0|1)⊗ (OT )0 = (gl(0|1)⊗OT )0

for T = R0|L′ , L′ ≥ 2. By the preceding paragraph, the functor Hol0(T ) is thus
not representable.

By the holonomy principle, to be established next, a parallel section X ∈ ES
is uniquely determined by its Holx(T )-invariant pullback x∗X ∈ x∗E as defined
in (8), where the number L′ of additional generators must be sufficiently large.

Theorem 2 (Holonomy Principle). LetM be connected. Let∇ be an S-connection
on ES , x : S → M be an S-point and T = R0|L′ with L′ ≥ (dimM)1. Then the
following holds true.

(i) Let X ∈ ES be a parallel section ∇X ≡ 0 and define Xx := x∗X ∈ x∗E .
Then, for all y : S×T →M and γ : x→ y, it holds y∗X = Pγ [Xx], where Xx

is identified with a section of x∗TE . In particular, Xx is holonomy invariant
Holx(T ) ·Xx = Xx.

(ii) Conversely, let Xx ∈ x∗E be a section such that Holx(T ) · Xx = Xx. Then
there exists a unique section X ∈ ES with x∗X = Xx, which is parallel
∇X ≡ 0.

Proof. Let γ : x → y be a piecewise smooth S-path. The assumption ∇X ≡ 0
implies ∇∂t(γ∗X) = 0. Parallel transport along γ is thus

Pγ [Xx] = ev|t=1γ
∗X = y∗X

which proves the first assertion.
Conversely, let Xx ∈ x∗E be such that Holx(T ) · Xx = Xx. For a superpoint

y : S × T → M , we define Xy := Pγ [Xx] where γ : x → y is an S × T -path.
Since Xx is Holx(T )-invariant, Xy is well-defined independent of the choice of
γ. We aim at constructing X out of the set of Xy inductively over the degree
of OS-monomials. Without loss of generality, we may assume that M ∼= Rn|m
has global coordinates ξ = (x, θ). For, assume that the statement is true for M
replaced by a neighbourhood U ⊆ M of x0(0), thus resulting in a parallel section
X ∈ ES(U). Then, by the first part of the theorem, X satisfies Holy(T ) ·Xy = Xy

for all y : S×T → U . Repeating the local construction in a neighbourhood V ⊆M
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of y0(0) yields a parallel section X̃ ∈ ES(V ) which, by uniqueness, agrees with X
on the intersection U0∩V0. Without loss of generality, we may further assume that
E is trivial with a global adapted basis (T j). We expand

Xy = Xy|ηI · ηI = T j ·Xj
y |ηI · ηI , X = X|ηI · ηI = T j ·Xj |ηI · ηI

for multiindices I = (i1, . . . , i|I|) with 1 ≤ ij ≤ L, such that Xj
y |ηI ∈ R and

Xj |ηI ∈ OM and X|ηI ∈ E . Similarly, ∇ is characterised by Γkij =
(
Γkij
)
|ηI · ηI .

In the first step, we construct X0 ∈ E . Letting q := y0(0), we define its value
at q by X0(q) := Xy|η0 = (Pγ [Xx])|η0 . By Lemma 6, it arises by classical parallel
transport along γ0. It is thus independent of y such that q = y0(0), and X0(q)
depends smoothly on q. By (16) of [12] applied to the induced connection ∇E on E ,
X0(q) extends to a section X0 ∈ E such that 0 = ∇E∂θjX

0 = (∇∂θjX
0)|η0 . By

construction, X0 satisfies (y∗X0)|η0 = X0(q) = (Pγ [Xx])|η0 . Again by Lemma 6,
we further note that (∇X0)|θ0η0 ≡ 0.

