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Structure equations on generalized Finsler manifolds

Johanna Pék

Abstract. In this paper we generalize the classical structure equations of
Riemannian geometry to generalized Finsler manifolds.

1 Introduction
In this paper we deduce structure equations on a manifold which is endowed with
a generalized Finsler metric and an Ehresmann connection. In Riemannian geom-
etry, the classical structure equations were adopted by Élie Cartan. However Car-
tan’s formalism was hard to understand for the next generations. In the pull-back
formalism of Finsler geometry used by us, it causes a problem that in Grassmann
algebra of forms along projection τ : TM →M we do not have the classical exterior
derivative. The vertical and horizontal derivatives, which substitute for exterior
derivative, were introduced in 1992 ([8], [14]), and these help us to generalize the
structure equations. By using the index-free calculus, it turns out that out of the
five partial torsions introduced by Makoto Matsumoto in Finsler geometry only
two ones have ’real’ torsion property ([7] Chapter II.10, Lemma 1).

2 Preliminaries
We follow the notation and conventions of [14] and [6] as far as feasible. However,
for the readers’ convenience, in this section we fix some terminology and recall
some basic facts.

Throughout this paper, we use the Einstein summation convention. ‘Manifold’
will always mean a connected, second countable, Hausdorff, smooth manifold of
dimension n, n ≥ 1. If M is a manifold, C∞(M) will denote the ring of smooth

functions on M . The tangent bundle of M is τ : TM → M , while
◦
τ :

◦
TM → M

denotes the slit tangent bundle, where
◦
TM stands for the set of nonzero tangent

vectors to M .
The vertical lift of a function f ∈ C∞(M) is f v := f ◦ τ , the complete lift

f c ∈ C∞(TM) of f is defined by f c(v) := v(f), v ∈ TM .

2010 MSC: 53C05, 53C22
Key words: structure equations, Finsler manifold, Ehresmann connection



98 Johanna Pék

X(M) denotes the C∞(M)-module of smooth vector fields on M . Any vector
field X on M gives rise canonically two vector fields on TM , the vertical lift Xv

of X and the complete lift Xc of X, determined by Xvf c = (Xf)v, Xvf v = 0 and
Xcf c = (Xf)c, Xcf v = (Xf)v; f ∈ C∞(M).

Let Ak(M) be C∞-module of k-forms on M . Then A(M) :=
⊕n

k=0A
k(M) is

a graded algebra over C∞(M), with multiplication given by the wedge product ∧.
If f ∈ C∞(M) then the one-form df given by df(X) = Xf (X ∈ X(M)) is the
differential of f .

Let τ∗TM := TM ×M TM := {(u, v) ∈ TM × TM | τ(u) = τ(v)}, and let
τ∗τ(u, v) := u for (u, v) ∈ τ∗TM . Then τ∗τ is a vector bundle with total space
τ∗TM and base space TM , the pull-back of τ : TM →M over τ . The C∞(TM)-
module of sections of τ∗τ will be denoted by Sec(τ∗τ). Any vector field X on M
determines a smooth section

X̂ : v ∈ TM 7−→
(
v,X ◦ τ(v)

)
∈ TM ×M TM ,

called the basic section associated to X. The C∞(TM)-module Sec(τ∗τ) is gen-
erated by the basic sections. Generic sections in Sec(τ∗τ) will be denoted by

X̃, Ỹ , . . .

The dual of Sec(τ∗τ) will be denoted by A1(τ∗τ), and its elements is called
one-forms along τ . A(τ∗τ) is the Grassmann algebra of differential forms along τ .

Starting from the slit tangent bundle
◦
τ :

◦
TM → M , the pull-back bundle

◦
τ
∗
τ :

◦
TM ×M TM → TM is constructed in the same way. Omitting the routine

details, we remark that Sec(τ∗τ) may naturally be embedded into the C∞(
◦
TM)-

module Sec(
◦
τ
∗
τ).

There exists a canonical injective bundle map i : TM×M TM → TTM given by

i(u, v) := ċ(0) , if c(t) := u+ tv (t ∈ R) ,

and a canonical surjective bundle map

j : TTM → TM ×M TM ,

w ∈ TvTM 7−→ j(w) := (v, τ∗(w)) ∈ {v} × Tτ(v)M .

Then j ◦ i = 0. However, while J := i ◦ j is a further important canonical object,
the vertical endomorphism of TTM . The bundle maps i and j induce the tensorial
maps (denoted by the same symbols)

X̃ ∈ Sec(τ∗τ) 7−→ iX̃ := i ◦ X̃ ∈ X(TM) and

ξ ∈ X(TM) 7−→ jξ := j ◦ ξ ∈ Sec(τ∗τ) ,

so J may also be interpreted as a C∞(TM)-linear endomorphism of X(TM).
Xv(TM) := iSec(τ∗τ) is the module of vertical vector fields on TM . The ver-
tical vector fields form a subalgebra of the Lie algebra X(TM) at the same time.

For any vector field X on M we have iX̂ = Xv and jXc = X̂.
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An Ehresmann connection H over a manifold M is a right splitting of the
canonical exact sequence

0 −→ TM ×M TM
i−→ TTM

j−→ TM ×M TM −→ 0 ,

which is smooth only on
◦
TM×M TM , and given on o(M)×M TM by H

(
o(p), v

)
:=

(o∗)p(v); p ∈ M , v ∈ TpM , where o ∈ X(M) is the zero vector field. We associate
to any Ehresmann connection H the horizontal projector h := H ◦ j, the vertical
projector v = 1TTM − h and the vertical map V := i−1 ◦ v. The horizontal lift of

a vector field X ∈ X(M) with respect to H is Xh := H(X̂) = hXc ∈ X(
◦
TM).

The map `h : X ∈ X(M) 7−→ `h(X) := Xh is said to be the horizontal lifting
with respect to H.

An Ehresmann connection H determines a covariant derivative operator ∇ in
the pull-back bundle τ∗τ by the rule

∇ξỸ := j[vξ,HỸ ] + V[hξ, iỸ ] ; ξ ∈ X(TM), Ỹ ∈ Sec(τ∗τ) .

∇ is said to be the Berwald derivative induced by H. Its v-part ∇v and h-part ∇h

are defined by

∇v
X̃
Ỹ := ∇iX̃ Ỹ = j[iX̃,HỸ ]

and

∇h
X̃
Ỹ := ∇

HX̃ Ỹ = V[HX̃, iỸ ]

(X̃, Ỹ ∈ Sec(τ∗τ)). If X and Y are vector fields on M , then ∇v
X̂
Ŷ = 0 and

i∇h
X̂
Ŷ =

[
Xh, Y v

]
.

The importance of the Berwald derivative lies, among others, in the fact that
the basic geometric data (torsions, curvature, etc.) of an Ehresmann connection H

may conveniently be defined in terms of the Berwald derivative induced by H. In
this paper we need the following (X̃, Ỹ ∈ Sec(τ∗τ)):

T(X̃, Ỹ ) := ∇h
X̃
Ỹ −∇h

Ỹ
X̃ − j[HX̃,HỸ ] − the torsion of H,

R(X̃, Ỹ ) := −V[HX̃,HỸ ] − the curvature of H .

3 Generalized Finsler manifolds and torsions of a Finsler
connection

As in general, by covariant derivative operator in the vector bundle τ∗τ we mean
an R-bilinear map

D : (ξ, X̃) ∈ X(TM)× Sec(τ∗τ) 7−→ DξX̃ ∈ Sec(τ∗τ)

which is tensorial in its first variable and derivation in its second variable.
The curvature of D is the

RD(ξ, η)X̃ := DξDηX̃ −DηDξX̃ −D[ξ,η]X̃
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C∞(TM)-trilinear map.

A pseudo-Riemannian metric on τ∗τ is a mapping g that sends a non-degenerate
symmetric bilinear form

gv :
(
{v} × Tτ(v)M

)
×
(
{v} × Tτ(v)M

)
−→ R

(or simply gv : Tτ(v)M × Tτ(v)M → R) to every vector v ∈
◦
TM such that the

function

g(X̃, Ỹ ) :
◦
TM → R, v 7−→ g(X̃, Ỹ )(v) := gv

(
X̃(v), Ỹ (v)

)
is smooth for any two sections X̃, Ỹ ∈ Sec(

◦
τ
∗
τ).

The pair (M, g) is said to be a generalized Finsler manifold, if g is a pseudo-
Riemannian metric in τ∗τ . Then we also say that g is a generalized metric.

A covariant derivative operator D : X(TM)× Sec(τ∗τ)→ Sec(τ∗τ) in (M, g) is
said to be metric if

Dξg(X̃, Ỹ ) = ξg(X̃, Ỹ )− g(DξX̃, Ỹ )− g(X̃,DξỸ ) = 0 .

Let H be an Ehresmann connection over M and let D be a covariant derivative
operator in τ∗τ . Then the pair (D,H) is called a Finsler connection. By the torsion
of D we mean the map

TD(ξ, η) := Dξjη −Dηjξ − j[ξ, η] , (ξ, η ∈ X(TM)) .

By the V-torsion of D we mean the map

TDV (ξ, η) := DξVη −DηVξ − V[ξ, η] , (ξ, η ∈ X(TM)) .

It is easy to see that TD and TDV are tensor fields.

We define the following five ‘partial torsions’ which are introduced by M. Mat-
sumoto ([7] Chapter II.10):

T (X̃, Ỹ ) := TD(HX̃,HỸ ) h-horizontal torsion,

S(X̃, Ỹ ) := TD(HX̃, iỸ ) h-mixed torsion/Finsler torsion,

R1(X̃, Ỹ ) := TDV (HX̃,HỸ ) v-horizontal torsion,

P1(X̃, Ỹ ) := TDV (HX̃, iỸ ) v-mixed torsion,

Q1(X̃, Ỹ ) := TDV (iX̃, iỸ ) v-vertical torsion;

(X̃, Ỹ ∈ Sec(τ∗τ)).

The following formulae can be obtained by a straightforward calculation.
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Lemma 1. Let (D,H) be a Finsler connection over M and let ∇ be the Berwald

derivative induced by H. Then for every X̃, Ỹ ∈ Sec(τ∗τ)

T (X̃, Ỹ ) = D
HX̃ Ỹ −DHỸ X̃ − j[HX̃,HỸ ] ,

S(X̃, Ỹ ) = ∇iỸ X̃ −DiỸ X̃ ,

R1(X̃, Ỹ ) = R(X̃, Ỹ ) ,

P1(X̃, Ỹ ) = D
HX̃ Ỹ −∇HX̃ Ỹ ,

Q1(X̃, Ỹ ) = DiX̃ Ỹ −DiỸ X̃ − i−1[iX̃, iỸ ] .

We have an important remark that among the above mentioned five partial
torsions only two ones have ‘real’ torsion property: the h-horizontal torsion T and
the v-vertical torsion Q1.

Proposition 1. Let (M, g) be a generalized Finsler manifold endowed with an
Ehresmann connection H. Then exists a unique covariant derivative operator D
such that

(i) D is metric,

(ii) T (X̃, Ỹ ) = T(X̃, Ỹ ) ,

(iii) Q1(X̃, Ỹ ) = 0 ,

for any X̃, Ỹ ∈ Sec(τ∗τ) .

For a proof we refer to [6].

We say that D is the canonical covariant derivative for the structure (M, g,H).

4 Structure equations

The following concepts and results can be found in [14] Chapter 2, Section E.

Lemma and Definition 2. There is a unique graded derivation dv : A(τ∗τ)→ A(τ∗τ)
of degree 1 such that

(dvf)(X̃) := df(iX̃) , and

dvα̃(X̃1, . . . , X̃k+1) :=

k+1∑
i=1

(−1)i+1(iX̃i)α̃(X̃1, . . . ,
ˆ̃
Xi, . . . , X̃k+1)

+
∑

1≤i<j≤k+1

(−1)i+jα̃(i−1[iX̃i, iX̃j ], . . . ,
ˆ̃
Xi, . . . ,

ˆ̃
Xj , . . . , X̃k+1)

for all f ∈ C∞(TM), X̃, X̃i ∈ Sec(τ∗τ) (i = 1, . . . , k + 1) and α̃ ∈ Ak(τ). dv is
said to be the vertical exterior derivative on A(τ∗τ).
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Lemma and Definition 3. Let H be an Ehresmann connection. There is a unique
graded derivation dh : A(τ∗τ)→ A(τ∗τ) of degree 1 such that

(dhf)(X̃) := df(HX̃) , and

dhα̃(X̃1, . . . , X̃k+1) :=

k+1∑
i=1

(−1)i+1(HX̃i)α̃(X̃1, . . . ,
ˆ̃
Xi, . . . , X̃k+1)

+
∑

1≤i<j≤k+1

(−1)i+jα̃(j[HX̃i,HX̃j ], . . . ,
ˆ̃
Xi, . . . ,

ˆ̃
Xj , . . . , X̃k+1)

for all f ∈ C∞(TM), X̃, X̃i ∈ Sec(τ∗τ) (i = 1, . . . , k + 1) and α̃ ∈ Ak(τ). dh is
called the horizontal exterior derivative on A(τ∗τ) with respect to H.

In the above formulas the notation
ˆ̃
X means that the argument X̃ is deleted.

If k = 1, we obtain

dvα̃(X̃1, X̃2) = (iX̃1)α̃(X̃2)− (iX̃2)α̃(X̃1)− α̃(V[iX̃1, iX̃2]) , (1)

dhα̃(X̃1, X̃2) = (HX̃1)α̃(X̃2)− (HX̃2)α̃(X̃1)− α̃(j[HX̃1,HX̃2]) . (2)

Let (M, g) be a generalized Finsler manifold. Let (Ẽi)
n
i=1 be a family of g-

orthonormal sections in Sec(τ∗τ) on open subset U ⊂ TM :

Ẽi : v ∈ U 7−→ Ẽi(v) ∈ Tτ(v)M ,

g(Ẽi, Ẽj) = δij (1 ≤ i, j ≤ n) .

Let (Θ̃i)ni=1 be denote the family of dual 1-forms of (Ẽi)
n
i=1. Then

Θ̃i(Ẽj) = δij , 1 ≤ i, j ≤ n .

Using these local frame fields, every section X̃ of
◦
τ
∗
τ over U can be expressed as

X̃ = Θ̃i(X̃)Ẽi . (3)

Indeed,

Θ̃i(X̃)Ẽi = Θ̃i(X̃jẼj)Ẽi = X̃jΘ̃i(Ẽj)Ẽi = X̃jδijẼi = X̃jẼj = X̃ .

If H is an Ehresmann connection on M , then there exist 2-forms ϑ̃i along τ
(on U) such that

T(X̃, Ỹ ) = ϑ̃i(X̃, Ỹ )Ẽi , (4)

for any sections X̃, Ỹ of τ∗τ over U .
Let RD be the curvature tensor of D. Then there exist 2-forms Ω̃ij along τ such

that

RD(ξ, η)Ẽj = Ω̃ij(ξ, η)Ẽi . (5)

We say that ϑ̃i are the torsion two-forms, Ω̃ij are the curvature two-forms of

the Ehresmann connection with respect to (Ẽi)
n
i=1.
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Theorem and Definition 1. Let (M, g) be a generalized Finsler manifold. Let H

be an Ehresmann connection and let D be the canonical covariant derivative for
(M, g,H). Suppose that g is positive definite and let U be an open subset of TM .

Define (Ẽi)
n
i=1 and (Θ̃i)ni=1 as above. Then there exists a unique family

(
ω̃ij
)

1≤i,j≤n
of 1-forms on U such that

ω̃ij = −ω̃ji , (6)

dvΘ̃i = −(ω̃ij ◦ i) ∧ Θ̃j (1 ≤ i ≤ n) , (7)

dhΘ̃i = −(ω̃ij ◦H) ∧ Θ̃j − ϑ̃i (1 ≤ i ≤ n) , (8)

Ω̃ij = dω̃ij + ω̃ik ∧ ω̃kj . (9)

The 1-forms ω̃ij are said to be the connection forms. Relations (7) and (8) are
called the first structure equations. Relations (9) are mentioned as the second
structure equations.

Remark 1. Owing to Proposition 1, the structure equations of v-vertical torsion
Q1 are not relevant.

Proof. Define the 1-forms ω̃ij by

ω̃ij(ξ) := Θ̃i(DξẼj) (ξ ∈ X(TM)) .

(1) Since D is metric, we have

0 = (Dξg)(Ẽi, Ẽj)

= ξg(Ẽi, Ẽj)− g(DξẼi, Ẽj)− g(DξẼj , Ẽi)

(3)
= ξδij − g(Θ̃k(DξẼi)Ẽk, Ẽj)− g(Θ̃k(DξẼj)Ẽk, Ẽi)

= −g(ω̃ki Ẽk, Ẽj)− g(ω̃kj Ẽk, Ẽi)

= −ω̃ki g(Ẽk, Ẽj)− ω̃kj g(Ẽk, Ẽi)

= −ω̃ji − ω̃
i
j ,

whence (6).

(2) Equations (7). The left-hand side of (7) can be manipulated as follows:

dvΘ̃i(Ẽk, Ẽl)
(1)
= (iẼk)Θ̃iẼl − (iẼl)Θ̃

iẼk − Θ̃i(V[iẼk, iẼl])

= (iẼk)δil − (iẼl)δ
i
k − Θ̃i(V[iẼk, iẼl])

= −Θ̃i(V[iẼk, iẼl]) .

Evaluating the right-hand side at (Ẽk, Ẽl) we find(
(ω̃ij ◦ i) ∧ Θ̃j

)
(Ẽk, Ẽl) = ω̃ij(iẼk)Θ̃jẼl − ω̃ij(iẼl)Θ̃jẼk = ω̃il(iẼk)ω̃ik(iẼl)

= Θ̃i(DiẼk
Ẽl)− Θ̃i(DiẼl

Ẽk)

= Θ̃i(DiẼk
Ẽl −DiẼl

Ẽk) = Θ̃i(V[iẼk, iẼl]) ,
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taking into account in the last step that Q1 = 0 by Proposition 1, and hence
0 = Q1(Ẽk, Ẽl) = DiẼk

Ẽl −DiẼl
Ẽk − V[iẼk, iẼl] .

