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Lower bounds for simultaneous Diophantine
approximation constants1

Werner Georg Nowak

Abstract. After a brief exposition of the state-of-art of research on the (Eu-
clidean) simultaneous Diophantine approximation constants θs, new lower
bounds are deduced for θ6 and θ7.

1 Introduction
For a fixed positive integer s, the (Euclidean) simultaneous Diophantine approx-
imation constant θs is defined as the supremum of all constants c such that, for
every point a in Rs \Qs, there exist infinitely many (s+ 1)-tuples (p, q) ∈ Zs×N∗
with ∣∣∣∣a− 1

q
p

∣∣∣∣ ≤ 1

q s
√
cq
, (1)

where |·| denotes the Euclidean norm in Rs.
This notion generalizes a question whose answer is known as Hurwitz’ classic

theorem. This involves the special case s = 1 and tells us that θ1 =
√

5; see, e.g.,
Niven and Zuckerman [11, p. 189 and p. 221].

By some very deep analysis, Davenport and Mahler [6] were able to prove that
θ2 = 1

2

√
23.

For s ≥ 3, the exact values of θs are unknown, and only more or less precise
bounds have been established.

We remark parenthetically that the problem becomes even considerably more
difficult if one replaces in (1) the Euclidean norm by the maximum norm: The

constants arising, say θ(∞)
s , are unknown for all s ≥ 2, the only general successful

approach being due to Spohn [16] who combined the calculus of variation with a

classic method of Blichfeldt [2] to estimate θ(∞)
s from below.
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2 Survey of methods and known results
The usual approach to estimate θs is based on tools from the geometry of numbers;
cf. throughout the monograph by Gruber and Lekkerkerker [7].

We briefly recall a few basic concepts of this theory: For a star-body B in Rs,
a lattice Λ = AZs (A a nonsingular real (s × s)-matrix) is called admissible if its
only point in the interior of B is the origin. The critical determinant ∆(B) of B is
then defined as the infimum of the lattice constants d(Λ) = |detA|, taken over all
lattices Λ admissible for B.

By a celebrated result of Davenport [5] (see also [7, p. 480, Theorem 4]), θs is
equal to the critical determinant ∆(Bs+1) of the (s + 1)-dimensional star body of
points (x0, x1, . . . , xs) ∈ Rs+1

Bs+1 : |x0|

(
s∑

j=1

x2j

)s/2

≤ 1 . (2)

For s = 3, 4, 5, the sharpest known lower2 estimates for θs have been obtained
by a method which is based on inequalities relating the critical determinants of
star bodies in different dimensions. In its essence it goes back to Mordell [8], [9],
[10], and Armitage [1]. Combining these tools with the known critical determinant
∆(P) = 1

2 of the three-dimensional double paraboloid

P : x2 + y2 + |z| ≤ 1 , (3)

it has been proved [13], [14] that

θ3 ≥ 1.879 . . . , θ4 ≥ 1.3225 . . . , θ5 ≥ 0.876 . (4)

For s ≤ 5, it appears that this is the very limit of present methods. For s ≥ 6, the
only successful approach is due to Prasad [15]. This is based on the simple idea
to apply the arithmetic-geometric mean inequality to the left-hand side of (2). In
terms of geometry, this amounts to inscribing an (s+ 1)-dimensional ellipsoid

Es+1 :
1

s+ 1
x20 +

s

s+ 1

s∑
j=1

x2j ≤ 1 (5)

into Bs+1. It follows that

θs = ∆(Bs+1) ≥ ∆(Es+1) =
(s+ 1)(s+1)/2

ss/2
∆(Ss+1) (6)

where Ss+1 is the unit sphere in Rs+1. Now the critical determinants of the unit
spheres are known up to dimension 8: See [7, p. 410]; in particular, ∆(S7) = 1

8 ,
∆(S8) = 1

16 . Hence, using (6), it readily follows that

θ6 ≥
343

1728

√
7 , θ7 ≥

256

343

1√
7
. (7)

2Obviously, lower bounds are the more interesting ones, since they guarantee, for every c less
than the bound, the existence of infinitely many solutions of the inequality (1).



Lower bounds for simultaneous Diophantine approximation constants 73

We conclude this section by the remark that the question of upper bounds for θs
has been dealt with in [14, section 4]. It amounts to finding certain number fields
of degree s+ 1 with small absolute discriminant.

3 Improvement of the estimate (7)
The critical determinants ∆(S7), ∆(S8) once known, the deduction of the lower
bounds (7) seems so natural that one might believe that this could be the end-of-
-the-art for this problem in the cases s = 6, 7. In this little note, however, we will
establish a slight refinement.

Theorem 1. The inequalities

θ6 ≥
343

1728

√
7 (1 + ω6) , θ7 ≥

256

343

1√
7

(1 + ω7)

hold true, with certain small constants ω6 > 9 × 10−4, ω7 > 3 × 10−4. I.e.,
numerically, θ6 ≥ 0.52564, θ7 ≥ 0.28218.

Of course, this improvement is fairly small, the main interest lying in the method
applied. This in turn is inspired by classic work due to Davenport [3], [4], and
Žilinskas [17], as well as by an earlier article by the author [12]3.