In the second step, we consider multiindices I = (i1, . . . , i|I|) with 1 ≤ ij ≤
L + (dimM)1, such that ηI ∈ OS×T . Assume, by induction, that we have con-
structed XN ∈ ES for N ∈ N such that

0N XN has an expansion XN =
∑
|I|≤N X|ηI · ηI such that X|ηI = 0 whenever

there is ij ∈ I with ij ≥ L+ 1.

1N (y∗XN )|ηI = (Pγ [Xx])|ηI = Xy|ηI for every y : S × T → M , γ : x → y and
|I| ≤ N .

2N (∇∂θjX
N )|ηI ≡ 0 for all |I| ≤ N .

3N (∇∂xjX
N )|θAηB ≡ 0 for all A,B such that |A| + |B| ≤ N , where A =

(a1, . . . , a|A|) with 1 ≤ aj ≤ (dimM)1.

Condition 1N+1 is equivalent to 1N together with

Xy|ηJ
!
= (y∗XN+1)|ηJ = y∗0(X|ηJ ) + (y∗XN )|ηJ for |J | = N + 1

We are thus led to define the value of X|ηJ at q by

X|ηJ (q) := Xy|ηJ − (y∗XN )|ηJ for |J | = N + 1 (18)

This prescription is independent of y : S × T → M such that y0(0) = q. Indeed,
let y1,y2 be two such S × T -points and γ1,2 : x → y1,2 be connecting S-paths.
Moreover, let δ : y1 → y2 be such that δ0(t) ≡ q.

y2

x

γ2

88

γ1
// y1

δ

OO
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Since Xx is holonomy invariant, we have Xy2 = Pδ[Xy1 ]. We calculate, using (15),

∂t
(
Xδ|ηJ − (δ∗XN )|ηJ

)
=
(
∂tPδ|[0,t][Xy1 ]− ∂tδ∗XN

)∣∣
ηJ

=
(
−(−1)|T

m|(|Tn|+1)(δ∗Tm)∂t(δ
∗(ξl)) · δ̂∗(Γmln) · Pδ|[0,t][Xy1 ]n

− ∂tδ∗(ξl)(δ∗ ◦ ∂ξl)(XN )
)∣∣∣
ηJ

By assumption, the term ∂t(δ
∗(ξl)) is nilpotent such that, using induction assump-

tion 1N , we may replace Pδ|[0,t][Xy1 ]n by (δ∗XN )n = δ∗XN n. Therefore, the right
hand side equals(

(δ∗Tm)∂t(δ
∗(ξl))δ̂∗

(
−(−1)|T

m|(|Tn|+1)ΓmlnX
N n − ∂ξlXN m

))∣∣∣
ηJ

= −
(

(δ∗Tm)∂t(δ
∗(ξl))δ̂∗(∇∂

ξl
XN )m

)∣∣∣
ηJ

By 2N and 3N (and nilpotency of ∂t(δ∗(ξl))), this expression vanishes, thus showing
that Xδ|ηJ − (δ∗XN )|ηJ is constant, which proves that (18) is well-defined.

We next endow X|ηJ (q) to a section X|ηJ ∈ E such that

XN+1 :=
∑

|J|≤N+1

X|ηJ · ηJ

satisfies 2N+1. 2N implies that (∇∂θmXN+1)|ηI = 0 with |I| ≤ N for any such
XN+1. Under this induction hypothesis, 2N+1 is thus equivalent to (∇∂θmXN+1)|ηJ =
0 for |J | = N + 1 which, in turn, is equivalent to(

∂θr . . . ∂θ1∂θmX
j |ηJ

)∣∣
θ0

= −(−1)|T
j |(|T i|+1)

(
∂θr . . . ∂θ1

(
ΓjmiX

iN+1
))∣∣∣

ηJθ0

for all r ≤ (dimM)1. Similar to the construction of X0 ∈ E above, these equations
uniquely determine X|ηJ , for |J | = N + 1, by XN and X|ηJ (q), such that 2N+1

holds. If any index lj ∈ J satisfies lj > L, the right hand side of (18) vanishes upon
considering y : S → M , such that 0N+1 is satisfied. By construction, also 1N+1

holds.
We show that XN+1 further satisfies 3N+1. 1N+1 implies that (z∗XN+1)|ηI =

Pδ[Xy]|ηI for all z and δ : y → z and |I| ≤ N + 1. In particular, we let q ∈M0 and
define y and δ as follows.