(3) Equations (8).

dhΘ̃i(Ẽk, Ẽl)
(2)
= (HẼk)Θ̃iẼl − (HẼl)Θ̃

iẼk − Θ̃i(j[HẼk,HẼl])

= (HẼk)δil − (HẼl)δ
i
k − Θ̃i(j[HẼk,HẼl])

= −Θ̃i(j[HẼk,HẼl])

Since T(X̃, Ỹ )
Prop. 1 (ii)

= D
HX̃ Ỹ −DHỸ X̃ − j[HX̃,HỸ ], we get(

(ω̃ij ◦H) ∧ Θ̃j − ϑ̃i
)
(Ẽk, Ẽl) = ω̃ij(HẼk)Θ̃jẼl − ω̃ij(HẼl)Θ̃jẼk − ϑ̃i(Ẽk, Ẽl)

= ω̃il(HẼk)− ω̃ik(HẼl)− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(D
HẼk

Ẽl)− Θ̃i(D
HẼl

Ẽk)− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(D
HẼk

Ẽl −DHẼl
Ẽk)− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(T(Ẽk, Ẽl) + j[HẼk,HẼl])− ϑ̃i(Ẽk, Ẽl)
(4)
= Θ̃i(ϑ̃s(Ẽk, Ẽl)Ẽs) + Θ̃i(j[HẼk,HẼl])− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(j[HẼk,HẼl]) .

(4) Equations (9). By using the definition of D and RD, relation (3), we find

Ω̃ij(ξ, η)Ẽi
(5)
= RD(ξ, η)Ẽj = DξDηẼj −DηDξẼj −D[ξ,η]Ẽj

= Dξ(Θ̃
k(DηẼj)Ẽk)−Dη(Θ̃k(DξẼj)Ẽk)− Θ̃i(D[ξ,η]Ẽj)Ẽi

= ξ(Θ̃k(DηẼj))Ẽk + Θ̃k(DηẼj)DξẼk

− η(Θ̃k(DξẼj))Ẽk − Θ̃k(DξẼj)DηẼk − Θ̃i(D[ξ,η]Ẽj)Ẽi

= ξ(Θ̃i(DηẼj))Ẽi − η(Θ̃i(DξẼj))Ẽi − Θ̃i(D[ξ,η]Ẽj)Ẽi

+ ω̃kj (η)DξẼk − ω̃kj (ξ)DηẼk

= ξ(Θ̃i(DηẼj))Ẽi − η(Θ̃i(DξẼj))Ẽi − Θ̃i(D[ξ,η]Ẽj)Ẽi

+ ω̃kj (η)Θ̃i(DξẼk)Ẽi − ω̃kj (ξ)Θ̃i(DηẼk)Ẽi

= ξ(ω̃ij(η))Ẽi − η(ω̃ij(ξ))Ẽi − ω̃ij([ξ, η])Ẽi

+ ω̃kj (η)ω̃ik(ξ)Ẽi − ω̃kj (ξ)ω̃ik(η)Ẽi

=
(
ξ(ω̃ij(η))− η(ω̃ij(ξ))− ω̃ij([ξ, η]) + ω̃ik(ξ)ω̃kj (η)− ω̃ik(η)ω̃kj (ξ)

)
Ẽi .

On the other hand,

(dω̃ij + ω̃ik ∧ ω̃kj )(ξ, η) = dω̃ij(ξ, η) + ω̃ik(ξ)ω̃kj (η)− ω̃ik(η)ω̃kj (ξ)

= ξ(ω̃ij(η))− η(ω̃ij(ξ))− ω̃ij([ξ, η])

+ ω̃ik(ξ)ω̃kj (η)− ω̃ik(η)ω̃kj (ξ) ,

which concludes the proof of (9).
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(5) Uniqueness of the family (ω̃ij). We use the fact that any 1-form of an open
subset of TM is completely determined by its action over vertical and hori-
zontal vector fields.

First we prove that the effect of the connection forms on vertical vector fields
is well-defined. We start on (7) and paragraph 2 of this proof.

dvΘ̃i(Ẽj , Ẽk) = ω̃ij(iẼk)− ω̃ik(iẼj) ,

dvΘ̃j(Ẽk, Ẽi) = ω̃jk(iẼi)− ω̃ji (iẼk) ,

dvΘ̃k(Ẽi, Ẽj) = ω̃ki (iẼj)− ω̃kj (iẼi) .

Now we add the first two equalities, and subtract the third. Taking into
account (6), we obtain

ω̃ij(iẼk) =
1

2

(
dvΘ̃i(Ẽj , Ẽk) + dvΘ̃j(Ẽk, Ẽi)− dvΘ̃k(Ẽi, Ẽj)

)
,

and this relation proves the statement.

Similarly, we have

dhΘ̃i(Ẽj , Ẽk) = ω̃ij(HẼk)− ω̃ik(HẼj) + ϑ̃i(Ẽj , Ẽk) ,

dhΘ̃j(Ẽk, Ẽi) = ω̃jk(HẼi)− ω̃ji (HẼk) + ϑ̃j(Ẽk, Ẽi) ,

dhΘ̃k(Ẽi, Ẽj) = ω̃ki (HẼj)− ω̃kj (HẼi) + ϑ̃k(Ẽi, Ẽj) .

Adding the first two equalities, and subtracting the third, by using (6) we
find

ω̃ij(HẼk) =
1

2

(
dhω̃i(Ẽj , Ẽk) + dhω̃j(Ẽk, Ẽi)− dhω̃k(Ẽi, Ẽj)

)
− 1

2

(
ϑ̃i(Ẽj , Ẽk) + ϑ̃j(Ẽk, Ẽi)− ϑ̃k(Ẽi, Ẽj)

)
. �
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Control Systems on the Orthogonal Group SO(4)

Ross M. Adams, Rory Biggs, Claudiu C. Remsing

Abstract. We classify the left-invariant control affine systems evolving on
the orthogonal group SO(4). The equivalence relation under consideration
is detached feedback equivalence. Each possible number of inputs is con-
sidered; both the homogeneous and inhomogeneous systems are covered.
A complete list of class representatives is identified and controllability of
each representative system is determined.

1 Introduction
A control system is given by a dynamical polysystem together with a class of
“admissible inputs” (also called controls). More precisely, a (smooth) control sys-
tem Σ on M consists of a family X = (Ξu)u∈U of smooth vector fields on the state
space M and an input class U . M is a smooth (real, finite-dimensional) manifold,
and an element of U is a U -valued map (defined on some interval of R) which is
(Lebesgue) measurable or piecewise constant, or of some regularity type between
these two possibilities. The input set U is usually equipped with a separable metric
space structure. For the purposes of this paper, we shall assume that U = R`. In
classical notation, a control system Σ on M is written as

Σ : ẋ = Ξ(x, u) , x ∈ M , u ∈ U .

Here Ξ: M× U → TM, (x, u) 7→ Ξ(x, u) = Ξu(x) ∈ TxM is the map describing the
dynamics (i.e., the vector fields) of the system. We assume that Ξ is a smooth map.
Standard references for nonlinear control systems are [16], [24]. When the state
space is a (real, finite-dimensional) Lie group G and the dynamics Ξu = Ξ(·, u) are
left invariant, the control system is termed as left-invariant. Such control systems
have been studied by a number of authors over the past few decades (see, e.g., [3],
[19], [20], [26], [28]).

A trajectory of Σ (corresponding to an admissible input u(·) ∈ U) is an ab-
solutely continuous curve γ in M such that γ̇(t) = Ξu(t)(γ(t)) for almost all t.

2010 MSC: 93B17, 93B27, 93B05, 22E60
Key words: left-invariant control system, detached feedback equivalence, orthogonal group
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Carathéodory’s existence and uniqueness theorem guarantees the local existence
and global uniqueness of trajectories. The initial condition (initial state) is just
a starting point for the trajectory; different admissible inputs provide, generally
speaking, different trajectories starting from a fixed state. All these trajectories
fill the set attainable from the given initial state. To characterize such sets is the
first natural problem in control theory: the controllability problem. As soon as
the possibility to attain a certain state is established, we try to do it in the best
possible way. This is the optimal control problem (see, e.g., [3], [19]).

The most natural equivalence relation for control systems is equivalence up to
coordinate changes in the state space. This is called state space equivalence. We
say that two control systems Σ and Σ̃ are state space equivalent if there exists
a diffeomorphism φ between the state spaces which transforms the dynamics Ξu
to Ξ̃u. State space equivalence is well understood ([17]). It establishes a one-to-one
correspondence between the trajectories of the equivalent systems (corresponding
to the same admissible inputs). This equivalence relation is very strong; any gen-
eral classification appears to be very difficult if not impossible. However, some
reasonable classification in low dimensions is possible (see [2], [11]).

Another important equivalence relation for control systems is that of feedback
equivalence. Applying feedback transformations means that we also modify the
controls (which remain unchanged for state space equivalence) in a way that is
state dependent. (Feedback control may be used to achieve desired dynamical
properties of the system, like stabilizability.) We say that two control systems Σ

and Σ̃ are feedback equivalent if there exists a diffeomorphism x̃ = φ(x) between
the state spaces and an invertible transformation ũ = ϕ(x, u) of controls such that

the diffeomorphism Φ(x, u) = (φ(x), ϕ(x, u)) brings Σ into Σ̃. Feedback equivalent
systems have geometrically the same set of trajectories which are parametrized dif-
ferently by admissible inputs. Feedback equivalence has been extensively studied
in the last few decades (see [25] and the references therein). Many problems con-
cerning feedback equivalence are studied and solved for control affine systems (i.e.,
control systems with dynamics affine in controls) and then extended to the general
case (for details, see [17], [25]).

In the context of left-invariant control systems, feedback equivalence is special-
ized by requiring that the feedback transformations are independent of the state
variable. Such transformations are precisely those that are compatible with the Lie
group structure. This is called detached feedback equivalence. It turns out that
two (full-rank) left-invariant control systems are detached feedback equivalent if
and only if there exists a Lie group isomorphism between the state spaces, relating
their dynamics. Several classes of left-invariant control affine systems have recently
been classified (cf. [7], [9]).

In this paper we consider left-invariant control affine systems, evolving on the
(six-dimensional) orthogonal group SO(4). These systems have the form

Σ : ġ = g(A+ u1B1 + · · ·+ u`B`) , g ∈ SO(4) , u ∈ R`

where A,B1, . . . , B` ∈ so(4). (The elements B1, . . . , B` are assumed to be linearly
independent.) The aim is to classify, under detached feedback equivalence, all such
systems; a list of class representatives will be produced. In addition, we identify
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precisely those systems which are controllable. The homogeneous systems are con-
sidered first. The single-input, two-input, and three-input systems are classified by
exploiting the singular value decomposition. The classification of the four-input
and five-input systems follow as corollaries. For the inhomogeneous systems, the
classification is based, in each case, on its homogeneous counterpart.

We conclude the paper with a few remarks. Moreover, we refer briefly to other
works on SO(4) (and its Lie algebra) dealing with some interesting variational
problems as well as integrable Hamiltonian systems (and their applications).

A tabulation of the classification in matrix form is appended.

2 Invariant control systems

An (`-input) left-invariant control affine system Σ on G is a control system of the
form

Σ : ġ = g Ξ(1, u) = g(A+ u1B1 + · · ·+ u`B`) , g ∈ G , u ∈ R`.

Here G is a (real, finite-dimensional) connected matrix Lie group with Lie algebra g.
The parametrization map Ξ(1, ·) : R` → g is an injective affine map (i.e., B1, . . . , B`
are linearly independent). Note that the dynamics Ξu = Ξ(·, u) are invariant under
left translations, i.e., Ξ(g, u) = g Ξ(1, u). Such a system is denoted by Σ = (G,Ξ)
(cf. [6]). Σ is completely determined by the specification of its state space G and
its parametrization map Ξ(1, ·). Hence, for a fixed G, we shall specify Σ by simply
writing

Σ : A+ u1B1 + · · ·+ u`B` .

The trace Γ = im Ξ(1, ·) = A + Γ0 = A + 〈B1, . . . , B`〉 is an affine subspace of g.
A system Σ is called homogeneous if A ∈ Γ0, and inhomogeneous otherwise. Σ has
full rank if the Lie algebra generated by its trace coincides with g.

The admissible inputs are piecewise-continuous maps u(·) : [0, T ]→ R`. A trajec-
tory for an admissible input u(·) is an absolutely continuous curve g(·) : [0, T ]→ G
such that ġ(t) = g(t) Ξ(1, u(t)) for almost every t ∈ [0, T ]. A system Σ is said
to be controllable if, given any pair of points g0, g1 ∈ G, there exists a trajectory
g(·) such that g(0) = g0 and g(T ) = g1. If Σ is controllable, then it has full rank.
Moreover, if Σ is homogeneous or if G is compact, then the full-rank condition
implies controllability. For more details on invariant control systems see, e.g., [19],
[20], [26].

Let Σ = (G,Ξ) and Σ′ = (G,Ξ′) be two systems on G. We say that Σ and Σ′ are
(locally) detached feedback equivalent if there exist open neighbourhoods N and N ′

of (the unit element) 1 and a (local) diffeomorphism Φ = φ×ϕ : N ×R` → N ′×R`
such that φ(1) = 1 and Tgφ ·Ξ(g, u) = Ξ′(φ(g), ϕ(u)) for g ∈ N and u ∈ R`. (Here
Tgφ denotes the tangent map of φ at g.)

Proposition 1 ([12]). Two full-rank systems Σ and Σ′ are detached feedback equiv-
alent if and only if there exists a Lie algebra automorphism ψ : g → g such that
ψ · Γ = Γ′.
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Proof. (Sketch) Suppose Σ and Σ′ are detached feedback equivalent. Then

T1φ · Ξ(1, u) = Ξ′
(
1, ϕ(u)

)
and so T1φ · Γ = Γ′. Let u, v ∈ R`, and let Ξu = Ξ(·, u) and Ξv = Ξ(·, v) denote
the corresponding vector fields. Then φ∗[Ξu,Ξv] = [φ∗Ξu, φ∗Ξv] and so

T1φ · [Ξu(1),Ξv(1)] = [Ξ′ϕ(u)(1),Ξ′ϕ(v)(1)] = [T1φ · Ξu(1), T1φ · Ξv(1)] .

As the elements Ξu(1), u ∈ R`, generate the Lie algebra, it follows that T1φ is a Lie
algebra isomorphism. Conversely, suppose we have a Lie algebra isomorphism ψ
such that ψ ·Γ = Γ′. Then there exist neighbourhoods N and N ′ of 1 and a (local)
group isomorphism φ : N → N ′ such that T1φ = ψ (see, e.g., [21]). The equation
ψ ·Ξ(1, u) = Ξ′(1, ϕ(u)) defines an affine isomorphism ϕ : R` → R`′ . Consequently

Tgφ · Ξ(g, u) = T1Lφ(g) · ψ · Ξ(1, u) = Ξ′(φ(g), ϕ(u)) .

Hence Σ and Σ′ are detached feedback equivalent. �

In this paper, we shall find it convenient to use the above characterization as
the definition of equivalence. More precisely, we say that two (not necessarily
full-rank) systems Σ and Σ′ are equivalent if there exists ψ ∈ Aut(g) such that
ψ · Γ = Γ′. In particular, if Γ = Γ′, then we say that Σ′ is a reparametrization
of Σ. Notice that if two systems are equivalent, then they are detached feedback
equivalent. (The converse, however, does not hold.) Any two equivalent systems are
either both controllable or neither is controllable whenever the full-rank condition
is equivalent to controllability.

3 The orthogonal group SO(4)
The orthogonal group

SO(4) =
{
g ∈ GL(4,R) : g>g = 1, det g = 1

}
is a six-dimensional semisimple compact connected Lie group. Its Lie algebra

so(4) =
{
A ∈ R4×4 : A> +A = 0

}
is isomorphic to so(3)⊕ so(3). Let

E1 =

0 0 0
0 0 −1
0 1 0

 E2 =

 0 0 1
0 0 0
−1 0 0

 E3 =

0 −1 0
1 0 0
0 0 0


be the standard (ordered) basis for so(3). The map ς : so(3)⊕ so(3)→ so(4), given
by  0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,
 0 −y3 y2

y3 0 −y1

−y2 y1 0



7→ 1

2


0 x3 − y3 x2 − y2 x1 − y1

−x3 + y3 0 x1 + y1 −x2 − y2

−x2 + y2 −x1 − y1 0 x3 + y3

−x1 + y1 x2 + y2 −x3 − y3 0





Control systems on the orthogonal group SO(4) 111

is a Lie algebra isomorphism. The natural basis of so(4) is given by

Ei = ς · (Ei,0) i = 1, 2, 3

Ej = ς · (0,Ej−3) j = 4, 5, 6.

(This choice of basis proves to be the most convenient, especially for expressing the
group of automorphisms.) The commutator table for so(4) is given below.

E1 E2 E3 E4 E5 E6

E1 0 E3 −E2 0 0 0
E2 −E3 0 E1 0 0 0
E3 E2 −E1 0 0 0 0
E4 0 0 0 0 E6 −E5

E5 0 0 0 −E6 0 E4

E6 0 0 0 E5 −E4 0

The group of inner automorphisms of so(4) is given by

Int(so(4)) =

{[
ψ1 0
0 ψ2

]
: ψ1, ψ2 ∈ SO(3)

}
.

Proposition 2 ([1]). The group of automorphisms Aut(so(4)) is generated by

Int(so(4)) and the swap automorphism ζ =

[
0 I3
I3 0

]
.

Moreover, the group of automorphisms decomposes as a semi-direct product:

Aut(so(4)) = Int(so(4)) o {1, ζ} .

4 Homogeneous systems

In this section we classify the homogeneous systems on SO(4). We may assume
that Ξ(1, 0) = 0; indeed any homogeneous system is equivalent to one for which
this is the case (by use of some reparametrization). We distinguish between the
number ` of controls involved; this yields six types of systems. For each of these
types we simplify an arbitrary system by successively applying automorphisms (as
well as considering reparametrizations of the system). Finally, we verify that all
the candidates for class representatives are distinct and non-equivalent. Families
of representatives are typically parametrized by some vector α = (αi) or some
scalar β.

Any automorphism of so(4) preserves the dot product A•B =
∑6
i=1 aibi. (Here

A =
∑6
i=1 aiEi and B =

∑6
i=1 biEi.) Let Γ⊥ denote the orthogonal complement

of a subspace Γ ⊂ so(4).