4 Proof of the theorem
For better readability, we give the details only for s = 6, the case s = 7 being
completely analogous. In principle, the argument can be extended to s > 7 as well,
but this is of less importance, since ∆(Ss+1) is known for s ≤ 7 only.

The star body B7 defined in (2) is automorphic, hence there exists a critical
lattice4 Λ with a point on the boundary of B7; cf. [7, p. 305, Theorem 4]. Applying
to Λ a suitable automorphism of B7, if necessary, we can assume this point to be
e = (1, 1, 0, 0, 0, 0, 0). With x ∈ R7, the function

G(x) :=

(
1

7
x20 +

6

7

6∑
j=1

x2j

)1/2

,

which is the square-root of the left-hand side of (5) for s = 6, is called the distance
function of the ellipsoid E7; it is homogeneous of order 1. Since, according to [7,
p. 195, Theorem 3], any o-symmetric ellipsoid has anomaly 1, there exist seven
linearly independent lattice points u(k) of Λ, with

(
G(u(k))

)
7
k=1 nondecreasing,

and

∆(E7)

7∏
k=1

G(u(k)) ≤ d(Λ) = ∆(B7) = θ6 . (8)

3Carrying out the numerical details on the basis of the argument developed in that latter
paper, one would get only ω6 > 6× 10−5, ω7 > 1.5× 10−5.
4I.e., Λ is admissible for B7, and d(Λ) = ∆(B7).



74 Werner Georg Nowak

We pick u = (u0, u1, . . . , u6) ∈ {u(1),u(2)} in such a way that u 6= ±e. Then u± e
are nontrivial lattice points of Λ. Since Λ is admissible for B7, a look back to (2)
shows that

|u0|

(
6∑

j=1

u2j

)3

≥ 1 , |u0 ± 1|

(
(u1 ± 1)2 +

6∑
j=2

u2j

)3

≥ 1 . (9)

Since E7 ⊂ B7, it follows that G(u(1)) ≥ 1, hence (8) implies that

θ6
∆(E7)

≥ (G(u))6 . (10)

To prove the Theorem, it remains to minimize G(u) under the constraints (9). We
put S =

∑6
j=2 u

2
j for short, and may assume, w.l.o.g., that u0 > 0. Hence we have

to deal with a minimization problem in three variables only, namely u0, u1 and S.
In fact,

M := min
(9)

G2(u) = min
(12)

(
1

7
u20 +

6

7

(
u21 + S

))
, (11)

with

u0
(
u21 + S

)3 ≥ 1 , |u0 ± 1|
(
(u1 ± 1)2 + S

)3 ≥ 1 . (12)

Solving (12), we infer that

u21 + S ≥ max
(
u
−1/3
0 , (u0 + 1)−1/3 − 1− 2u1, |u0 − 1|−1/3 − 1 + 2u1

)
.

Hence, in view of (11),

7M = min
u0>0, u1

(
max

(
u20 + 6u

−1/3
0 , u20 + 6(u0 + 1)−1/3 − 6− 12u1,

u20 + 6 |u0 − 1|−1/3 − 6 + 12u1

))
.

Keeping u0 fixed for the moment and seeking the minimum with respect to u1, we
observe that the maximum of the last two expressions becomes minimal when they
are equal. This obviously happens for

u1 =
1

4

(
(u0 + 1)−1/3 − |u0 − 1|−1/3

)
.

Consequently,

7M = min
u0>0

(
max

(
u20 + 6u

−1/3
0 , u20 + 3(u0 + 1)−1/3 + 3 |u0 − 1|−1/3 − 6

))
. (13)

In order to solve this ultimate minimization problem, the figure below is very
helpful.
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Figure 1: The graphs of f1 : u0 7→ u20 + 6u
−1/3
0 (dashed)

and f2 : u0 7→ u20 + 3(u0 + 1)−1/3 + 3 |u0 − 1|−1/3 − 6

In fact, let f1, f2 be defined as in the graphics, then an easy calculus exercise
shows that f1 decreases on ]0, 1[ and increases on ]1,∞[, and that f2 increases on
]0, 1[. Furthermore, f1 − f2 increases on ]1,∞[, since there

d

du0

(
f1(u0)− f2(u0)

)
=

1

(u0 + 1)4/3
+

1

(u0 − 1)4/3
− 2

u
4/3
0

> 0 ,

on applying the mean inequality to the first two fractions. It readily follows that
the equation f1(u0) = f2(u0) has exactly two solutions, u(1)0 < 1 and u(2)0 > 1, say,
and that, recalling (13),

7M = min
(
f1(u

(1)
0 ), f1(u

(2)
0 )
)
.

Carrying out the numerics, we get u(1)0 = 0.97012 . . . , u(2)0 = 1.030799 . . . , hence,

7M = min(7.002111 . . . , 7.00218 . . . ) ≥ 7.002111 .

Going back to (10) and (11), we finally infer that

θ6
∆(E7)

≥

(
7.002111

7

)3

≥ 1.0009 ,

which completes the proof of the Theorem. �
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