y](xk) := q∗(xk) = qk , y](θk) := ηL+k(∈ OT ) ,

δ](xk) := qk + tδkk0 , δ](θk) := ηL+k

This is such that ev|t=0δ
] = y]. We thus yield

0 =
(
(δ∗∇)∂t(δ

∗XN+1)
)
|ηI = δ̂∗(∇∂

xk0
XN+1)|ηI

Writing ∇∂
xk0

XN+1 =: NABθAηB with ηB ∈ OS , we conclude that

0 = ŷ∗(∇∂
xk0

XN+1)|ηI =
(
NAB(q) · ηALηB

)
|ηI
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with AL arising from the multiindex A by shifting all indices by L, such that
ηAL ∈ OT . For |A|+ |B| = |AL|+ |B| = |I| ≤ N +1, this implies that NAB(q) = 0.

Proceeding inductively yields a section X := XL = XL+(dimM)1 ∈ ES such
that the induction hypotheses hold with respect to L+ (dimM)1. X is, therefore,
parallel. Concerning uniqueness, assume that X̃ ∈ ES is a second such section.
Then y∗(X − X̃) = 0 for all y : S × T →M such that X − X̃ = 0 by an argument
analogous to that in the previous proof of 3N+1. �

4 Comparison with Galaev’s Holonomy Theory
Considering S = R0|0, let ∇ be a connection on a super vector bundle E →M and
x ∈M0 be a (topological) point. In this chapter, we will compare the functor Holx
with Galaev’s holonomy super Lie group HolGal

x , which was introduced in [12] by
means of a certain Harish-Chandra pair built around the super Lie algebra holGal

x

generated by endomorphisms

P−1
γ0 ◦

(
∇rYr,...,Y1

R
)
y

(Y, Z) ◦ Pγ0 : x∗E → x∗E

with y ∈M0, γ0 : x→ y, r ≥ 0 and Y1, . . . , Yr, Y, Z ∈ y∗SM , and where ∇rYr,...,Y1
R

denotes the r-fold covariant derivative of the curvature R with respect to ∇ and
some auxiliary connection ∇ on SM in a neighbourhood of y. This derivative is
defined analogous to the classical (non-super) case with appropriate signs. For
r = 1, 2, it reads as follows.

Definition 12. Let

R ∈ HomOS×M
(
SMS ⊗OS×M SMS ⊗OS×M ES , ES

)
,

and u, v ∈ SMS . For X,Y ∈ SMS , we define

∇XR (u, v) := ∇X ◦R (u, v)− (−1)|R||X|R
(
∇Xu, v

)
− (−1)|X|(|R|+|u|)R

(
u, ∇Xv

)
− (−1)|X|(|R|+|u|+|v|)R (u, v) ◦ ∇X

∇2

X,YR (u, v) := ∇X
(
∇YR

)
(u, v)−∇∇XY ◦R (u, v)

+ (−1)(|X|+|Y |)|R|R
(
∇∇XY u, v

)
+ (−1)(|X|+|Y |)(|R|+|u|)R

(
u, ∇∇XY v

)
+ (−1)(|X|+|Y |)(|R|+|u|+|v|)R (u, v) ◦ ∇∇XY

According to Example 4, the functor Holx is, in general, not representable such
that Galaev’s holonomy theory is a priori different from ours. Nevertheless, we will
show that the generators of holGal

x can be extracted in a geometric way, in a sense
to be made precise.
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4.1 Parallel Transport and Covariant Derivatives
The aforementioned extraction of generators of holGal