Lemma 1. Suppose Γ, Γ̃ are subspaces of so(4) and ψ ∈ Aut(so(4)). Then ψ ·Γ = Γ̃

if and only if ψ · Γ⊥ = Γ̃⊥.
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The classification of the (6 − `)-input systems therefore follows from the clas-
sification of the `-input systems. Hence, we need only classify the single-input,
two-input, and three-input systems. The results for the four-input and five-input
systems then follow as corollaries. (The classification for the six-input systems is
trivial.)

When convenient, an `-input homogeneous system

Σ: u1

6∑
i=1

bi1Ei + · · ·+ u`

6∑
i=1

bi`Ei

will be written (in matrix form) as

Σ:

[
M1

M2

]
=

b
1
1 . . . b1`
...

...
b61 . . . b6`

 .
Here M1,M2 ∈ R3×`.

The evaluation ψ · Ξ(1,u) then becomes a matrix multiplication. Accordingly,

two `-input homogeneous systems Σ:

[
M1

M2

]
and Σ′ :

[
M ′1
M ′2

]
are equivalent if and

only if there exist an automorphism ψ ∈ Aut(so(4)) and K ∈ GL(`,R) such that

ψ ·
[
M1

M2

]
K =

[
M ′1
M ′2

]
.

(K corresponds to a reparametrization Ξ(1,Ku) of the system Σ.) More precisely,
Σ and Σ′ are equivalent if and only if there exist R1, R2 ∈ SO(3) and K ∈ GL(`,R)
such that

(R1M1K = M ′1 and R2M2K = M ′2)

or (R1M2K = M ′1 and R2M1K = M ′2) .

The singular value decomposition (SVD) turns out to be useful in classifying
systems. For any matrix M ∈ Rm×n of rank r, there exist orthogonal matrices
U ∈ Rm×m, V ∈ Rn×n and a diagonal matrix D ∈ Rr×r = diag(σ1, . . . , σr) such

that M = U

[
D 0
0 0

]
V > with σ1 ≥ · · · ≥ σr > 0. Specialized forms of the

SVD (stated as lemmas) will be used in classifying the two-input and three-input
homogeneous systems.

Theorem 1. Any single-input homogeneous system is equivalent to

Σ
(1,0)
β : u1(E1 + βE4)

for some 0 ≤ β ≤ 1. Here β parametrizes a family of class representatives, each
different value corresponding to a distinct non-equivalent representative.

Remark 1. Clearly, no single-input homogeneous system is controllable.
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Proof. Let Σ:

[
M1

M2

]
be a single-input system. (Here M1,M2 ∈ R3×1.) We may

assume that M1 6= 0. (If not, consider Σ: ζ ·
[
M1

M2

]
.) There exist R1, R2 ∈ SO(3)

such that

R1M1
1

‖M1‖
=

1
0
0

 and R2M2
1

‖M1‖
=

‖M2‖
‖M1‖

0
0

 .
Thus Σ is equivalent to Σ′ : u1(E1 + ‖M2‖

‖M1‖E4). If ‖M2‖
‖M1‖ > 1, then we have

ζ ·
〈
E1 +

‖M2‖
‖M1‖

E4

〉
=

〈
E1 +

‖M1‖
‖M2‖

E4

〉
,

and so Σ is equivalent to Σ′′ : u1(E1 + ‖M1‖
‖M2‖E4). Hence Σ is equivalent to Σ

(1,0)
β for

some 0 ≤ β ≤ 1.

Suppose Σ
(1,0)
β and Σ

(1,0)
β′ are equivalent. Then there exist R1, R2 ∈ SO(3) and

k 6= 0 such that R1

1
0
0

 k =

1
0
0

 and R2

β0
0

 k =

β′0
0


or

R1

β0
0

 k =

1
0
0

 and R2

1
0
0

 k =

β′0
0

 .

Therefore |β| = |β′| or |ββ′| = 1. Thus, as 0 ≤ β, β′ ≤ 1, we get β = β′. �

Corollary 1. Any five-input homogeneous system is equivalent to

Σ
(5,0)
β : u1(E4 − βE1) + u2E2 + u3E3 + u4E5 + u5E6

for some 0 ≤ β ≤ 1. Here β parametrizes a family of class representatives, each
different value corresponding to a distinct non-equivalent representative.

Remark 2. Every five-input homogeneous system is controllable.

Lemma 2. For any M ∈ R3×2 there exist orthogonal matrices R1 ∈ SO(3) and

R2 ∈ O(2) such that R1MR2 =

[
D

0 0

]
, where D =

[
a1 0
0 a2

]
and a1 ≥ a2 ≥ 0.

If

R1

[
D

0 0

]
R2 =

[
D′

0 0

]
for some R1 ∈ SO(3) and R2 ∈ O(2), then D = D′ (provided that D and D′ are
diagonal matrices such that a1 ≥ a2 ≥ 0 and a′1 ≥ a′2 ≥ 0).
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Theorem 2. Any two-input homogeneous system is equivalent to exactly one of
the systems

Σ
(2,0)
1 : u1E1 + u2E4

Σ
(2,0)
2,α : u1(E1 + α1E4) + u2(E2 + α2E5)

for some α1, α2 ∈ R, where 0 = α2 ≤ α1 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1. Here

α parametrizes a family of class representatives, each different value corresponding
to a distinct non-equivalent representative.

Remark 3. Σ
(2,0)
1 is not controllable. Σ

(2,0)
2,α is not controllable exactly when α2 = 0

or α1 = α2 = 1.

Proof. Let Σ:

[
M1

M2

]
be a two-input system. (Here M1,M2 ∈ R3×2.) Now ei-

ther rank(M1) = rank(M2) = 1 or max{rank(M1), rank(M2)} = 2. Suppose
rank(M1) = rank(M2) = 1. Then there exists K ∈ GL(2,R) such that

M1K =

b1 0
b2 0
b3 0

 and M2K =

0 b4
0 b5
0 b6

 .
Hence there exists R1, R2 ∈ SO(3) such that

R1

b1 0
b2 0
b3 0

 1√
b21+b22+b23

0

0 1√
b24+b25+b26

 =

1 0
0 0
0 0


and R2

0 b4
0 b5
0 b6

 1√
b21+b22+b23

0

0 1√
b24+b25+b26

 =

0 1
0 0
0 0

 .
Therefore Σ is equivalent to Σ

(2,0)
1 .

On the other hand, suppose rank(M1) = 2 or rank(M2) = 2. We may assume

rank(M1) = 2. (If not, consider Σ: ζ ·
[
M1

M2

]
.) There exists R1 ∈ SO(3) such that

R1M1 =

[
M ′1

0 0

]
. Hence, there exists K ∈ GL(2,R) such that R1M1K = I2,0,

where I2,0 =

[
I2

0 0

]
. Thus Σ is equivalent to Σ′ :

[
I2,0
M ′2

]
. By lemma 2, there

exist R2 ∈ SO(3) and K ∈ O(2) such that K−1 0
0

0 0 detK

1 0
0 1
0 0

K =

1 0
0 1
0 0

 and R2M
′
2K =

α1 0
0 α2

0 0


for some α1 ≥ α2 ≥ 0. If α2 = 0 or 0 ≤ α2 ≤ α1 < 1, then Σ is equivalent to Σ

(2,0)
2,α .
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Suppose 1 < α2 ≤ α1. Then0 1 0
1 0 0
0 0 −1

α1 0
0 α2

0 0

[ 0 1
α1

1
α2

0

]
=

1 0
0 1
0 0


and

0 1 0
1 0 0
0 0 −1

1 0
0 1
0 0

[ 0 1
α1

1
α2

0

]
=

 1
α2

0

0 1
α1

0 0


with 0 < 1

α1
≤ 1

α2
< 1. Thus Σ is equivalent to Σ

(2,0)
2,α′ for some 0 < α′2 ≤ α′1 < 1.

Suppose α2 ≤ 1 ≤ α1. If 1
α2
≤ α1, then we are done. If 1

α2
> α1, then Σ is likewise

equivalent to Σ
(2,0)
2,α′ for some 1 ≤ 1

α′2
≤ α′1.

We now verify that none of the class representatives are equivalent. As the

traces of Σ
(2,0)
1 and Σ

(2,0)
2,α , respectively, do not generate the same subalgebra (for

any α1, α2 ∈ R), they cannot be equivalent. We claim that Σ
(2,0)
2,α and Σ

(2,0)

2,α′

are equivalent only if α = α′. Indeed, assume there exist R1, R2 ∈ SO(3) and
K ∈ GL(2,R) such that

R1

1 0
0 1
0 0

K =

1 0
0 1
0 0

 and R2

α1 0
0 α2

0 0

K =

α′1 0
0 α′2
0 0

 .
Then K ∈ O(2) and so, by lemma 2, it follows that α1 = α′1 and α2 = α′2. On the
other hand, assume there exist R1, R2 ∈ SO(3) and K ∈ GL(2,R) such that

R1

α1 0
0 α2

0 0

K =

1 0
0 1
0 0

 and R2

1 0
0 1
0 0

K =

α′1 0
0 α′2
0 0

 .
Then α2 6= 0 and α′2 6= 0. Hence, we need only consider the cases:

(i) 1 ≤ 1
α2
≤ α1 and 0 < α′2 ≤ α′1 < 1,

(ii) 0 < α2 ≤ α1 < 1 and 0 < α′2 ≤ α′1 < 1,

(iii) 1 ≤ 1
α2
≤ α1 and 1 ≤ 1

α′2
≤ α′1.

Assume (i) holds. It follows that R1 =

[
S1 0
0 detS1

]
and R2 =

[
S2 0
0 detS2

]
for some S1, S2 ∈ O(2). Thus K =

[ 1
α1

0

0 1
α2

]
S−1

1 and so

S2

[ 1
α1

0

0 1
α2

]
S−1

1 =

[
α′1 0
0 α′2

]
.

By applying the mapping A 7→ AA>, we get

S2

[
1
α2

1
0

0 1
α2

2

]
S>2 =

[
α′1

2
0

0 α′2
2

]
.
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As 1
α2
≥ 1

α1
≥ 0 and α′1 ≥ α′2 ≥ 0, it follows that α2

1α
′
2
2

= 1 and α′1
2
α2

2 = 1. Hence
α′1 ≥ 1, a contradiction.

Similarly, if (ii) or (iii) hold, then we arrive at a contradiction. �

Corollary 2. Any four-input homogeneous system is equivalent to exactly one of
the systems

Σ
(4,0)
1 : u1E2 + u2E3 + u3E5 + u4E6

Σ
(4,0)
2,α : u1(E4 − α1E1) + u2(E5 − α2E2) + u3E3 + u4E6

for some α1, α2 ∈ R, where 0 = α2 ≤ α1 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1. Here

α parametrizes a family of class representatives, each different value corresponding
to a distinct non-equivalent representative.

Remark 4. Σ
(4,0)
1 is controllable. Σ

(4,0)
2,α is not controllable exactly when α1 =

α2 = 0.

Lemma 3. For any M ∈ R3×3 there exist R1, R2 ∈ SO(3) such that

R1MR2 = diag(α1, α2, α3) ,

where α1 ≥ α2 ≥ |α3| ≥ 0. Moreover, if diag(α1, α2, α3) and diag(α′1, α
′
2, α
′
3) are

two such matrices and

R1diag(α1, α2, α3)R2 = diag(α′1, α
′
2, α
′
3)

for some R1, R2 ∈ SO(3), then α1 = α′1, α2 = α′2, and α3 = α′3.

Theorem 3. Any three-input homogeneous system is equivalent to exactly one of
the systems

Σ
(3,0)
1,β : u1(E1 + βE4) + u2E2 + u3E6

Σ
(3,0)
2,α : u1(E1 + α1E4) + u2(E2 + α2E5) + u3(E3 + α3E6)

for some α1, α2, α3, β ∈ R, where 0 ≤ β ≤ 1 and 0 = α3 ≤ α2 ≤ α1 or 0 <
|α3| ≤ α2 < 1 ∧ α2 ≤ α1 or α2 = 1 ≤ 1

|α3| ≤ α1. Here α and β parametrize

families of class representatives, each different value corresponding to a distinct
non-equivalent representative.

Remark 5. Σ
(3,0)
1,β is controllable exactly when β > 0. Σ

(3,0)
2,α is not controllable

exactly when α1 = α2 = α3 = 1 or α2 = 0.

Proof. Let Σ:

[
M1

M2

]
be a three-input system. (Here M1,M2 ∈ R3×3.) Clearly

either max{rank(M1), rank(M2)} = 3 or max{rank(M1), rank(M2)} = 2. Suppose,
rank(M1) = 3 or rank(M2) = 3. We may assume rank(M1) = 3. (If not, consider
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Σ: ζ ·
[
M1

M2

]
.) Then there exists K ∈ GL(3,R) such that M1K = I3. Thus Σ is

equivalent to Σ′ :

[
I3
M ′2

]
. By lemma 3, there exist R2,K ∈ SO(3) such that

R2M
′
2K = diag(α1, α2, α3)

for some α1 ≥ α2 ≥ |α3| ≥ 0.
If α3 = 0 or |α3| ≤ α2 < 1 or 1 = α2 ≤ 1

|α3| ≤ α1, then we are done. Suppose

1 < |α3| ≤ α2 ≤ α1 or 0 < |α3| < 1 < α2 ≤ α1. If α3 > 0, then 0 0 1
0 1 0
−1 0 0

α1 0 0
0 α2 0
0 0 α3

 0 0 − 1
α1

0 1
α2

0
1
α3

0 0

 = I3

and

 0 0 1
0 1 0
−1 0 0

 0 0 − 1
α1

0 1
α2

0
1
α3

0 0

 =

 1
α3

0 0

0 1
α2

0

0 0 1
α1

 .
If α3 < 0, then 0 0 −1

0 1 0
1 0 0

α1 0 0
0 α2 0
0 0 α3

 0 0 1
α1

0 1
α2

0

− 1
α3

0 0

 = I3

and

 0 0 1
0 1 0
−1 0 0

 0 0 1
α1

0 1
α2

0

− 1
α3

0 0

 =

− 1
α3

0 0

0 1
α2

0

0 0 − 1
α1

 .
In both cases 0 < 1

α1
≤ 1

α2
≤ 1
|α3| . Thus Σ is equivalent to some system Σ

(3,0)

2,α′

with 0 < |α′3| ≤ α′2 < 1 and α′2 ≤ α′1. Likewise, if 1
|α3| ≥ α1 ≥ α2 = 1, then Σ is

equivalent to some system Σ
(3,0)

2,α′ with 1 = α′2 ≤ 1
|α′3|
≤ α′1.

On the other hand, suppose rank(M1) = 2 and rank(M2) ∈ {1, 2}. Again,

a simple argument shows that Σ is equivalent to some system Σ′ :

[
I2,0
M ′1

]
, where

I2,0 =

[
I2 0
0 0

]
. If rank(M ′1) = 1, it is easy to show that Σ is equivalent to Σ

(3,0)
1,0 .

Assume that rank(M ′1) = 2. Then there exist R1, R2 ∈ SO(3) and K ∈ GL(3,R)
such that

R1I2,0K = I2,0 and R2M
′
1K =

a1 a2 0
a3 a4 0
0 0 1

 .
By the SVD there exist S1, S2 ∈ O(2) such that S2

[
a1 a2

a3 a4

]
S1 = diag(β, 0) for

some β ≥ 0. Let

K ′ =

[
S1 0
0 detS1

]
∈ SO(3) and R′2 =

[
S2 0
0 detS2

]
∈ SO(3) .
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Now

(K ′)−1I2,0K
′ = I2,0 and R′2

a1 a2 0
a3 a4 0
0 0 1

K ′ =

β 0 0
0 0 0
0 0 1

 .
If β ≤ 1, then we are done (i.e., Σ is equivalent to Σ

(3,0)
1,β ). Suppose that β > 1.

Then
ζ · 〈E1 + βE4, E2, E6〉 =

〈
1
βE4 + E1, E5, E3

〉
.

It is a simple matter to show that there exists an automorphism ψ such that

ψ ·
〈

1
βE4 + E1, E5, E3

〉
=
〈
E1 + 1

βE4, E2, E6

〉
.

Thus Σ is equivalent to Σ
(3,0)
1,β′ for some 0 ≤ β′ ≤ 1.

We now verify that none of these class representatives are equivalent. As the

traces of Σ
(3,0)
1,β and Σ

(3,0)
2,α , respectively, do not generate the same subalgebra (for

any β, α1, α2 ∈ R), they cannot be equivalent. Suppose two systems Σ
(3,0)
2,α and

Σ
(3,0)

2,α′ , with α1 ≥ α2 ≥ |α3| ≥ 0 and α′1 ≥ α′2 ≥ |α′3| ≥ 0, are equivalent. We claim

that α = α′. Indeed, assume there exist R1, R2 ∈ SO(3) and K ∈ GL(3,R) such
that R1I3K = I3 and R2diag(α1, α2, α3)K = diag(α′1, α

′
2, α
′
3). Then, by lemma 3,

it follows that α = α′. On the other hand, assume there exist R1, R2 ∈ SO(3) and
K ∈ GL(3,R) such that R1diag(α1, α2, α3)K = I3 and R2I3K = diag(α′1, α

′
2, α
′
3).

Then α2
1α
′
3
2

= 1, α2
2α
′
2
2

= 1 and α2
3α
′
1
2

= 1. Clearly, α3, α
′
3 6= 0. Three possibilities

remain, either

(i) 0 < |α3| ≤ α2 < 1 and 0 < |α′3| ≤ α′2 < 1, or

(ii) 0 < |α3| ≤ α2 < 1 and 0 < |α′3| ≤ α′2 < 1 ∧ α′2 ≤ α′1, or

(iii) 0 < |α3| ≤ α2 < 1 ∧ α2 ≤ α1 and 0 < |α′3| ≤ α′2 < 1 ∧ α′2 ≤ α′1.

Again (as in theorem 2), each case leads to a contradiction. �

Remark 6. There is only one six-dimensional affine subspace of so(4), namely so(4).
Therefore any six-input system is equivalent to the system

Σ(6,0) : u1E1 + u2E2 + u3E3 + u4E4 + u5E5 + u6E6 .