x is based on the following
observation. Consider again the more general situation of an S-connection ∇ on
ES for S = R0|L and x : S →M an S-point. As shown next, the pullback connection
x∗∇ – along with its induced connections on tensors as well as higher covariant
derivatives – arises by means of infinitesimal parallel transport. We will not treat
the most general situation here but content ourselves with the following. First,
we consider only even vector fields to be differentiated along. The general case is
expected to work along the lines of the flow of vector bundles developed in [23].
Second, we consider tensors of the following type: sections, endomorphisms and
curvature-type. The general case should be analogous. Third, we consider covariant
derivatives up to second order. Analogous results for higher order derivatives are
expected to be obtainable by an inductive proof.

For X ∈ SS and Z ∈ x∗E , the pullback (x∗∇)XZ ∈ x∗E was defined in (13). Let
also Y ∈ SS and ∇ be an S-connection on SMS . We define the second covariant
derivative of Z, with respect to ∇ and ∇, as follows.

(x∗∇2
)X,Y Z := (x∗∇)X(x∗∇)Y Z − (x∗∇)(x∗∇)X [dx[Y ]]Z

The corresponding first and second covariant derivatives of endomorphisms and
tensors of curvature type are defined likewise.

Definition 13. Let E ∈ EndOS×M (ES) be an endomorphism and Ex its pullback
under x as in (9). For X,Y ∈ SS, we define

(x∗∇)XEx := (x∗∇)X ◦ Ex − (−1)|X||E|Ex ◦ (x∗∇)X ∈ EndOS (x∗E)

(x∗∇2
)X,Y Ex := (x∗∇)X ((x∗∇)Y Ex)

− (x∗∇)(x∗∇)X [dx[Y ]] ◦ Ex
+ (−1)|E|(|X|+|Y |)Ex ◦ (x∗∇)(x∗∇)X [dx[Y ]]

Definition 14. Let

R ∈ HomOS×M
(
SMS ⊗OS×M SMS ⊗OS×M ES , ES

)
,

and u, v ∈ x∗SM . For X,Y ∈ SS, we define

(x∗∇)XRx (u, v) := (x∗∇)X ◦Rx (u, v)− (−1)|R||X|Rx
(
(x∗∇)X(u), v

)
− (−1)|X|(|R|+|u|)Rx

(
u, (x∗∇)X(v)

)
− (−1)|X|(|R|+|u|+|v|)Rx (u, v) ◦ (x∗∇)X

(x∗∇2
)X,YRx (u, v) := (x∗∇)X

(
(x∗∇)YRx

)
(u, v)− (x∗∇)(x∗∇)X [dx[Y ]] ◦Rx (u, v)

+ (−1)(|X|+|Y |)|R|Rx

(
(x∗∇)(x∗∇)X [dx[Y ]](u), v

)
+ (−1)(|X|+|Y |)(|R|+|u|)Rx

(
u, (x∗∇)(x∗∇)X [dx[Y ]](v)

)
+ (−1)(|X|+|Y |)(|R|+|u|+|v|)Rx (u, v) ◦ (x∗∇)(x∗∇)X [dx[Y ]]
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Our next lemma ensures existence of an S-path as occurring in the subsequent
proposition concerning first covariant derivatives.

Lemma 12. Let x : S →M be an S-point and ξ ∈ (x∗SM)0. We write (in coordi-
nates around x0) ξ = (x∗∂i) · ξi and assume that every ξi ∈ OS is nilpotent. Then
there is an S-path γ (connecting x to some other S-point y) such that ev|0∂t◦γ] = ξ.

Proof. Through Definition 5, and setting x](t) := t, we extend x to a map x : S×R→
S ×M × R. In this sense, we define

γ] := x] ◦
∞∑
n=0

(∑
i(tξ

i∂i)
)n

n!
.