Clearly, this system is controllable.

5 Inhomogeneous systems
We now proceed to the classification of the inhomogeneous systems on SO(4). This
classification is, in part, based on our classification of homogeneous systems. As
before, we distinguish between the number ` of controls involved; this yields five
types of systems. (Clearly there are no six-input inhomogeneous systems.) Suppose

Σ: A+ u1B1 + · · ·+ u`B`

is an inhomogeneous system. Then the corresponding homogeneous system

Σ̃: u1B1 + · · ·+ u`B`
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is equivalent to exactly one homogeneous class representative Σ0. Consequently,
Σ is equivalent to a system Σ′ with parametrization map Ξ′(1, u) = A′ + Ξ0(1, u).
Such an (arbitrary) system is then further simplified by applying automorphisms
preserving the trace Γ0 of Σ0. Accordingly, for each homogeneous class represen-
tative Σ0, representatives for the associated class of inhomogeneous systems are
identified. We will, in addition, use vectors ε = (εi) to parametrize class represen-
tatives.

Again, it is convenient to write the condition of equivalence in matrix form. An
`-input inhomogeneous system specified by

Σ:

6∑
i=1

aiEi + u1

6∑
i=1

bi1Ei + · · ·+ u`

6∑
i=1

bi`Ei

will be written (in matrix form) as

Σ:

[
M1

M2

]
=

a
1 b11 . . . b1`
...

...
...

a6 b61 . . . b6`

 .
Here M1,M2 ∈ R3×(`+1). Two `-input inhomogeneous systems Σ:

[
M1

M2

]
and

Σ′ :

[
M ′1
M ′2

]
are equivalent if and only if there exist an automorphism ψ ∈ Aut(so(4))

and K ∈ Aff(`,R) such that

ψ ·
[
M1

M2

]
K =

[
M ′1
M ′2

]
.

Here

Aff(`,R) =

{[
1 0
v N

]
: v ∈ R`×1, N ∈ GL(`,R)

}
.

For an inhomogeneous system

Σ: A+ u1B1 + · · ·+ u`B` ,

with A =
∑6
i=1 εiEi, it follows that

∑6
i=1 ε

2
i 6= 0. We omit this condition in the

statements of the theorems throughout this section. A proof sketch is provided for
theorem 4 to elucidate the approach used in the classification of inhomogeneous
systems. More details are provided in the proof of theorem 5. The proofs of
theorems 6, 7, and 8 are similar and shall therefore be omitted.

Theorem 4. Every single-input inhomogeneous system is equivalent to exactly one
of the systems

Σ
(1,1)
βε : A+ u1(E1 + βE4)

for some 0 ≤ β ≤ 1, where
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(i) if β = 0 then
A = ε2E2 + ε4E4

with ε2, ε4 ≥ 0, and

(ii) if 0 < β ≤ 1 then
A = ε2E2 + ε4E4 + ε5E5

with ε2, ε4, ε5 ≥ 0 and
(
(β = 1 ∧ ε4 = 0)⇒ ε2 ≥ ε5

)
.

Here β and ε parametrize a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 7. If β = 0, then Σ
(1,1)
βε is not controllable. If β > 0, then Σ

(1,1)
βε is not

controllable exactly when ε2 = 0 or ε5 = 0 or (ε2 = ε5 ∧ ε4 = 0 ∧ β = 1).

Proof. Let Σ: A+u1B1 be a single-input system. Then, by theorem 1, Σ is equiv-
alent to a system

Σ̂:

6∑
i=2

εiEi + u1(E1 + βE4)

for some 0 ≤ β ≤ 1. Suppose β > 0. Now

R1

1
0
0

 k =

1
0
0

 , R2

β0
0

 k =

β0
0

 , and R1, R2 ∈ SO(3)

exactly when k = detS1 = detS2, R1 =

[
detS1 0

0 S1

]
, R2 =

[
detS2 0

0 S2

]
, and

S1, S2 ∈ O(2). Accordingly, there exist S1, S2 ∈ O(2) such that[
detS1 0

0 S1

] 0 1
ε2 0
ε3 0

[1 0
0 detS1

]
=

 0 1
ε′2 0
0 0


and

[
detS2 0

0 S2

]ε4 β
ε5 0
ε6 0

[1 0
0 detS1

]
=

ε′4 β
ε′5 0
0 0


for some ε′2, ε

′
4, ε
′
5 ≥ 0. Therefore Σ is equivalent to the system

Σ′ : ε′2E2 + ε′4E4 + ε′5E5 + u1(E1 + βE4) .

Moreover, if β = 1 and ε′4 = 0, then Σ can be shown to be equivalent to a
system

Σ′′ : ε′′2E2 + ε′′5E5 + u1(E1 + E4)

for some ε′′2 ≥ ε′′5 ≥ 0.
Likewise, if β = 0, it follows that Σ is equivalent to a system

Σ′ : ε′2E2 + ε′4E4 + u1E1

for some ε′2, ε
′
4 ≥ 0. (Again, as in the homogeneous case, one verifies that all the

systems obtained are distinct and non-equivalent.) �
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Theorem 5. Every two-input inhomogeneous system is equivalent to exactly one
of the systems

(1) Σ
(2,1)
1,ε : ε2E2 + ε5E5 + u1E1 + u2E4 with ε2 ≥ ε5 ≥ 0

(2) Σ
(2,1)
2,αε : A+ u1(E1 + α1E4) + u2(E2 + α2E5)

with α1 ≥ α2 = 0 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1, where

(i) if α1 = α2 = 0 then
A = ε3E3 + ε4E4

with ε3, ε4 ≥ 0, and

(ii) if α1 = α2 > 0 then

A = ε3E3 + ε4E4 + ε6E6

with ε3 = 0⇒ ε6 ≥ 0, ε6 ∈ R, ε3, ε4 ≥ 0, and

(iii) if α1 > α2 = 0 then

A = ε3E3 + ε4E4 + ε5E5 + ε6E6

with (ε4 = 0 ∨ ε5 = 0)⇒ ε6 ≥ 0, ε6 ∈ R, ε3, ε4, ε5 ≥ 0, and

(iv) if α1 > α2 > 0 then

A = ε3E3 + ε4E4 + ε5E5 + ε6E6

with (ε3, ε4 > 0)∨(ε3 > 0∧ε5 ≥ 0)∨(ε4, ε5 ≥ 0)∨(ε5, ε6 ≥ 0), ε5, ε6 ∈ R,
ε3, ε4 ≥ 0.

Here α and ε parametrize families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 8. Σ
(2,1)
1,ε is controllable exactly when ε5 6= 0. Σ

(2,1)
2,αε is not controllable

exactly when α2 = 0 ∧ (α1 = 0 ∨ ε5 = ε6 = 0) or α1 = α2 = 1 ∧ ε4 = 0 ∧ ε3 = ε6.

Proof. Let Σ: A+ u1B1 + u2B2 be a two-input system. Then, by theorem 2, Σ is
equivalent either to

Σ̂1 :

6∑
i=1

εiEi + u1E1 + u2E4

or

Σ̂2 :

6∑
i=3

εiEi + u1(E1 + α1E4) + u2(E2 + α2E5) .

It is easy to show that Σ̂1 is equivalent to Σ
(2,1)
1,ε . Suppose Σ is equivalent to Σ̂2

and α1 > α2 > 0. Now

R1

1 0
0 1
0 0

N =

1 0
0 1
0 0

 R2

α1 0
0 α2

0 0

N =

α1 0
0 α2

0 0


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R1, R2 ∈ SO(3), and N ∈ GL(2,R) exactly when N = S, R1 = R2 =

[
S 0
0 detS

]
,

and S =

[
σ1 0
0 σ2

]
, σ1, σ2 ∈ {−1, 1}. Accordingly, (a tedious but straightforward

computation shows that) there exists σ1, σ2 ∈ {−1, 1} such thatσ1 0 0
0 σ2 0
0 0 σ1σ2

 0 1 0
0 0 1
ε3 0 0

1 0 0
0 σ1 0
0 0 σ2

 =

 0 1 0
0 0 1
ε′3 0 0


and

σ1 0 0
0 σ2 0
0 0 σ1σ2

ε4 α1 0
ε5 0 α2

ε6 0 0

1 0 0
0 σ1 0
0 0 σ2

 =

ε′4 α1 0
ε′5 0 α2

ε′6 0 0


where ε′3, ε

′
4 ≥ 0 and (ε′3 = 0 ∨ ε′4 = 0) ⇒ ε′5 ≥ 0 and ε′3 = ε′4 = 0 ⇒ (ε′5, ε

′
6 ≥ 0)

and ε′3 = ε′5 = 0 ⇒ ε′6 ≥ 0. These conditions are equivalent to those given in the
theorem.

On the other hand, suppose Σ is equivalent to Σ̂2 and α1 = α2 > 0. Then

R1

1 0
0 1
0 0

N =

1 0
0 1
0 0

 R2

α1 0
0 α1

0 0

N =

α1 0
0 α1

0 0


R1, R2 ∈ SO(3), and N ∈ GL(2,R) exactly when N = S>, R1 = R2 =

[
S 0
0 detS

]
,

and S ∈ O(2). Therefore there exists S ∈ O(2) such that[
S 0
0 detS

] 0 1 0
0 0 1
ε3 0 0

[1 0
0 S>

]
=

 0 1 0
0 0 1
ε′3 0 0


and

[
S 0
0 detS

]ε4 α1 0
ε5 0 α1

ε6 0 0

[1 0
0 S>

]
=

ε′4 α1 0
0 0 α1

ε′6 0 0


where ε′3, ε

′
4 ≥ 0 and ε′3 = 0⇒ ε′6 ≥ 0.

The (families of) equivalence representatives 2(i) and 2(iii) are obtained simi-
larly. (Again, as in the homogeneous case, one verifies that all the systems obtained
are distinct and non-equivalent.) �

Theorem 6. Every three-input inhomogeneous system is equivalent to exactly one
of the systems

(1) Σ
(3,1)
1,βε : A+ u1(E1 + βE4) + u2E2 + u3E6 with 0 ≤ β ≤ 1, where

(i) if β = 0 then

A = ε3E3 + ε4E4 with ε3, ε4 ≥ 0 ,

(ii) if 0 < β ≤ 1 then
A = ε3E3 + ε4E4 + ε5E5

with
(
(ε4 = 0 ∧ β = 1)⇒ ε3 ≥ ε5

)
, ε3, ε4, ε5 ≥ 0.
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(2) Σ
(3,1)
2,αε : A+ u1(E1 + α1E4) + u2(E2 + α2E5) + u3(E3 + α3E6)

with 0 = α3 ≤ α2 ≤ α1 or 0 < |α3| ≤ α2 < 1 ∧ α2 ≤ α1 or α2 = 1 ≤
1
|α3| ≤ α1, where

(i) if α1 = α2 = |α3| then

A = ε4E4 with ε4 ≥ 0 ,

(ii) if α1 > α2 = |α3| then

A = ε4E4 + ε5E5 with ε4, ε5 ≥ 0 ,

(iii) if α1 = α2 > |α3| then

A = ε4E4 + ε6E6 with ε4, ε6 ≥ 0 ,

(iv) if α1 > α2 > |α3| then

A = ε4E4 + ε5E5 + ε6E6 with ε6 ∈ R , ε4, ε5 ≥ 0 .

Here α, β and ε parametrize families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 9. Σ
(3,1)
1,βε is controllable exactly when β 6= 0 or ε4 6= 0. Σ

(3,1)
2,αε is not

controllable exactly when α2 = 0 and (α1 = 0 ∨ ε5 = 0).

Theorem 7. Every four-input inhomogeneous system is equivalent to exactly one
of the systems

(1) Σ
(4,1)
1,ε : ε1E1 + ε4E4 + u1E2 + u2E3 + u3E5 + u4E6 with ε1 ≥ ε4 ≥ 0

(2) Σ
(4,1)
2,αε : A+ u1(E4 − α1E1) + u2(E5 − α2E2) + u3E3 + u4E6

with α1 ≥ α2 = 0 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1, where

(i) if α1 = α2 then
A = ε1E1 with ε1 ≥ 0 ,

(ii) if α1 > α2 then

A = ε1E1 + ε2E2 with ε1, ε2 ≥ 0 .

Here α and ε parametrize families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 10. Every four-input inhomogeneous system is controllable.

Theorem 8. Every five-input inhomogeneous system is equivalent to exactly one
of the systems

Σ
(5,1)
βε : ε1E1 + u1(E4 − βE1) + u2E2 + u3E3 + u4E5 + u5E6

with 0 ≤ β ≤ 1, ε1 ≥ 0. Here β and ε parametrize families of class representatives,
each different value corresponding to a distinct non-equivalent representative.

Remark 11. Every five-input inhomogeneous system is controllable.



124 R.M. Adams, R. Biggs, C.C. Remsing

6 Conclusion
We have classified all left-invariant control affine systems on the orthogonal group
SO(4) (cf. [1]). Specifically, we have shown that any system is equivalent to exactly
one of a list of equivalence representatives. In addition, we have identified exactly
which of the representative systems are controllable.

As a simple by-product of the classification of homogeneous systems, we re-
cover a classification of subalgebras of so(4). (Two subalgebras a1, a2 ⊂ so(4) are
equivalent if there exists ψ ∈ Aut(so(4)) such that ψ · a1 = a2). Any (non-trivial)
subalgebra of so(4) is equivalent to exactly one of the following subalgebras

a(1)
α = 〈E1 + αE4〉 = ς · 〈(E1, αE1)〉

a(2) = 〈E1, E4〉 = ς · 〈E1〉 ⊕ 〈E1〉

a
(3)
1 = 〈E1, E2, E3〉 = ς · so(3)⊕ {0}

a
(3)
2 = 〈E1 + E4, E2 + E5, E4 + E6〉= ς · {(A,A) : A ∈ so(3)}

a(4) = 〈E1, E2, E3, E4〉 = ς · so(3)⊕ 〈E1〉 .

Here 0 ≤ α ≤ 1 parametrizes a family of nonequivalent class representatives. (Only

a
(3)
1 is an ideal.)

The classification of (controllable) systems should prove useful in the study of
certain classes of invariant optimal control problems on SO(4). Generally, an (affine
quadratic) invariant optimal control problem is given by the specification of

(1) a left-invariant control system Σ = (G,Ξ)

(2) an affine quadratic cost function χ : R` → R, u 7→ Q(u− µ)
(here Q is assumed positive definite and µ ∈ R`)

(3) boundary data (g0, g1, T ), consisting of an initial state g0 ∈ G, a target state
g1 ∈ G, and a (usually fixed) terminal time T > 0.

Explicitly, we want to minimize the functional

J =

∫ T

0

χ(u(t)) dt

over the trajectories of Σ subject to the boundary conditions. The equivalence of
such problems has been considered in [8], [10]; this is called cost equivalence. It
establishes a one-to-one correspondence between the associated optimal trajectories
(resp. associated extremal curves) of equivalent problems. For two cost equivalent
problems, the underlying left-invariant control systems must be equivalent. Hence
(once a classification of systems has been found), only the transformations leaving
each system invariant need be considered when investigating cost equivalence.

Some specific (invariant) optimal control problems on SO(4) have been stud-
ied by diverse authors in several contexts. For instance, D’Alessandro studied a
particular (time) optimal control problem associated with a homogeneous three-
-input control affine system in the context of quantum control ([15]), whereas Puta
et al. considered a particular optimal control problem for a homogeneous four-
-input control affine system in the broad context of motion control ([4]). Recently,
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Holderbaum et al. made attempts to compare different trajectories of some par-
ticular control systems on SE(3),SO(1, 3) and SO(4), in the context of rigid body
dynamics ([5], [23]). Various variational problems associated with SO(4) (and its
Lie algebra), like the Kowalewki’s top or the integrable Suslin problem, have also
been treated (see, e.g., [18], [22]). With a classification of controllable systems at
hand a more unified approach to control problems on SO(4) may be feasible. This
is a topic for future research.

Invariant optimal control problems naturally give rise to Hamilton-Poisson sys-
tems, via the Pontryagin Maximum Principle. Moreover, if two invariant optimal
control problems are cost equivalent, then the associated Hamilton-Poisson sys-
tems are linearly equivalent ([8], [10]). In the context of Hamiltonian systems,
Raţiu et al. studied the stability of equilibria for the so(4) free rigid body ([13]).
Furthermore, integrability (and explicit integration) of certain Euler equations on
so(4) and their physical applications were considered in [14], whereas (general)
integrable quadratic Hamiltonians on so(4) were also studied in [27].

Appendix: Classification of systems on SO(4) in matrix form

In the following tables, the homogeneous systems correspond to A = 0.

Single-input

Ξ0(1, u) A

Σ
(1,1)
βε


1
0
0
β
0
0




0
ε2
0
ε4
0
0


β=0


0
ε2
0
ε4
ε5
0


0<β≤1

Two-input

Ξ0(1, u) A

Σ
(2,1)
1,ε


1 0
0 0
0 0
0 1
0 0
0 0




0
ε2
0
0
ε5
0



Σ
(2,1)
2,αε


1 0
0 1
0 0
α1 0
0 α2
0 0




0
0
ε3
ε4
0
0


α1=α2=0


0
0
ε3
ε4
0
ε6


α1=α2>0


0
0
ε3
ε4
ε5
ε6


α1>α2=0


0
0
ε3
ε4
ε5
ε6


α1>α2>0
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Three-input

Ξ0(1, u) A

Σ
(3,1)
1,αε


1 0 0
0 1 0
0 0 0
β 0 0
0 0 0
0 0 1




0
0
ε3
ε4
0
0


β=0


0
0
ε3
ε4
ε5
0


0<β≤1

Σ
(3,1)
2,αε


1 0 0
0 1 0
0 0 1
α1 0 0
0 α2 0
0 0 α3




0
0
0
ε4
0
0


α1=α2=|α3|


0
0
0
ε4
ε5
0


α1>α2=|α3|


0
0
0
ε4
0
ε6


α1=α2>|α3|


0
0
0
ε4
ε5
ε6


α1>α2>|α3|

Four-input

Ξ0(1, u) A

Σ
(4,1)
1,ε


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1



ε1
0
0
ε4
0
0



Σ
(4,1)
2,αε


−α1 0 0 0

0 −α2 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



ε1
0
0
0
0
0


α1=α2


ε1
ε2
0
0
0
0


α1>α2

Five-input

Ξ0(1, u) A

Σ
(5,1)
βε


−β 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



ε1
0
0
0
0
0


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Six-input

Ξ0(1, u)

Σ
(6,0)
βε


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Σ: A+ Ξ0(1, u) Ξ0(1, u) = u1B1 + · · ·+ u`B` ←→
[
B1 · · · B`

]
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On some issues concerning polynomial cycles

Tadeusz Pezda

Abstract. We consider two issues concerning polynomial cycles. Namely,
for a discrete valuation domain R of positive characteristic (for N ≥ 1) or
for any Dedekind domain R of positive characteristic (but only for N ≥ 2),
we give a closed formula for a set CYCL(R,N) of all possible cycle-lengths
for polynomial mappings in RN . Then we give a new property of sets
CYCL(R, 1), which refutes a kind of conjecture posed by W. Narkiewicz.

1 Introduction

For a commutative ring R with unity and Φ = (Φ1, . . . ,ΦN ), where Φi ∈ R[X1, . . . ,
XN ], we define a cycle for Φ as a k-tuple x̄0, x̄1, . . . , x̄k−1 of different elements of RN

such that

Φ(x̄0) = x̄1, Φ(x̄1) = x̄2 , . . . , Φ(x̄k−1) = x̄0 .

The number k is called the length of this cycle.

Let CYCL(R,N) be the set of all possible cycle-lengths for polynomial mappings
in N variables with coefficients from R (we clearly assume that the elements of the
considered cycles lie in RN ). For a material on various aspects of polynomial
mappings and arithmetic of dynamical systems, see [1] and [4].

In Section 2 we examine CYCL(R,N) for a discrete valuation domain R with
maximal ideal P . We assume that the residue field R/P has pf elements (if R/P
is infinite, then CYCL(R,N) = N). It is known (see Fact 1 in Section 2) that
any element k ∈ CYCL(R,N) is of the form k = a · pα, where all possible a
were completely determined by the author. Thus, in order to know CYCL(R,N)
it suffices for a given ‘possible’ a (as explained before) to find all α such that
a ·pα ∈ CYCL(R,N). It is known that for a finite ramification index e the numbers
α are bounded from above by some explicit function depending on e, p, f,N . In
Theorem 1 we give a bound from below (for a given ‘possible’ a) for the biggest α

2010 MSC: 11R09, 13F05, 37P35
Key words: polynomial cycles, discrete valuation domains, Dedekind rings
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such that a · pα ∈ CYCL(R,N). Namely, we receive

α ≥
⌊

logp

(
logp e

2fN

)⌋
.

We see that for fixed f, p,N the right-hand side of the last inequality grows to ∞
(when e → ∞). Note that for a discrete valuation domain R the set CYCL(R,N)
does not depend solely on p, e, f,N . Sometimes some subtler properties of R should
be taken into account.

As a consequence of Theorem 1, in Theorem 2 we determine the sets CYCL(S,N)
for some Dedekind domains S of positive characteristic and some N .

In Section 3 we consider properties of A := CYCL(R, 1) for a domain R. Any
such A satisfies the following three ‘obvious’ properties:

(i) 1, 2 ∈ A;
(ii) A is closed under taking divisors;
(iii) for any prime p from p ∈ A it follows that [1, p] ⊆ A.

Since there were no other obvious properties ofA, in mid-nineties W. Narkiewicz
conjectured that for A ⊆ N satisfying (i), (ii), (iii) there exists a domain R such
that A = CYCL(R, 1). In Section 3 we give a negative answer to this question.

I think that it would be interesting to give a sensible conjecture concerning sets
CYCL(R,N) for N ≥ 2. In particular it is not clear whether the above property
(iii) holds in this case.

2 Finding CYCL(R,N) for some rings of positive characteristic
Let R be a discrete valuation domain of any characteristic, and P is the unique
maximal ideal of R. We assume that the field R/P is finite and has pf elements
(for prime p). Let π be a generator of the principal ideal P , and let v be the norm
of R, normalized so that v(π) = 1/p. We denote by w the corresponding exponent,
defined by

w(x) = − log v(x)

log p
for x 6= 0 , and w(0) =∞ .

We put e := w(p). Thus e is the ramification index of R. We extend w to RN

by putting w(x1, . . . , xN ) = min{w(x1), . . . , w(xN )}.
A polynomial cycle x̄0, x̄1, . . . , x̄k−1 is called a (polynomial) ?-cycle if

w(x̄i − x̄j) ≥ 1 for all i, j .

Let CYCL ? (R,N) be the set of all possible lengths of ?-cycles for polynomial
mappings in N variables with coefficients from R.

In the fact below we collect some properties of CYCL(R,N) already proved by
the author (see [2], [3]).

Fact 1. Let R, p, f, . . . be as above. Then
(i) a number k lies in CYCL(R,N) if and only if k = ab, where a ≤ pfN and b

is the length of a suitable ?-cycle in RN .
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(ii) If R̂ is the completion of R with respect to the norm v, then

CYCL(R,N) = CYCL(R̂,N) and CYCL ? (R,N) = CYCL ? (R̂,N)

(note that for R̂ the numbers p, e, f are the same as for R).
(iii) Let m be a positive integer not divisible by p. Then there is a ?-cycle of

length m in RN if and only if there are r > 0 and positive integers a1, . . . , ar
with a1 + · · ·+ ar ≤ N such that m divides [pfa1 − 1, . . . , pfar − 1].

(iv) Let S be a Dedekind domain, and let P(S) denote the family of all nonzero
prime ideals of S. If N ≥ 2, then

CYCL(S,N) =
⋂

p∈P(S)

CYCL(Sp, N) =
⋂

p∈P(S)

CYCL(Ŝp, N),

where Ŝp is the completion of Sp with respect to the obvious valuation.

In particular, to find CYCL(R,N) it suffices to know pf and, for each m dividing
[pfa1 − 1, . . . , pfar − 1] (for some a1, . . . , ar satisfying a1 + · · ·+ ar ≤ N), to know
for which n ≥ 0 the number m · pn lies in CYCL ? (R,N).

In this section we will prove that for any ‘possible’ m, as explained in Fact 1(iii),
and for any n if the ramification index is sufficiently large, thenm·pn ∈ CYCL?(R,N).
This, in turn, gives a closed formula for CYCL(S,N) for a Dedekind domain S of
positive characteristic and N ≥ 2. The fact that for any prime p and any n ≥ 0 in
Fp[[X]] there are cycles of length pn was established in the thesis of Zieve [5], who
quoted an example due to Poonen.

Theorem 1. Let R be as in this section. Let m be a divisor of [pfa1−1, . . . , pfar−1]
for some a1, . . . , ar satisfying a1 + · · · + ar ≤ N . If e ≥ p2fNpn , then m · pn ∈
CYCL ? (R,N).

Proof. Owing to Fact 1, we may assume that n ≥ 1 and R is complete. It suffices
to take m = [pfa1 −1, . . . , pfar −1]. Suppose that for e ≥ p2fNpn we have a ?-cycle
of length (pfa1 − 1) · pn for a map Φ1 : Ra1 → Ra1 . For i ≥ 2, by Fact 1(iii), in Rai

there is a ?-cycle of length pfai − 1 for some mapping Φi of Rai . We see that
Φ = (Φ1, . . . ,Φr) : Ra1+···+ar −→ Ra1+···+ar constructed in the natural way has a
?-cycle of length [(pfa1 − 1) · pn, pfa2 − 1, . . . , pfar − 1] = m · pn.

So, it suffices to prove for any M ≤ N that (pfM − 1) · pn ∈ CYCL ? (R,M).

Put q = pfM , and let ξ be a primitive root of unity of order q−1. By the usual
Hensel’s lemma (here we use the completeness of R) we have that the minimal
over R polynomial of ξ is of degree M . Thus RM ∼ R[ξ] as modules over R. Using
this canonical isomorphism, we obtain that to any polynomial F (X) ∈ R[ξ][X]
there corresponds a polynomial mapping Φ: RM → RM with coefficients from R.
One can see that R[ξ] is a complete discrete valuation domain with maximal ideal
πR[ξ], and the corresponding residue field has pfM elements. We thus have a notion
of ?-cycles in R[ξ], and to a ?-cycle in R[ξ] there corresponds a ?-cycle in RM .

Thus it suffices to find a ?-cycle in R[ξ] of length (q − 1)pn.

Take F (X) = π + ξX + γXq +Xd, where d = q2 and q = pfM . We remember
that

(
0
0

)
= 1.
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Lemma 1. For any T ≥ 0 the T -th iteration of F satisfies

FT (0) ≡
T∑
t=1

T−t∑
r=0

ξr
(
T − t
r

)
πd

T−t−r
+ γ

T−1∑
t=1

T−t−1∑
r=0

ξr
(
T − t
r

)
πd

T−t−r−1q

≡
T−1∑
t=0

ξ−tπd
t

AT (t) + γ

T−2∑
t=0

ξ−(t+1)πd
tqAT (t+ 1) mod (pπ, γq+1) ,

where AT (t) =
∑T−1
k=0

(
k
t

)
ξk. Moreover,

AT (t) +AT (t+ 1) = ξ−1
(
AT (t+ 1) + ξT

(
T

t+ 1

))
.

Proof. We use direct induction. One only has to remember that ξq = ξd = ξ and
(x+ y)p ≡ xp + yp mod (p). �

Lemma 2. (i) If q > 2 and T = (q − 1)pr, then for j = 0, 1, . . . , pr − 1 we have
w(AT (j)) ≥ e, and AT (pr) is invertible.

(ii) If q = 2, then AT (t) =
(
T
t+1

)
.

Proof. (i) Since ξ 6= 1, we have

AT (0) = 1 + ξ + · · ·+ ξT−1 = 0 .

Using w(ξ − 1) = 0, simple properties of binomial coefficients and

AT (t) +AT (t+ 1) = ξ−1

(
AT (t+ 1) + ξT

(
T

t+ 1

))
we obtain the assertion.

(ii) In this case we have ξ = 1, and therefore the assertion follows from Lemma 1.
�

Assume that q > 2. Put γ = πd
pn−1(d−q)z. In view of (q + 1)dp

n−1(d− q) > dp
n

and e ≥ p2fNpn ≥ dpn we obtain by Lemma 1 that

FT (0) ≡
T−1∑
t=0

ξ−tπd
t

AT (t) + πd
pn−1(d−q)z

T−2∑
t=0

ξ−(t+1)πd
tqAT (t+ 1)

mod (πd
pn+1R[ξ, z]) .

In particular, taking T = (q − 1)pn we get, using Lemma 2,

F (q−1)pn(0) = πd
pn

ξ−p
n

A(q−1)pn(pn)
(
1 + z + πh(z)

)
,

for some polynomial h ∈ R[ξ][X]. Thus F (q−1)pn(0) = 0 if and only if

1 + z + πh(z) = 0 .
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The existence of (a unique) z ∈ R[ξ] satisfying F (q−1)pn(0) = 0 follows from the
Hensel’s lemma. Fix such z.

Now it is sufficient to show that the smallest j > 0 satisfying F j(0) = 0 is
j = (q − 1)pn.

If F j(0) ≡ 0 mod (π2), then, by Lemma 1, Aj(0) ≡ 0 mod (π) and ξj ≡ 1
mod (π), q − 1 | j follow. From the simple properties of cycles it follows that it

suffices to show that F (q−1)pn−1

(0) 6= 0. But, Lemma 1 gives

F (q−1)pn−1

(0) ≡ ξ−p
n−1

A(q−1)pn−1(pn−1)πd
pn−1

mod (πd
pn−1

+1) ,

and, by Lemma 2, we are done.

Assume that q = 2. Put γ = πd
pn−2(d−q)z. In view of (q + 1)dp

n−2(d− q) > dp
n−1

and e ≥ p2fNpn ≥ dpn we obtain by Lemma 1 that

FT (0) =

T−1∑
t=0

πd
t

AT (t) + πd
pn−2(d−q)z

T−2∑
t=0

πd
tqAT (t+ 1) mod (πd

pn−1+1R[z]) .

In particular, taking T = pn we get, using Lemma 2,

F p
n

(0) = πd
pn−1

Apn(pn − 1)
(
1 + z + πh(z)

)
,

for some polynomial h ∈ R[X]. Thus F p
n

(0) = 0 if and only if 1 + z + πh(z) = 0.
The existence of z ∈ R satisfying F p

n

(0) = 0 follows from the Hensel’s lemma. Fix
such z.

Now it suffices to show that the smallest j > 0 satisfying F j(0) = 0 is j = pn.
From the simple properties of cycles it follows that it suffices to show that

F p
n−1

(0) 6= 0. But, Lemma 1 gives

F p
n−1

(0) ≡ Apn−1(pn−1 − 1)πd
pn−1−1

mod (πd
pn−1−1+1) ,

and, by Lemma 2, we are done.
This finishes the proof of the theorem. �

Theorem 2. (i) Let S be a Dedekind domain of characteristic p > 0. Let F(S) be
the set of all natural f such that there is a nonzero prime ideal p of S of norm pf .
Let A(f,N) consists of all numbers of the form a · b · pn, where a ≤ pfN , n ≥ 0
and b | [pfa1 − 1, . . . , pfar − 1] for some a1, . . . , ar satisfying a1 + · · ·+ ar ≤ N .

If N ≥ 2, then

CYCL(S,N) =
⋂

f∈F(S)

A(f,N) .

(ii) Let S be a discrete valuation domain of characteristic p > 0 such that the
residue field has pf elements. Then

CYCL(S, 1) = {a · b · pn : a ≤ pf , b | pf − 1, n ≥ 0}.

Proof. Since e =∞, the assertion follows from Theorem 1 and Fact 1. �
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Remark 1. (i) If in Theorem 2(i) F(S) is empty, then CYCL(S,N) = N. The
similar happens to CYCL(S, 1) in Theorem 2(ii) if f =∞.

(ii) Note that A(f,N) ⊆ A(fk,N) for any natural k. Hence, if all elements
from F(S) are multiplicities of one element from F(S), then the formula in Theo-
rem 2(i) may be significantly simplified.

Corollary 1. We have

CYCL(Fp[X], 2) = {abpn : a ≤ p2, b | p2 − 1, n ≥ 0}

and

CYCL(Fp[X], 3) = {abpn : a ≤ p3, n ≥ 0 and b | p2 − 1 or p3 − 1} .

On the other hand

CYCL(Fp[X], 1) = CYCL(Fp[X,Y ], 1) = CYCL(Fp, 1) = {1, 2, . . . , p} .

Proof. Taking into account Remark 1(ii) by Theorem 2 we obtain the first part.
The second part follows from CYCL(A[X], 1) = CYCL(A, 1) for any domain A. �

3 A property of CYCL(R, 1)
For a domain R with unity, the set A = CYCL(R) := CYCL(R, 1) satisfies

(i) 1, 2 ∈ A;

(ii) A is closed under taking divisors;

(iii) for a prime p, p ∈ A implies that {1, 2, . . . , p} ⊆ A (the last property follows
from the Lagrange interpolation formula).

W. Narkiewicz asked in mid-nineties, whether for a subset A of naturals, satis-
fying the above properties (i), (ii), (iii), there is a domain R with CYCL(R) = A.

In this section we emphasize another property of CYCL(R), and thus give a
negative answer to the mentioned question.

Theorem 3. For a domain R with unity, let A = CYCL(R). Then for a prime
number p we have that p2 ∈ A implies {2r : r = 1, 2, . . . , p} ⊆ A.

Proof. Let a tuple a0, a1, . . . , ap2−1 be a cycle for f(X) ∈ R[X]. Then 0 = b0,
1 = b1, b2, . . . , bp2−1, with bi = (ai − a0)/(a1 − a0) ∈ R, is a cycle for

g(X) = (a1 − a0)−1
(
f
(
(a1 − a0)X + a0

)
− a0

)
∈ R[X] .

So assume that a0 = 0, a1 = 1.
One proves that if (j − i, p) = 1, then aj − ai is invertible. Put d = ap.

If (j − i, p2) = p, then aj − ai ∼ d. Fix 2 ≤ r ≤ p. We are going to show
that a0, a1, . . . , ar−1, ap, ap+1, . . . , ap+r−1 is a cycle (of length 2r) for a suitable
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polynomial f(X) from R[X]. Namely let us take as f(X) the unique polynomial
of degree ≤ 2r − 1 with coefficients from the field of fractions of R satisfying

f(a0) = a1 , f(a1) = a2 , . . . , f(ar−1) = ap ,

f(ap) = ap+1 , . . . , f(ap+r−1) = a0.
(1)

Put f(X) = c0 + c1X + · · · + c2r−1X
2r−1. Then (1) is equivalent to a system of

linear equations with c0, . . . , c2r−1 to be found. From linear algebra we then get a
formula for ci.

Namely, putting b0 = a0, . . . , br−1 = ar−1, br = ap, br+1 = ap+1, . . . ,
b2r−1 = ap+r−1, we have ci = ∆i/∆, where ∆ =

∏
0≤i<j≤2r−1(bj − bi) and ∆i is

the determinant of the matrix
1 b0 . . . bi−1

0 b1 bi+1
0 . . . b2r−1

0

1 b1 . . . bi−1
1 b2 bi+1

1 . . . b2r−1
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 br−1 . . . bi−1
r−1 br bi+1

r−1 . . . b2r−1
r−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 b2r−1 . . . bi−1
2r−1 b0 bi+1

2r−1 . . . b2r−1
2r−1

 .

We easily see that d divides all the terms in the differences of r+ 1-th and first
rows, r + 2-th and second rows,. . . , 2r-th and r-th rows. Thus dr | ∆i. From the
properties of the differences aj − ai we get ∆ ∼ dr. Thus ci = ∆i/∆ ∈ R. �
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A Reproducing Kernel and Toeplitz Operators

in the Quantum Plane

Stephen Bruce Sontz

Abstract. We define and analyze Toeplitz operators whose symbols are the
elements of the complex quantum plane, a non-commutative, infinite di-
mensional algebra. In particular, the symbols do not come from an algebra
of functions. The process of forming operators from non-commuting sym-
bols can be considered as a second quantization. To do this we construct
a reproducing kernel associated with the quantum plane. We also discuss
the commutation relations of creation and annihilation operators which are
defined as Toeplitz operators. This paper extends results of the author for
the finite dimensional case.