Every ξi∂i is, by assumption, even and nilpotent such that there are no ordering
problems and the sum is finite. Such γ is indeed a morphism by the derivation
property of

∑
i(tξ

i∂i) as shown analogous as in the proof of Lemma 1.1 in [17].
A straightforward calculation shows, moreover, that γ indeed satisfies the required
initial condition. �

Proposition 5. Let x : S →M be an S-point, Y ∈ ES and ξ ∈ (x∗SM)0. Let γ be
an S-path (connecting x to some y) such that ev|0∂t ◦ γ] = ξ. Then

d

dt

∣∣
0

(
Pγ |−1

[0,t](γ
∗Y )

)
= (x∗∇)ξ(x

∗Y )

In particular, for ξ = X ◦ x] = dx[X] with X ∈ (SS)0, we find

d

dt

∣∣
0

(
Pγ |−1

[0,t](γ
∗Y )

)
= (x∗∇)X(x∗Y )

Similarly, the first covariant derivatives of Ex and Rx, with E and R as in Defini-
tion 13 and Definition 14, arise from parallel transport as

d

dt

∣∣
0

(
Pγ |−1

[0,t] ◦ Eγ ◦ Pγ |[0,t]
)

= (x∗∇)XEx

d

dt

∣∣
0

(
Pγ |−1

[0,t] ◦Rγ
(
P γ |[0,t](u), P γ |[0,t](v)

)
◦ Pγ |[0,t]

)
= (x∗∇)XRx (u, v)

Proof. Let (T j) be an E-basis in a neighbourhood of x0(0) ∈M0. For t sufficiently
small, we identify Pγ|[0,t] and its inverse with a matrix with respect to bases (x∗T j)

and (γ∗t T
j). By (15), we find that

ev|t=0Pγ|[0,t] = id , ∂t|0Pγ|[0,t] = −B(0) , ∂t|0P−1
γ|[0,t] = B(0)

where the sign in the last equation is due to replacing t by 1 − t in γ−1 within
the definition of B(t). The first statement is shown by the following calculation,
writing Y = T kY k.

d

dt

∣∣
0

(
Pγ |−1

[0,t](γ
∗Y )

)
= B(0) · (x∗Y ) + (x∗T k)∂t|0γ∗Y k = (x∗∇)ξ(x

∗Y )
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For the second statement note that, by (9), the matrix of Eγ is the pullback under γ
of the matrix of E. For Y ∈ x∗E , we thus yield

d

dt

∣∣
0

(
Pγ |−1

[0,t] ◦ Eγ ◦ Pγ |[0,t]
)

(Y ) = (B(0)Ex + ∂t|0Eγ − ExB(0)) (Y )

= B(0)Ex[Y ] +X(ExY )− Ex[X(Y )]− ExB(0)[Y ]

= ((x∗∇)X ◦ Ex − Ex ◦ (x∗∇)X) (Y )

Finally, the third statement is established by an analogous calculation. �

We now come to second covariant derivatives. Let X,Y ∈ (SS)0 and consider
a map γ : S × [0, 1]× [0, 1]→M such that

ev|(0,0)∂t ◦ γ∗ = X ◦ x∗ , ev|s=0∂s ◦ γ] = P γs=0|[0,t](Y ◦ x
]) =: Yt (19)

such that Y0 = Y ◦ x]. Such a homotopy indeed exists. First, by Lemma 12, there
is γ̃ : S × [0, 1]→M (parameter t) such that the first condition in (19) is satisfied.
Now fix t. For this t, there is, by the same lemma, an S-path γt : S × [0, 1] → M
(parameter s) such that also the second condition holds true with parallel transport
P γ̃ |[0,t] on the right hand side. By construction, γt depends smoothly on t and s,
thus yielding γ as required.