1 Introduction
Based on the formalism developed in [3], we have introduced and studied in a pair
of papers (see [9], [10]) a reproducing kernel and its associated Toeplitz operators
which have symbols in a non-commutative algebra which is a finite dimensional
truncated version of the complex quantum plane called a paragrassmann algebra.
We extend those results now to the case of the complex quantum plane, which
is an infinite dimensional, non-commutative algebra. Creation and annihilation
operators are defined as certain Toeplitz operators, and their commutation relations
are discussed.

This is much like a quantization scheme according to a common intuition of
what those words should mean: “operators instead of functions”. However, here
one must modify this catch phrase to say “operators instead of elements in a non-
commutative algebra”. This is so because here the symbols are not elements in an
algebra isomorphic to an algebra of functions, since the latter is commutative. So,
as we remarked in [10], the quantization scheme discussed here is more akin to what
in physics is known as a second quantization, where one goes from one quantum

2010 MSC: 46E22, 47B32, 47B35, 81S99
Key words: Reproducing kernel, Toeplitz operator, quantum plane, second quantization, cre-

ation and annihilation operators
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theory to another quantum theory, rather than a first quantization, where one goes
from a classical theory to a quantum theory.

The paper is organized as follows: The next section introduces the basic defini-
tions and properties. Section 3 is about the reproducing kernel while in Section 4
we define and study Toeplitz operators, including the creation and annihilation
operators. Section 5 is about the commutation relations of the creation and anni-
hilation operators. The concluding remarks in Section 6 give some brief indications
for possible future research.

2 Definitions and such
We study here the complex quantum plane defined as the algebra

CQq(θ, θ) := C{θ, θ}/〈θθ − qθθ〉

where C{θ, θ} is the free algebra over C on the two generators θ and θ while
〈θθ − qθθ〉 is the two sided ideal generated by the element θθ − qθθ for some
q ∈ C \ {0}. This is a non-commutative algebra provided that q 6= 1. It has a
vector space basis AW := {θjθk | j, k ∈ N}, known as the anti-Wick basis, and so
is infinite dimensional. In Ref. [3] the authors call this the anti-normal ordering,
which is synonymous with anti-Wick ordering. This agrees with the definition of
quantum plane in [5] (putting the field k = C there) and with the quantum q-plane
in [6], except for notation. However, we will not be studying co-actions of quantum
groups on this quantum space as is often done, but rather how its elements serve
as the symbols for Toeplitz operators.

Moreover, we also define a conjugation (also called a ∗-operation) in CQq(θ, θ)
on the basis AW by putting

(θjθk)∗ := θkθj (1)

and then by extending anti-linearly to linear combinations with coefficients in C.
This is easily shown to be an involution, i.e., f∗∗ = f for all f ∈ CQq(θ, θ). This
conjugation makes θ and θ into a pair of variables, each being the conjugate of the
other. We will see that this ∗-operation relates well with the operation of taking
the adjoint of a Toeplitz operator. However, we are not saying (nor do we need)
that this ∗-operation converts CQq(θ, θ) into a ∗-algebra, that is (fg)∗ = g∗f∗ for
all f, g ∈ CQq(θ, θ). We do note without giving proof that this is a ∗-algebra if and
only if q ∈ R \ {0}.

We let w = {wj | j ∈ N} be a sequence of strictly positive real numbers, that
is, wj > 0. These will be referred to as weights. We use these weights to define
an inner product on CQq(θ, θ) as the sesquilinear extension (anti-linear in the first
entry, linear in the second) of

〈θaθb, θcθd〉w := wa+d δa+d,b+c = wa+d δa−b,c−d for all a, b, c, d ∈ N, (2)

with δ being the Kronecker delta. Notice that the condition a − b = c − d is
necessary and sufficient for the inner product in (2) to be non-zero. Clearly, given
a pair a, b ∈ N there are infinitely many pairs c, d ∈ N such that c− d = a− b and
also satisfying (c, d) 6= (a, b). Therefore AW is not even an orthogonal basis, let
alone an orthonormal basis.
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We wish to note, although without giving the relatively straightforward proof,
that there is this compatibility between the inner product (2) and the conjuga-
tion (1), namely: 〈f, g〉∗w = 〈f∗, g∗〉w for all f, g ∈ CQq(θ, θ), where the ∗-operation
on the left side is complex conjugation in C. We note that we also have the identity
〈f, g〉∗w = 〈g, f〉w.

The definition (2) is partly motivated by the inner product introduced in [3]
and studied in [9] and [10]. There one has the paragrassmann algebra defined by

PGl,q(θ, θ) = C(θ, θ)/〈θθ − qθθ, θl, θl〉

with l ≥ 2 an integer. This is a quotient (as an algebra) of CQq(θ, θ) by the
nilpotency relations θl = 0 and θl = 0. In that case, using the notation in [9], the
inner product used there satisfies

〈θaθb, θcθd〉w = 〈θa+d, θb+c〉 = wa+d δa+d,b+cχl(a+ d). (3)

Here χl is the characteristic function for the set of integers {0, 1, . . . , l − 1}. Its
presence is due to the nilpotency relations. Equation (3) was not the actual defi-
nition of this inner product, although it could have been. Instead the definition of
this inner product was given in terms of a Berezin type integral, thereby present-
ing PGl,q(θ, θ) as something quite analogous to a classical L2 space. It seems to
be impossible to write (2) as a Berezin type integral, since now there are no ‘top
classes’ in the theory. However, it might be useful to express (2) as some sort of
generalized L2 inner product.

Now another motivation for the inner product (2) is seen in the well known
example of the Hilbert space

H := L2(C, π−1e−|z|
2

dx dy) (4)

where the monomials zjzk form a basis (linearly independent set such that the
closure of their algebraic span is the entire Hilbert space). Then using a result
that goes back at least as far to Bargmann’s paper [2] in the second equality, for
a, b, c, d ∈ N this basis satisfies

〈zazb, zczd〉H = 〈za+d, zb+c〉H = (a+ d)! δa+d,b+c,

where we are using here the standard L2 inner product 〈·, ·〉H in H. Hence we can
think of wj as some sort of deformation of j!, the usual factorial of j ∈ N. Notice
that an immediate consequence is that 〈za, zd〉H = 0 if either a > 0 or d > 0, while
for a = b = c = d = 0 we have 〈1, 1〉H = 1. In turn this implies for f holomorphic
and g anti-holomorphic that

〈f, g〉H = f(0)∗g(0).

In particular such a pair of f and g is orthogonal if and only if either f(0) = 0
or g(0) = 0. This example has an interesting consequence. Suppose that we
take the weights in the quantum plane to be wj = j! for all j ∈ N. Then the
inner product on the quantum plane CQq(θ, θ) is positive definite since in this case
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CQq(θ, θ) is unitarily isomorphic to a dense subspace D of the Hilbert space H for
any q ∈ C \ {0}. In fact the map U : CQq(θ, θ) → H given on the basis AW by
U(θiθj) := zizj is an isometry. Actually D is the commutative subalgebra C[z, z] of
complex polynomials in two commuting variables, and so the unitary isomorphism

U : CQq(θ, θ)
∼=−→ D = C[z, z]

is not an algebra isomorphism for q 6= 1. Also the completion of CQq(θ, θ) with
respect to the corresponding metric is unitarily isomorphic to the Hilbert space H,
again for any q ∈ C \ {0}. And hence there are cases where the inner product
defined by (2) is positive definite. Motivated in part by this example we call θ a
holomorphic variable and θ an anti-holomorphic variable. (Compare also with the
usage of these terms in [9] and [10].)

However there are also cases for which the inner product (2) is not positive
definite. To see how this can happen, we first note some elementary calculations:

〈1, 1〉w = w0,

〈θθ, 1〉w = 〈1, θθ〉w = w1, (5)

〈θθ, θθ〉w = w2.

As an aside, we note that 1 is a normalized state (the ‘ground state’) if and only if
w0 = 1. Let α ∈ R be a real number to be specified in more detail later. Then

〈1 + αθθ, 1 + αθθ〉w = w0 + 2αw1 + α2w2, (6)

a quadratic polynomial in α which has distinct real roots if and only if its discrimi-
nant is positive, that is, w2

1−w0w2 > 0. Picking weights that satisfy this condition
we see that the inner product in (6) will be zero for two distinct values of α ∈ R
and negative for values strictly between those two values. (Recall that w2 > 0.) In
short, the inner product will not be positive definite in such a case. This example
also shows that w2

1 − w0w2 < 0 is a necessary condition for the inner product to
be positive definite.

The remarks in the previous paragraphs show that the situation for the quantum
plane is rather different from the finite dimensional theory, where the inner product
is never positive definite, but always non-degenerate, as shown in [9]. We now wish
to establish a necessary and sufficient condition on the weights wk so that the inner
product 〈·, ·〉w defined in (2) is non-degenerate. Here it is:

Theorem 1. The inner product (2) is non-degenerate on CQq(θ, θ) if and only if
for every integer R ≥ 1 and every n ∈ Z we have that{

WR,s ∈ CR
∣∣ s ≥ |n|}⊥ = 0,

where WR,s = (wr+s−|n|)|n|≤r≤|n|+R−1 is a vector in CR for every s ≥ |n|.

Proof. To facilitate this argument we define a partition of the basis AW so that
elements in disjoint subsets of the partition are orthogonal with respect to the inner
product (2). So for each integer n ∈ Z we define

Pn :=
{
θaθb

∣∣ a ≥ 0, b ≥ 0, a− b = n
}
.



A Reproducing Kernel and Toeplitz Operators in the Quantum Plane 141

Then we have Pn ⊥ Pm for all n,m ∈ Z satisfying n 6= m as well as

AW =
⋃
n∈Z

Pn,

a disjoint union. So we have an algebraic orthogonal decomposition

CQq(θ, θ) =
⊕
n∈Z
Pn,

where Pn := spanCPn. (Here we let spanC S denote the operation of forming the
algebraic subspace over C generated by the indicated set S. So, we are taking
here only finite linear combinations of elements in S.) It follows that the inner
product (2) is non-degenerate if and only if it is non-degenerate on each of the
summands Pn.

It will be convenient for us to define the max-degree of each basis element in
AW by

maxdeg(θaθb) := max(a, b) ≥ 0 .

Then Pn contains exactly one element of max-degree |n|+k for k = 0, 1, 2, . . . (and
no other elements). For example, for the integers n ≤ 0 we have

Pn =
{
θ

(−n)
, θθ

(−n+1)
, . . . , θkθ

(−n+k)
, . . .

}
.

A similar expression holds for n > 0. We denote the unique element of Pn of
max-degree r by εr for each integer r ≥ |n|. The reader can check that for n ≥ 0
we have εr = θrθr−n, while for n < 0 we have εr = θr+nθr, where r ≥ |n| in both
cases. We omit n from the notation εr.

Taking the pair of elements εr, εs ∈ Pn for a given n ∈ Z and r, s ≥ |n| and
then computing their inner product gives (as the reader can check) that

〈εr, εs〉w = wr+s−|n|.

In the example (5) given earlier the two elements 1 and θθ lie in P0 and satisfy
maxdeg 1 = 0 and maxdeg θθ = 1. So ε0 = 1 and ε1 = θθ in P0.

Suppose that n ∈ Z is given. We then consider the inner product (2) restricted
to Pn. Take an arbitrary element f ∈ Pn with f 6= 0. We write

f =
∑
r≥|n|

arεr,

where each ar ∈ C, but only finitely many are non-zero. But at least one of these
coefficients ar is non-zero, since f 6= 0. The inner product is non-degenerate on Pn
if and only there exists g ∈ Pn (depending on f , of course) such that 〈g, f〉w 6= 0.
We expand g as

g =
∑
s≥|n|

bsεs
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for complex coefficients bs only finitely many of which are non-zero. Then we
evaluate

〈g, f〉w =
∑

r≥|n|, s≥|n|

arb
∗
s〈εs, εr〉w =

∑
s≥|n|

b∗s

(∑
r≥|n|

arwr+s−|n|

)
. (7)

For example, if wk = 1 (or any other constant value) for all k ≥ 0, then taking f
above such that

∑
r ar = 0 but some ar 6= 0 gives us an element f 6= 0 satisfying

〈g, f〉w = 0 for all g. So in this particular case the inner product is degenerate.
Notice that the expression in parentheses on the right in (7) is given to us, while

the coefficients bs are ours to choose as we please provided that only finitely many
of them are non-zero. So we define

vs(f) :=
∑
r≥|n|

arwr+s−|n| ∈ C (8)

for every s ≥ |n|. (Recall that n is a given integer so we do not include it in the
notation vs(f). The sum is well defined since only finitely many of the ar’s are
non-zero.) If just one of these numbers is non-zero, say vs0(f) 6= 0, then we can
put bs = 0 for all s 6= s0 and bs0 = 1. And therefore (7) is non-zero. And such a
choice indeed has only finitely many (namely, one) of the bs’s different from zero.
The element g corresponding to this choice of the bs’s is g = εs0 , which satisfies
〈g, f〉w 6= 0. Therefore in this case {f}⊥ 6= Pn. (Recall that we have restricted the
inner product to Pn.)

So if the inner product is degenerate on Pn (which means that {h}⊥ = Pn for
some 0 6= h ∈ Pn), then there must exist some f 6= 0 (actually, f = h works) such
that vs(f) = 0 for all s ≥ |n|. Conversely, if there exists some f 6= 0 such that
vs(f) = 0 for all s ≥ |n|, then for every g we have 〈g, f〉w = 0 by (7) and so the
inner product is degenerate on Pn. We now re-write the definition (8) for vs(f) as

vs(f) =
∑

|n|≤r≤|n|+R−1

arwr+s−|n| ∈ C (9)

for some integer R ≥ 1. Notice that the existence of R is given to us implicitly as
part of the information about f , since only finitely many of the ar’s are non-zero.
R is not unique, but that is not important for this argument.

So we can consider AR(f) := (a∗r)|n|≤r≤|n|+R−1 as a vector in CR. Similarly,
WR,s := (wr+s−|n|)|n|≤r≤|n|+R−1 is considered as a vector in CR. Recall that n
is fixed since we are working in Pn. However, s ≥ |n| is arbitrary. We will now
use the standard Hermitian inner product 〈·, ·〉CR on CR. Then equation (9) is the
same as

vs(f) = 〈AR(f),WR,s〉CR .
Now {WR,s}s≥|n| is an infinite sequence of vectors in the finite dimensional vector
space CR. Since f =

∑
r≥n arεr is an arbitrary non-zero element in Pn with

|n| ≤ max({r | ar 6= 0}) ≤ |n|+R− 1,

it follows that AR(f) is an arbitrary non-zero vector in CR. Therefore the following
statements are equivalent provided that n ∈ Z is given:
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• The inner product is degenerate on Pn.

• For some f ∈ Pn with f 6= 0, we have vs(f) = 0 for all s ≥ |n|.

• For some sequence {ar | r ≥ |n|}, not identically zero but with only finitely
many terms not equal to zero, we have vs = 0 for all s ≥ |n|, where we define
vs :=

∑
r≥|n| arwr+s−|n| for s ≥ |n|.

• There exist some integer R ≥ 1 and some vector A ∈ CR \ {0} such that for
all s ≥ |n| we have 〈A,WR,s〉CR = 0.

• There exists some integer R ≥ 1 so that {WR,s ∈ CR | s ≥ |n|}⊥ 6= 0.

Equivalently, the inner product is non-degenerate on Pn if and only if for every
integer R ≥ 1 we have {

WR,s ∈ CR
∣∣ s ≥ |n|}⊥ = 0 .

We have already established that the inner product (2) is non-degenerate on
CQq(θ, θ) if and only if it is non-degenerate on Pn for every integer n ∈ Z. And so
this finishes the proof. �

Remark 1. This result gives an algebraic necessary and sufficient condition on
the weights wk for their associated inner product to be non-degenerate. While
it looks clumsy, it should be amenable to verification in applications. Intuitively,
the condition that an infinite sequence in a finite dimensional vector space spans
the vector space seems to be a generic condition. And so countably many such
conditions should also be generic. Theorem 1 contrasts with the result for the
paragrassmann algebra in [9], where we proved that the inner product (3) is non-
degenerate for all positive weights.

Inside the subalgebra

Pre(θ) := spanC{θj | j ∈ N} ∼= C[θ] ⊂ CQq(θ, θ)

generated by all powers of the holomorphic variable θ, we have as a particular case
of the definition (2) that

〈θj , θk〉w = δj,kwj

for all j, k ∈ N. So the inner product restricted to the ‘holomorphic’ subspace Pre(θ)
is positive definite. This means that Pre(θ) is a pre-Hilbert space. Moreover, an
orthonormal basis of Pre(θ) is given by

φj(θ) :=
1

w
1/2
j

θj for j ∈ N.

Similar comments hold for the anti-holomorphic subalgebra Pre(θ) defined in a
completely analogous way:

Pre(θ) := spanC{θ
j | j ∈ N} ∼= C[θ] ⊂ CQq(θ, θ)



144 S. B. Sontz

We let
B(θ) = B := compC Pre(θ)

denote the holomorphic space (or the Segal-Bargmann space) of the quantum plane.
By the operation compC we mean the completion of the indicated pre-Hilbert space.
The set {φj(θ) | j ∈ N} is also an orthonormal basis for B(θ). Unlike the fi-
nite dimensional case studied in [3], [9] and [10], the Segal-Bargmann space B(θ)
here is not necessarily an algebra. However, it does contain the dense subspace
Pre(θ) ∼= C[θ] which is an algebra, namely the algebra of polynomials in θ. But the
multiplication map for C[θ] is not necessarily continuous in the topology induced
by the norm associated to the inner product (2) and, if that is the case, then it is
not extendible by continuity to B(θ).

Analogously, we define the anti-holomorphic space (or the anti-Segal-Bargmann
space) of the quantum plane by

B(θ) := compC Pre(θ).

These two spaces B(θ) and B(θ) should be understood as ‘almost’ disjoint. Their
‘intersection’ is the one dimensional subspace spanned by 1 = θ0 = θ0.