Proposition 6. Let Z ∈ ES and E ∈ EndON (E). Then

d

dt

∣∣
0

d

ds

∣∣
0
(P 2
s,t)
−1(γ∗Z) = (x∗∇2

)X,Y (x∗Z)

d

dt

∣∣
0

d

ds

∣∣
0

(
(P 2
s,t)
−1 ◦ Eγ ◦ P 2

s,t

)
= (x∗∇2

)X,Y Ex

d

dt

∣∣
0

d

ds

∣∣
0

(
(P 2
s,t)
−1 ◦Rγ

(
P

2

s,t(u), P
2

s,t(v)
)
◦ P 2

s,t

)
= (x∗∇2

)X,YRx(u, v)

with

P 2
s,t := Pγt|[0,s] ◦ Pγs=0|[0,t] , P

2

s,t := P γt|[0,s] ◦ P γs=0|[0,t]

Proof. Using Proposition 5 and |Y lt | = |dx[Y ]l| = |Y
(
x∗(ξl)

)
| = |ξl|, we calculate

∂s|0∂t|0(Pγs=0|[0,t])
−1(Pγt|[0,s])

−1(γ∗Z)

= ∂t|0(Pγs=0|[0,t])
−1∂s|0(Pγt|[0,s])

−1(γ∗Z)

= ∂t|0(Pγs=0|[0,t])
−1 ((γ∗t∇)Yt(γ

∗
t Z))

= (−1)|ξ
l||Z|∂t|0(Pγs=0|[0,t])

−1γ∗t (∇∂lZ) · dx[Y ]l + (−1)|ξ
l||Z|x∗(∇∂lZ)∂t|0Y lt

Now we use ∂t|0(Pγs=0|[0,t])
−1γ∗t (∇∂lZ) = (x∗∇)X(x∗∇∂lZ) and

∂t|0Yt = −BX(s = 0)dx[Y ] = −(−1)|n|dx[Y ]ndx[X](ξl)x∗(∇∂
ξl
∂ξn)

to yield the first statement after a straightforward calculation.
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The left hand side of the second equation is treated as follows.

LHS =
d

dt

∣∣
0

(
Pγ |−1

s=0,[0,t]∂s|0
(
Pγ |−1

t,[0,s] ◦ Eγ ◦ Pγ |t,[0,s]
)
◦ Pγ |s=0,[0,t]

)
=

d

dt

∣∣
0

(
Pγ |−1

s=0,[0,t] ((γ∗t∇)Yt ◦ Eγt − Eγt ◦ (γ∗t∇)Yt) ◦ Pγ |s=0,[0,t]

)
= (x∗∇)X ((x∗∇)Y Ex)− (x∗∇)(x∗∇)X [dx[Y ]] ◦ Ex + Ex ◦ (x∗∇)(x∗∇)X [dx[Y ]]

Here, the second equation follows from Proposition 5 applied to the second condi-
tion in (19). For the third equation, we use again Proposition 5 to obtain the first
term and find, in addition, two derivative terms with respect to (γ∗t∇)Yt which are
obtained as in the previous calculation.

Similarly we yield, for the left hand side of the last equation to be shown,

LHS =
d

dt

∣∣
0
Pγ |−1

s=0,[0,t]

(
(γ∗t∇)Yt ◦Rγt

(
P γ |s=0,[0,t](u), P γ |s=0,[0,t](v)

)
−Rγt

(
(γ∗t∇)Yt(P γ |s=0,[0,t](u)), P γ |s=0,[0,t](v)

)
−Rγt

(
P γ |s=0,[0,t](u), (γ∗t∇)Yt(P γ |s=0,[0,t](v))

)
−Rγt

(
P γ |s=0,[0,t](u), P γ |s=0,[0,t](v)

)
◦ (γ∗t∇)Yt

)
Pγ |s=0,[0,t]

Analogously to the previous calculation for the second statement, Proposition 5
together with derivative terms from the first calculation yields the right hand side
as claimed. �

4.2 Reconstruction of Galaev’s Holonomy Algebra
By means of the previously established relation between covariant derivatives and
parallel transport, we will now make contact with Galaev’s holonomy algebra
holGal

x . Let S = R0|0, ∇ be a connection on E → M , and x ∈ M0 be a topological
point identified with an S-point. We aim at gaining generating elements of holGal

x

as coefficients of special elements of holx(T ) for T = R0|L′ with L′ ≥ (dimM)1.
Let q ∈M0, and define the (S×)T -point y by prescribing

y](xk) := q∗(xk) = qk , y](θi) := ηi (20)

with respect to coordinates ξ = (x, θ) around q. Then, a straightforward calculation
using (14) shows that

(y∗∇)∂ηj (y∗Z) = ŷ∗(∇∂θjZ)

(y∗∇)(y∗∇)∂
ηj

[dy[∂
ηk

]](y
∗Z) = ŷ∗

(
∇∇∂

θ
j
∂
θk
Z
)

For the curvature terms, it follows that

Ry
(
y∗∂ξi , y

∗∂ξj
)

= ŷ∗
(
R
(
∂ξi , ∂ξj

))(
(y∗∇)∂

ηl
Ry

) (
y∗∂ξi , y

∗∂ξj
)

= ŷ∗
(
(∇∂

θl
R)
(
∂ξi , ∂ξj

))
(21)(

(y∗∇2
)∂
ηl
,∂ηmRy

) (
y∗∂ξi , y

∗∂ξj
)

= ŷ∗
(

(∇2

∂
θl
,∂θm

R)
(
∂ξi , ∂ξj

))
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Lemma 13. Let y be the T -point (20), γ : x → y be a connecting T -path and
Ik denote a multiindex of parity |ξk| such that ηIk ∈ OT . Then

ηIk1 ηIk2 · P−1
γ ◦ y∗

(
R
(
∂ξk2 , ∂ξk1

))
◦ Pγ ∈ holx(T )

ηIk1 ηIk2 ηIk3 · P−1
γ ◦ y∗

(
(∇∂

θk3
R)
(
∂ξk2 , ∂ξk1

))
◦ Pγ ∈ holx(T )

ηIk1 ηIk2 ηIk3 ηIk4 · P−1
γ ◦ y∗

(
(∇2

∂
θk4

,∂
θk3
R)
(
∂ξk2 , ∂ξk1

))
◦ Pγ ∈ holx(T )

Proof. By Theorem 1, the first term

ηIk1 ηIk2 · P−1
γ ◦ y∗ (R (∂k2 , ∂k1)) ◦ Pγ

= P−1
γ ◦Ry

(
ηIk2 · (y∗ ◦ ∂k2), ηIk1 · (y∗ ◦ ∂k1)

)
◦ Pγ

is clearly contained in holx(T ). For the second, let δ be an S-path connecting y to
some S-point z such that ev|0∂t ◦δ] = ξ := dy

[
ηIk3 · ∂ηk3

]
. Using (21), followed by

Proposition 5 applied to y, ξ, δ as well as u := ηIk2 ·(y∗◦∂k2) and v := ηIk1 ·(y∗◦∂k1),
we yield

ηIk1 ηIk2 ηIk3 · P−1
γ ◦ y∗ ((∇θk3R) (∂k2 , ∂k1)) ◦ Pγ

= P−1
γ ◦

(
(y∗∇)

η
Ik3 ·∂

ηk3

Ry

)(
ηIk2 · (y∗ ◦ ∂k2), ηIk1 · (y∗ ◦ ∂k1)

)
◦ Pγ

= P−1
γ ◦ ∂t|0

(
Pδ|−1

[0,t] ◦Rδ
(
P δ|[0,t](u), P δ|[0,t](v)

)
◦ Pδ|[0,t]

)
◦ Pγ

= ∂t|0
(
P−1
γ ◦ Pδ|−1

[0,t] ◦Rδ
(
P δ|[0,t](u), P δ|[0,t](v)

)
◦ Pδ|[0,t] ◦ Pγ

)
By Theorem 1, the term in parentheses lies, for every t ∈ [0, 1], in holx(T ), which
is a vector space. Therefore, the differential is also contained in holx(T ).

The second covariant derivative term is treated analogous. �

Consider the zero-derivative term in Lemma 13. For generic choice of ηIk1 and
ηIk2 , we find that(

∂
η
Ik1
∂
η
Ik2

(
ηIk1 ηIk2P−1

γ ◦ y∗
(
R
(
∂ξk2 , ∂ξk1

))
◦ Pγ

))
0

= P−1
γ0 ◦Ry0

(
∂ξk2 , ∂ξk1

)
◦ Pγ0 ∈ holGal

x

and analogous for the first and second derivative terms and, by conjecture, for all
higher derivative terms. The generating elements of holGal

x can thus be extracted
out of holx(T ) as certain coefficients of special elements in the way made precise
by Lemma 13. This construction is based on the knowledge of the geometric
significance of the elements. It remains an open question whether holGal

x can be
obtained from holx(T ) in a purely algebraic way.
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No. 2, Vol. 19 (2011)
Geometrical aspects of variational calculus on manifolds

Guest Editor: László Kozma

Editorial

Minicourse

David J. Saunders: Homogeneous variational problems: a minicourse

Research papers

Lorenzo Fatibene, Mauro Francaviglia, Silvio Mercadante: About Boundary
Terms in Higher Order Theories

Zoltán Muzsnay, Péter T. Nagy: Tangent Lie algebras to the holonomy group
of a Finsler manifold

József Szilasi, Anna Tóth: Conformal vector fields on Finsler manifolds

Monika Havelková: A geometric analysis of dynamical systems with singular
Lagrangians

Wlodzimierz M. Tulczyjew: Variational formulations I: Statics of mechanical
systems.

Book review

Jaroslav Dittrich: Mathematical results in quantum physics edited by P. Exner

No. 1, Vol. 20 (2012)
Guest editor: Marcella Palese

Editorial

Research papers

L. Fatibene, M. Francaviglia, S. Garruto: Do Barbero-Immirzi connections exist in
different dimensions and signatures?

M. Francaviglia, M. Palese, E. Winterroth: Locally variational invariant field
equations and global currents: Chern-Simons theories

Monika Havelková: Symmetries of a dynamical system represented by singular
Lagrangians



Contents of Previous Volumes 215

Zoltán Muzsnay, Péter T. Nagy: Witt algebra and the curvature of the Heisenberg
group

Olga Rossi, Jana Musilová: On the inverse variational problem in nonholonomic
mechanics

David J. Saunders: Projective metrizability in Finsler geometry

Conference announcements

No. 2, Vol. 20 (2012)
Research papers

Fa-en Wu, Xin-nuan Zhao: A New Variational Characterization Of Compact
Conformally Flat 4-Manifolds

Florian Luca: On a problem of Bednarek

Hemar Godinho, Diego Marques, Alain Togbe: On the Diophantine equation
x2 + 2α5β17γ = yn

Emanuel Lopez, Alberto Molgado, Jose A. Vallejo: The principle of stationary
action in the calculus of variations

Elisabeth Remm: Associative and Lie deformations of Poisson algebras

Alexandru Oană, Mircea Neagu: Distinguished Riemann-Hamilton geometry
in the polymomentum electrodynamics

Conference announcements

No. 1, Vol. 21 (2013)
Research papers

Thomas Friedrich: Cocalibrated G2-manifolds with Ricci flat characteristic
connection

Junchao Wei: Almost Abelian rings

Bingqing Ma, Guangyue Huang: Eigenvalue relationships between Laplacians of
constant mean curvature hypersurfaces in Sn+1

Johannes Schleischitz: Diophantine Approximation and special Liouville numbers
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