3 Reproducing kernel
As a first step towards the definition of Toeplitz operators, we shall find a repro-
ducing kernel for the Segal-Bargmann space. First of all we will need to define a
functional calculus for the Segal-Bargmann space. As is well-known, there always
is a functional calculus for polynomials f ∈ C[x] associated to any element in any
associative algebra. Here we write

f =

m∑
j=0

ajx
j ∈ C[x]

with coefficients aj ∈ C and then use the standard definition

f(θ) :=

m∑
j=0

ajθ
j .

But there are some elements in B(θ) that are not so representable, since they
are infinite sums of elements in the orthogonal basis {θj}. However, any element
u ∈ B(θ) can be expanded as an infinite sum with respect to the orthonormal basis
{φj(θ)} giving

u =

∞∑
j=0

ajφj(θ) =

∞∑
j=0

ajw
−1/2
j θj

with aj ∈ C and
∑
j |aj |2 <∞. Equivalently, for all u ∈ B(θ) we have

u =

∞∑
j=0

fjθ
j
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with fj ∈ C and
∑
j |fj |2wj < ∞. So associated to any sequence of positive real

numbers w = {wj | j ≥ 0} we define a weighted little l2 space:

l2(w) :=
{
f = {fj | j ∈ N}

∣∣ ∑
j

|fj |2wj <∞
}
.

Then the full functional calculus of θ is the linear mapping

Φ: l2(w)→ B(θ)

defined by

Φ(f) = Φ
(
{fj}

)
:=

∞∑
j=0

fjθ
j .

So Φ is a unitary isomorphism of Hilbert spaces. We also use the more suggestive
notation f(θ) := Φ(f) for all f ∈ l2(w).

Now the reproducing kernelK(θ, η) is supposed to satisfy the reproducing kernel
formula, namely

f(θ) = 〈K(θ, η), f(η)〉w ∈ B(θ) (10)

for all f ∈ l2(w) and where η ∈ B(η) is another ‘independent copy’ of a holomorphic
variable. The intuitive idea behind the inner product in (10) is that it should only
take η into consideration while letting θ have a free ride as a ‘passenger’. The
usual structure of reproducing kernel functions in spaces of holomorphic functions
suggests that we should have

K(θ, η) ∈ B(θ)⊗ B(η),

the standard tensor product of Hilbert spaces. This expresses the intuition that
K(θ, η) should be anti-holomorphic in θ and holomorphic in η. So we want to define
an inner product 〈L(θ, η), f(η)〉w for all L(θ, η) ∈ B(θ) ⊗ B(η) and all f ∈ l2(w).
Actually, we will start off this discussion by suppressing the Hilbert space structures
and simply considering f(η) =

∑
k fkη

k, a formal infinite sum, and

L(θ, η) =
∑
ij

λij θ
i ⊗ ηj ,

another formal infinite sum (that is, no convergence requirements). We now make
the following formal calculation in order to motivate a definition:

〈L(θ, η), f(η)〉w =
∑
ijk

λ∗ijfk〈θi ⊗ ηj , ηk〉w

=
∑
ijk

λ∗ijfk〈ηj , ηk〉wθi

=
∑
ijk

λ∗ijfkδj,kwjθ
i

=
∑
i

(∑
j

λ∗ijfjwj

)
θi. (11)
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The inner sum in (11) over j ≥ 0 is an infinite sum of complex numbers for every
i ≥ 0 and so will not be considered as a formal infinite sum. But to consider
it as an absolutely convergent series, say, we will have to impose conditions on
the coefficients λij and fk of the above formal expressions. (The weights wj are
considered as given.) After all the inner sums in (11) have been well defined we
are left with a formal expression, namely a formal power series in the variable θ.
This can be used as such. Or, if one prefers, some more conditions can be imposed
so that this series converges in some topological vector space, which could be B(θ)
with one of its many topological structures (norm topology, weak topology, etc.).

For example, we can use Hölder’s inequality to get the estimate∑
j

|λ∗ijfjwj | ≤
(∑

j

|λij |pwj
)1/p(∑

j

|fj |p
′
wj

)1/p′

(12)

for any 1 < p < ∞, where p′ is the usual dual index of p. Consequently, if there
exists some 1 < p <∞ such that the first sum on the right side of (12) is finite for
every i ≥ 0 and such that the second sum is finite, then we have that the formula
(11) defines the inner product 〈L(θ, η), f(η)〉w as a formal power series in θ.

We next consider the canonical orthogonal basis of l2(w) given by

εj = (0, . . . , 0, 1, 0, . . . )

(all zeros with one single occurrence of 1 in entry j ∈ N). Then we have

εj(θ) = Φ(εj) = θj .

So a necessary condition for (10) to hold is that

θj = 〈K(θ, η), ηj〉w (13)

for all j ∈ N. We look for a solution K(θ, η) =
∑
kl aklθ

k ⊗ ηl, a formal series, for
unknown coefficients akl ∈ C. So we use our formal definition (11) to get

〈K(θ, η), ηj〉w =
∑
k

a∗kj wjθ
k,

a formal power series in θ. So (13) holds if and only if

θj =
∑
k

a∗kjwj θ
k (14)

for all j ∈ N. Of course, the left side of (14) is a finite series. Clearly, (14) is
satisfied if and only if ajk = δj,k/wj .

Putting this into the formula for the reproducing kernel gives us

K(θ, η) =
∑
kl

aklθ
k ⊗ ηl =

∑
kl

δk,l
wk

θk ⊗ ηl =
∑
k

1

wk
θk ⊗ ηk

=
∑
k

φk(θ)⊗ φk(η). (15)



A Reproducing Kernel and Toeplitz Operators in the Quantum Plane 147

But this series is not convergent in the norm topology of the Hilbert space
B(θ)⊗ B(η), since the terms satisfy∥∥φk(θ)⊗ φk(η)

∥∥ = 1.

However, there is another topology on B(θ)⊗B(η) for which this series is convergent.
This other topology corresponds to the strong operator topology (see [7]) in the
space End(Pre(θ)) of bounded linear operators mapping B(η) to B(θ). Without
going into a lot of technical details, let us simply note that the formula (15) induces
a unitary isomorphism S : B(η)→ B(θ) given in Dirac notation by

S =
∑
k

|φk(θ)〉〈φk(η)|

which is an infinite sum of rank one operators, each of which has operator norm 1,
and so is not convergent in the operator norm topology.

Nonetheless this infinite series of operators is convergent in the strong opera-
tor topology. It satisfies S : φk(η) 7→ φk(θ) for the basis elements and therefore
S : f(η) 7→ f(θ) for f ∈ l2(w). This is quite tautological, since this is exactly
what the mapping induced by the reproducing kernel, as given by the right side of
equation (10), is supposed to do! And so it does. Intuitively, the expression in (15)
expresses in this context the formula for the kernel of the Dirac delta as a ‘smooth’
object.

This section may seem like a lot of work to arrive at a result that appears to
lack substance. However, the formula (15) will be used in the next section to define
Toeplitz operators in a rather natural way. And these Toeplitz operators have some
substantial, non-trivial properties. There may be other ways, still to be discovered,
for defining these Toeplitz operators. But for the time being we seem to have found
a reasonable approach.

Also, it is worth mentioning that the reproducing kernel K in (15) is not a
function of two variables in the usual sense of those words. If it were, then f(θ)
would be the ‘value’ of f at the ‘point’ θ. But f(θ) is an element in B(θ) for
all f ∈ l2(w). And θ itself is an element in the very same space B(θ). So the
sort of reproducing kernel as given in (15) is not included in the classical theory
of reproducing kernel functions such as found in [1] and [8]. For example, the
usual point-wise estimate, which follows immediately from the Cauchy-Schwarz
inequality in the classical case, seems to have no good analogue here. Anyway,
the Cauchy-Schwarz inequality does not apply to the general reproducing kernel
formula in (10) nor to its special case (13).

But there are some properties of the reproducing kernel (15) that are analogous
to standard properties of reproducing kernel functions. (See [1] and [8].) The
correct interpretation of the following properties entails defining with some care
notations which superficially appear obvious. We will not go into that analysis,
but refer the reader to [9] where a similar analysis was made. We now present
these properties:

1. Positive definite:
∑N
n,m=1 λ

∗
nλmK(θn, θm) ≥ 0 for λ1, . . . , λN ∈ C.
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2. Complex symmetry: K(θ, η)∗ = K(η, θ).

3. Self reproducing: K(θ, η) = 〈K(η, ·),K(θ, ·)〉w.

4. Positivity on the diagonal: K(θ, θ) =
∑
k |φk(θ)〉〈φk(θ)| = IB(θ) ≥ 0.

Also, there is the question of constructing a space with a given K(θ, η) (sat-
isfying properties 1 and 2) as its reproducing kernel. While this is a well known
result in the theory of reproducing kernel functions, it appears that the analogous
construction can not be made here since we are not dealing with functions.

4 Toeplitz Operators
Much of the above material about the reproducing kernel appears to be somewhat
tautological in nature, though with a lot of technical details since here we are
dealing with infinite dimensional spaces rather than the finite dimensional theory
in [9]. But the real point of the reproducing kernel for us is that it can be extended
in a ‘natural’ manner to the quantum plane and as such becomes one of the principle
ingredients in defining a non-trivial theory of Toeplitz operators with symbols in
the complex quantum plane, a non-commutative algebra for q 6= 1. As noted earlier
in [10], passing from a symbol in a non-commutative algebra to its Toeplitz operator
is an example of second quantization, since it is the quantization of a theory that
is itself a non-commutative (i.e., quantum) theory to begin with. Nonetheless, the
initial theory is still often referred to as the classical theory.

To start off this discussion we define the inner product of any finite sum or any
infinite (formal) sum of the form

M(θ, η) =
∑
jk

mjk θ
j ⊗ ηk

with coefficients mjk ∈ C for j, k ≥ 0 and a basis element ηaηb ∈ CQq(η, η) in AW
by

〈M(θ, η) , ηaηb〉w :=
∑
j

(∑
k

m∗jk〈ηk, ηaηb〉w
)
θj

=
∑
j

(∑
k

m∗jk〈ηk+b, ηa〉w
)
θj

=
∑
j

(∑
k

m∗jkδk+b,awa

)
θj

= wa
∑
j

m∗j,a−b θ
j (16)

provided that the sum on j converges in B(θ), which is equivalent to∑
j

wj |mj,a−b|2 <∞ .
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Or we could simply take (16) to be a formal series. Here we have introduced the
convention that mjk = 0 if k < 0. Then for any given arbitrary element

F =
∑
ab

cabη
aηb ∈ CQq(η, η)

(which is always a finite sum) such that for each pair (a, b) satisfying cab 6= 0 we
have convergence in (16), we define

〈M(θ, η) , F 〉w :=
∑
ab

cab〈M(θ, η) , ηaηb〉w ,

which is also a finite sum. Notice that this inner product in general takes values in
B(θ) provided that we impose the convergence conditions, though in some specific
cases the inner product could lie in some subspace of B(θ).

Next we define the operator associated with the reproducing kernel K. This is
the extension of the reproducing kernel to the quantum plane that we mentioned
earlier.

Definition 1. The linear operator associated to the reproducing kernel of Pre(θ),
PK : CQq(θ, θ)→ CQq(θ, θ), is defined for all F (θ, θ) ∈ CQq(θ, θ) by

PKF (θ) := 〈K(θ, η), F (η, η)〉w. (17)

This definition comes down to a special case of the discussion in the previous
paragraph. So we must show that the inner product in (17) is well defined. Also
PK is actually a symmetric projection as we prove next.

Theorem 2. PK is well defined and is a projection, that is, P 2
K = PK . Also, PK is

symmetric with respect to the inner product 〈·, ·〉w.

Remark 2. Since this inner product is not necessarily non-degenerate, we do not
always have that the adjoint of PK exists. Nonetheless, it makes sense to speak of
the symmetry of PK . And in those cases when the inner product is non-degenerate,
we do have P ∗K = PK .

Proof. We write Fab(θ, θ) := θaθb for the elements in the basis AW . We extend
the notation established above by setting θn = 0 and wn = 1 for all integers n < 0.
As we noted earlier, this basis AW is not orthogonal.

Acting with PK on the basis elements Fab in AW we obtain

(PKFab)(θ) = 〈K(θ, η), Fab(η, η)〉w = 〈K(θ, η), ηaηb〉w

=
∑
j

1

wj
〈ηj , ηaηb〉w θj =

∑
j

1

wj
δj+b,awa θ

j =
wa
wa−b

θa−b. (18)

This result corresponds in this case to the convergence in (16) for all a, b. In this
particular case, the infinite series collapses to at most one non-zero term, and so we
have convergence not only in B(θ) but even to an element in its subspace Pre(θ).
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So by extending linearly to finite sums we see that the definition (17) makes sense.
Moreover, (18) shows that RanPK ⊂ Pre(θ). In particular by putting b = 0 in (18)
we find that (PKFa,0)(θ) = Fa,0(θ), which says PK : θa 7→ θa, that is, PK acts as
the identity on Pre(θ). So, P 2

K = PK and RanPK = Pre(θ) follow immediately.
For the symmetry of PK we calculate various matrix elements for PK with

respect to the elements in the basis AW . First for PK acting on the right entry we
obtain:

〈Fab, PKFcd〉w =
〈
θaθb,

wc
wc−d

θc−d
〉
w

=
wc
wc−d

δa,b+c−dwaH(c− d)

=
wawc
wc−d

δa−b,c−dH(c− d), (19)

where H is the (discrete) Heaviside function H : Z→ {0, 1} defined by H(n) := 1
for n ≥ 0 and H(n) := 0 for n < 0.

Next we calculate the matrix elements for PK acting on the left entry:

〈PKFab, Fcd〉w =
〈 wa
wa−b

θa−b, θcθd
〉
w

=
wa
wa−b

H(a− b)δa−b+d,cwc

=
wawc
wa−b

H(a− b)δa−b,c−d. (20)

Since the matrix entries (19) and (20) with respect to the elements in the vector
space basis AW of CQq(θ, θ) are equal, we can pass to finite linear combinations
to get

〈F, PKG〉w = 〈PKF,G〉w
for all F,G ∈ CQq(θ, θ), which is the desired symmetry of PK . �

Because of the previous proof we can think of PK as a mapping

PK : CQq(θ, θ)→ Pre(θ) ⊂ B(θ).

For any g ∈ CQq(θ, θ) we define the linear map Mg : Pre(θ) → CQq(θ, θ) to be
multiplication by g on the right, that is

Mgφ := φg

for all φ ∈ Pre(θ). It is straightforward to show that RanMg ⊂ CQq(θ, θ).
Definition 2. We define the Toeplitz operator associated to a symbol g ∈ CQq(θ, θ)
to be

Tg = PKMg,

that is, right multiplication by g followed by the projection operator associated to
the reproducing kernel K. We also write

Tg : Pre(θ)→ B(θ)

with the domain of Tg defined by Dom(Tg) := Pre(θ) ⊂ B(θ) to indicate that
Tg is a densely defined linear operator acting in (but not on) the Segal-Bargmann
space B(θ). An equivalent way to write this definition is

Tgf(θ) =
〈
K(θ, η) , f(η) g(η, η)

〉
w
,

where f ∈ Pre(θ).
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Actually, we have that RanTg ⊂ Pre(θ), but we prefer to consider the codomain
to be the larger space B(θ) in order to be able to apply the theory of densely defined
linear operators acting in a Hilbert space. For example, see [7]. The definition of Tg
can be expressed as this composition:

Dom(Tg) = Pre(θ)
Mg−→ CQq(θ, θ)

PK−→ Pre(θ) ⊂ B(θ)

One of the first considerations here is to find necessary and sufficient conditions
on g in order that Tg is bounded and so has a unique bounded extension to B(θ).
And when Tg is bounded, one would like some information, at best a formula but
at least an estimate, about the operator norm of Tg. While bounded operators are
important, we will also be interested in certain operators that are not bounded.

We have used the common way of defining Toeplitz operators: multiply by
a symbol and then project back into the Hilbert space. However, we are making
choices here that are somewhat arbitrary. For example, we could have used left mul-
tiplication instead of right multiplication. Also the choice of the Segal-Bargmann
space is arbitrary too. We could just as well have chosen the anti-Segal-Bargmann
space, which also has a reproducing kernel. And having chosen instead that space,
we would again have two possible choices for the multiplication operator: left and
right. In all, there are four different choices for the definition of Toeplitz operators,
and we simply have opted for one of these. The other three choices lead to very
similar theories and will not be discussed further.

Next we define the Toeplitz mapping T : g 7→ Tg giving us a linear function

T : CQq(θ, θ)→ End(Pre(θ)),

where End(Pre(θ)) is the complex vector space of all linear densely defined opera-
tors S acting in the Hilbert space B(θ) with Dom S = Pre(θ) and leaving Pre(θ)
invariant, that is S(Pre(θ)) ⊂ Pre(θ). Because of this last condition End(Pre(θ))
is closed under composition and so is an algebra. We also call T the Toeplitz
quantization.

One verifies that T1 = IPre(θ), the identity, as an immediate consequence of the
fact that K is the reproducing kernel of Pre(θ). However, even though T is a map
from one algebra to another algebra, it is not an algebra morphism. The product
on the domain space is determined by q ∈ C \ {0}, while the operator Tg is defined
using the inner product which depends on the weights wk. Even when the weights
are functions of q (and so are not independent quantities) it is not expected that T
preserves products, given what happens with Toeplitz operators in other contexts.
Here is a result which shows what is happening in a ‘nice’ case.

Theorem 3. Suppose that we have symbols g1 and g2, but with g2 ∈ Pre(θ), that
is g2 ‘depends’ only on θ. Then Tg1Tg2 = Tg2g1 .

Proof. The point is since g2 ∈ Pre(θ) we have that Tg2 = PKMg2 = Mg2 , because
multiplication by g2 leaves Pre(θ) invariant. So we calculate

Tg1Tg2 = PKMg1PKMg2 = PKMg1Mg2 = PKMg2g1 = Tg2g1 ,

where the second to last equality is left to the reader to check. �
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Remark 3. In the standard theories of Toeplitz operators, the symbols are func-
tions and so commute. So essentially the same argument in such cases (with the
corresponding hypothesis!) gives Tg1Tg2 = Tg1g2 . The fact that the map T in this
context reverses the order of multiplication in this special case is not important as
such. The equation PKMg = Mg is not true for all symbols g and this is what is
behind the fact that T does not respect multiplication. In fact, Theorem 3 implies
that TθTθ = Tθθ. In the next calculation we actually will use something ever so
slightly stronger, namely TθTθ = Tθθ 6= 0, but this will become clear later on. So
for q 6= 1 we have

Tθθ = Tq−1θθ = q−1Tθθ = q−1TθTθ 6= TθTθ.

Later on we will also calculate TθTθ and see that this is yet another operator also
not equal, in general, to Tθθ.

Theorem 4. The linear map T : CQq(θ, θ)→ End(Pre(θ)) is a vector space mono-
morphism if and only if the inner product (2) is non-degenerate.

Proof. We are looking for a necessary and sufficient for ker T = 0. So we take
g ∈ ker T , which means that Tg = 0. In particular, this is equivalent to Tgfd = 0
for all d ≥ 0, where fd = θd, an orthogonal basis of Pre(θ) = Dom(Tg). We
calculate

Tgfd(θ) = 〈K(θ, η) , fd(η) g(η, η)〉w =
∑
c

1

wc
〈θc ⊗ ηc, ηdg(η, η)〉w

=
∑
c

1

wc
〈ηcηd, g(η, η)〉w θc.

So, Tgfd(θ) = 0 for all d ≥ 0 if and only if 〈ηcηd , g(η, η)〉w = 0 for all c, d ≥ 0 if

and only if g(η, η) is orthogonal to CQq(θ, θ). So ker T =
(
CQq(θ, θ)

)⊥
and the

result follows. �

Remark 4. One way to interpret this theorem is that it tells us when the symbol
of a Toeplitz operator is uniquely determined by the operator. In the finite di-
mensional theory presented in [9] the inner product is always non-degenerate and
the corresponding result proved there is that the Toeplitz quantization is always
a monomorphism. Moreover in the context of [9] the domain and codomain vec-
tor space of the Toeplitz quantization have the same finite dimension; therefore
that Toeplitz quantization is automatically a vector space (but not algebra) iso-
morphism. Here one expects the situation to be more complicated due to the fact
that the domain and codomain of T have infinite dimension. To be more precise
one expects that T is not surjective, that is, there exist operators which are not
Toeplitz. Moreover, in the current context Toeplitz operators are not necessarily
bounded as we shall see momentarily.

We calculate next the Toeplitz operators for the basis elements θiθj of the
symbol space PGl,q(θ, θ).
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Theorem 5. The action of the Toeplitz operator Tθiθj on the orthonormal basis

elements φa(θ) = w
−1/2
a θa ∈ Pre(θ) with a ≥ 0 is given by

(Tθiθjφa)(θ) =
wi+a

(wa wi+a−j)1/2
φi+a−j(θ). (21)

Proof. We evaluate as follows:

(Tθiθjφa)(θ) = 〈K(θ, η) , φa(η) ηiηj〉w

=
〈∑

k

φk(θ)⊗ φk(η) , w−1/2
a ηaηiηj

〉
w

= w−1/2
a

∑
k

w
−1/2
k 〈ηj+k , ηi+a 〉w φk(θ)

= w−1/2
a

∑
k

w
−1/2
k δj+k,i+a wj+k φk(θ)

=
wi+a

(wa wi+a−j)1/2
φi+a−j(θ).

Recall that θn = 0 and wn = 1 for n < 0. So we also have put φn(θ) = 0 for n < 0
in the above calculation. �

This result determines Tg for all symbols g ∈ CQq(θ, θ) by linearity. Also, this
result exhibits Tθiθj as a weighted shift operator with the degree of the shift being
i− j. Next to see when this operator is bounded or compact we apply some basic
functional analysis to obtain immediately:

Corollary 1. First, Tθiθj is a bounded operator if and only if

||Tθiθj ||op = sup
{ wi+a

(wa wi+a−j)1/2

∣∣∣ a ≥ 0
}
<∞,

where || · ||op denotes the operator norm. Secondly, Tθiθj is a compact operator if
and only if

lim
a→∞

wi+a
(wa wi+a−j)1/2

= 0.

Knowing this, it is now easy to construct examples of Toeplitz operators which are
not bounded provided that we are free to choose the weights wk. Similarly, it is
now straightforward to construct Toeplitz operators which are bounded, but not
compact, given the same freedom. We also showed earlier that T1 = IPre(θ), which
is bounded but not compact.

We next obtain a consequence which relates the adjoint of a Toeplitz operator with
symbol g to the Toeplitz operator with the conjugate symbol g∗.

Theorem 6. Let g ∈ CQq(θ, θ) be arbitrary. Then

〈Tgf1, f2〉w = 〈f1, Tg∗f2〉w (22)

for all f1, f2 ∈ Pre(θ).
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Proof. It suffices to prove this for g = θiθj where i, j ≥ 0 and for f1 = φa and
f2 = φb where a, b ≥ 0. So we compute each side of (22) for these choices. For the
left side we get

〈Tθiθjφa, φb〉w =
wi+a

(wa wi+a−j)1/2
〈φi+a−j , φb〉w

=
wi+a

(wa wi+a−j)1/2
δi+a−j,b. (23)

Note that the Kronecker delta is enforcing the condition that i + a − j = b ≥ 0.
Next for the right side we have

〈φa, T(θiθj)∗φb〉w = 〈φa, Tθjθiφb〉w

=
wj+b

(wb wj+b−i)1/2
〈φa, φj+b−i〉w

=
wj+b

(wb wj+b−i)1/2
δa,j+b−i. (24)

This time the delta imposes the condition j + b − i = a ≥ 0. So in each case we
have the combined conditions a, b ≥ 0 and i + a = b + j. Using these conditions
one can see that the expressions in (23) and (24) are equal. �

Remark 5. This result holds even when the inner product is degenerate. However,
even when the inner product is non-degenerate all it says about the adjoint of Tg
is that Tg∗ ⊂ (Tg)

∗, that is, the adjoint of Tg is an extension of Tg∗ . Of course,
such details are typical of densely defined operators. We recall that the Toeplitz
operators are densely defined operators, all of which have the same dense domain,
namely Pre(θ). Also, this relation Tg∗ ⊂ (Tg)

∗ shows a compatibility between our
definition of the conjugation in CQq(θ, θ) and the adjoint of a Toeplitz operator.

Corollary 2. If g ∈ CQq(θ, θ) is a self-adjoint element (meaning g∗ = g), then the
Toeplitz operator Tg is a symmetric operator.

Proof. By Theorem 6 and g∗ = g we have

〈Tgf1, f2〉w = 〈f1, Tgf2〉w

for all f1, f2 ∈ Pre(θ) = Dom(Tg). And this is exactly what it means for a densely
defined operator to be symmetric. (See [7].) �

Remark 6. If g∗ = g, then it behooves us to study the self-adjoint extensions of
the symmetric operator Tg. This remains an open problem.

Corollary 3. Every Toeplitz operator Tg is closable. Moreover, its closure satisfies
T g = (Tg)

∗∗ ⊂ (Tg∗)
∗.

Proof. This follows rather directly from Theorem VIII.1b in [7]. We get from that
reference that Tg is closable if and only if Dom(Tg)

∗ is a dense subspace. But
this is so since Dom(Tg)

∗ ⊃ Dom Tg∗ = Pre(θ) and Pre(θ) is dense. The equality
T g = (Tg)

∗∗ follows from the cited theorem. The inclusion (Tg)
∗∗ ⊂ (Tg∗)

∗ follows
from Theorem 6. �
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We now analyze various particular cases of (21). First for i = j = 0 we have

(T1φa)(θ) =
wa

(wa wa)1/2
φa(θ) = φa(θ)

for all a ≥ 0, so that T1 = IPre(θ), the identity map, as already noted above.
For the case i = j of (21) we obtain for all a ≥ 0 that

(Tθiθiφa)(θ) =
wi+a

(wa wi+a−i)1/2
φi+a−i(θ) =

wi+a
(wa wa)1/2

φa(θ) =
wi+a
wa

φa(θ).

Hence the basis φa(θ) diagonalizes simultaneously the family of symmetric opera-
tors Tθiθi for i ≥ 0. By Corollary 2 we see that Tθiθi is symmetric.

Next we consider (21) for the case j = 0 and get

(Tθiφa)(θ) =
wi+a

(wa wi+a)1/2
φi+a(θ) =

w
1/2
i+a

w
1/2
a

φi+a(θ)

or, equivalently, Tθi : θa 7→ θi+a which itself can be written as Tθi = Mθi . Of
course, this also follows from the definition Tθi = PKMθi = Mθi , since Mθi leaves
Pre(θ) invariant and PK acts as the identity on Pre(θ). A subcase here is Tθ = Mθ,
which merits the name creation operator since it increases by 1 the degree of the
elements in Pre(θ), which are exactly the polynomials in θ. Moreover, Tθi = (Tθ)

i

also is immediate. (Recall that Tθ leaves Pre(θ) invariant, and so (Tθ)
i is defined.)

So, if Tθ is bounded (resp., compact), then Tθi is bounded (resp., compact) for
all i ≥ 1. In the Hilbert space introduced by Bargmann in [2], one has wa = a!
and θ = z, so that Tθi = Tzi is not bounded for i ≥ 1 in that space. One might
expect that with wa being some reasonable deformation of the factorial function the
corresponding operators Tθi would also not be bounded. However, the boundedness
of these operators depends completely on the choice of weights wa, nothing else.
So for some choices (such as, for example, wa constant) these operators will be
bounded.

Yet another interesting special case of (21) is when i = 0. Then we have

(Tθjφa)(θ) =
wa

(wa wa−j)1/2
φa−j(θ) =

(
wa
wa−j

)1/2

φa−j(θ)

or, in terms of the unnormalized monomials,

Tθj : θa 7→ wa
wa−j

θa−j

for all a ≥ 0. In particular, for j = 1 we can see that

Tθ : θa 7→ wa
wa−1

θa−1

deserves to be called an annihilation operator, since it lowers the degree of any non-
constant polynomial by 1 and sends constants to zero. A simple argument shows
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that Tθj = (Tθ)
j . And similar to the above situation, we see that if Tθ is bounded

(resp., compact), then Tθj is bounded (resp., compact) for all j ≥ 1. Again, the
space in [2] is an important example for which the operators Tθj are not bounded.
And again, the boundedness of these operators depends solely on the weights.

Using Theorem 3 in the first equality and two properties established above in
the second equality, we see that

Tθiθj = TθjTθi = (Tθ)
j(Tθ)

i.

The last expression here is in anti-Wick order, which by definition means a product
of creation and annihilation operators such that all of the creation operators are to
the right of all of the annihilation operators. By linearity every Toeplitz operator Tg
will then be a sum of terms, each of which is in anti-Wick order. Because of this
property one says that the Toeplitz quantization is an anti-Wick quantization.

There is another way of viewing the annihilation operator Tθ. We note that in
the case when wa = a! as in [2], we have that

Tθ : θa 7→ wa
wa−1

θa−1 =
a!

(a− 1)!
θa−1 = a θa−1,

which is the derivative operator from elementary calculus. So we can think of Tθ
in this more general context as a deformation of the classical derivative. We call
it the w-deformed derivative and denote it by ∂w. If we define the w-deformed
integers to be [n]w := wn/wn−1 for every integer n ≥ 1 and [0]w := 0, then we have

∂w = Tθ : θa 7→ [a]w θ
a−1.

The upshot of this paragraph is merely a change to another notation that is more
compatible with notations used elsewhere in the literature, nothing else really.

Notice again that TθjTθi = Tθiθj follows from Theorem 3. We now calculate
TθiTθj using the individual formulas derived above for Tθi and Tθj . So,

φa
Tθj−→

(
wa
wa−j

)1/2

φa−j
Tθi−→

(
wa
wa−j

)1/2(
wi+a−j
wa−j

)1/2

φa−j+i

which gives

TθiTθjφa =
(wawi+a−j)

1/2

wa−j
φa−j+i.

This is different from the formula (21) derived above for Tθiθj . In particular, for
the case i = j = 1 which we left unfinished earlier we have

TθTθφa =
wa
wa−1

φa = [a]wφa.

For the sake of completeness we note that the operator Nθ := TθTθ is called the
w-deformed number operator. On the other hand from equation (21) we have that

TθTθφa = Tθθφa =
wa+1

wa
φa = [a+ 1]wφa.
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5 Canonical Commutation Relations
This final section is a continuation of the two calculations just made at the end of
the last section. First, we define the q-commutator of any two elements a and b in
any (associative, say) algebra over C by

[a, b]q := ab− qba,

where q ∈ C \ {0}. This is the commutator which is appropriate for the study of
q-deformations.

The Toeplitz quantization starts with the ‘classical’ space CQq(θ, θ) of sym-
bols and from them produces operators acting in the ‘quantum’ Segal-Bargmann
space B(θ). The point here is that before the Toeplitz quantization we have the
homogeneous q-commutation relation in CQq(θ, θ), namely

[θ, θ]q = θθ − qθθ = 0. (25)

Speaking roughly without going into the rigorous details, in quantum theory we
have creation operators and annihilations operators which come in pairs, say A for
an annihilation operator and A∗ for its corresponding creation operator. Then a
typical commutation relation is something more or less like

[A,A∗] = I, the identity.

This is called a canonical commutation relation. So in general in a quantum theory
we expect inhomogeneous canonical commutation relations.

Now the Toeplitz quantization of the q-commutator [θ, θ]q is

[Tθ, Tθ]q = TθTθ − qTθTθ.

But recall that Tθ is the creation operator and that Tθ is the annihilation operator;
so this q-commutator has the form [A∗, A]q. And this is not the form of a canonical
commutation relation. However, since it is homogeneous and q 6= 0 we can trivially
rewrite (25) as

[θ, θ]q−1 = θθ − q−1θθ = 0. (26)

In fact we have an identification CQq(θ, θ) ∼= CQq−1(θ, θ). What this means is that
at the classical level we can not distinguish the q-deformed theory associated to the
holomorphic (resp., anti-holomorphic) variable θ (resp., θ) from the q−1-deformed
theory associated to the holomorphic (resp., anti-holomorphic) variable θ (resp., θ).
(The previous sentence does not contain a typographical error. It makes perfect
sense to consider θ as a holomorphic variable whose associated anti-holomorphic
variable is θ.) Another way of saying this is that as far as our theory is concerned
only with the classical level we have no way to distinguish between q-deformations
and q−1-deformations nor between holomorphic and anti-holomorphic variables.

However, the quantizations of θ and θ are distinguishable. In this sense Toeplitz
quantization breaks a symmetry. And the choice of quantization determines exactly
how the symmetry is broken. For example, if we define a Toeplitz quantization as
in this paper, but using instead the anti-Segal-Bargmann space B(θ) as the Hilbert
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space in which the quantized operators act, then θ quantizes to the annihilation
operator while θ quantizes to the creation operator, just the reverse of what we have
obtained with the present Toeplitz quantization in the Segal-Bargmann space B(θ).
These comments indicate that naming a particular order in CQq(θ, θ) the anti-Wick
ordering (that is, all creation operators to the right of all annihilation operators)
is not justifiable in terms of mathematical structures of CQq(θ, θ) alone. We have
simply decided to follow the nomenclature used in [3] as indicated earlier.

Now the Toeplitz quantization of the q−1-commutator [θ, θ]q−1 is

[Tθ, Tθ]q−1 = TθTθ − q
−1TθTθ.

And this has the virtue of being of the form [A,A∗]. So we require this canonical
commutation relation to hold:

[Tθ, Tθ]q−1 = TθTθ − q
−1TθTθ = IPre(θ), the identity on Pre(θ). (27)

This gives us the recursion relation

[a+ 1]w − q−1[a]w = 1

for all a ≥ 0. But we already have [0]w = 0. So the sequence [a]w is uniquely
determined by q (or by q−1 if one wishes to consider this as the primary parameter).
It is rather straightforward to find an explicit formula for [a]w. The next definition
is standard, though not universal. See [3] for a different, more symmetric definition.

Definition 3. Let r ∈ C. For each integer n ≥ 0 we define

[n]r := 1 + r + r2 + · · ·+ rn−1 if n ≥ 1

and [0]r := 0. This is called the r-deformation of n.

For example, [1]r = 1 and [2]r = 1+r. Taking r = 1 gives [n]r = n for every integer
n ≥ 0. This justifies saying that these are deformations of the integers and that
r in the deformation parameter. If r 6= 1, then we have the alternative expression
[n]r = 1−rn

1−r , which often appears in the literature.

Proposition 1. The unique solution of the recursion relation

[a+ 1]w − q−1[a]w = 1

for all integers a ≥ 0 with [0]w = 0 is [a]w = [a]q−1 .

Proof. The recursion relation for [n]r is [n+1]r−r[n]r = 1, as the reader can easily
check. Taking r = q−1 shows that the sequences [a]w and [a]q−1 satisfy the same
recursion relation. But they both start out with [0]w = 0 = [0]q−1 , which ends the
proof. �

Now it is a matter of going from the deformed integers [a]w = [a]q−1 to the
weights wk. Now for every integer a ≥ 1 we have

[a]q−1 = [a]w =
wa
wa−1

(28)
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by definition of [a]w. It turns out that [0]w = 0 carries no information about the
weights. Then (28) gives a sequence of identities

w1 = [1]q−1w0, w2 = [2]q−1w1, w3 = [3]q−1w2,

and so on. The solution for k ≥ 1 is clearly

wk = [k]!q−1w0,

where the q−1-deformed factorial is defined by

[k]!q−1 := [k]q−1 [k − 1]q−1 · · · [2]q−1 [1]q−1

and where w0 > 0 is arbitrary. In this way we have defined a unique sequence (up
to a multiplicative positive constant) of weights wk = wk(q), which are functions
of the one parameter q such that

[Tθ, Tθ]q−1 = TθTθ − q
−1TθTθ = IPre(θ).

In particular, [Tθ, Tθ]q−1 is bounded. By putting the deformation parameter q equal

to 1 and normalizing 1 ∈ CQq(θ, θ) by putting w0 = 1, we recover the weights
wk = k! of the Hilbert space H defined in (4). Recall that the Segal-Bargmann
space based on the phase space C in [2] is the closed subspace of H consisting of
the holomorphic functions in H.

If we wish to have some other operator instead of the identity on the ‘right
side’ of the canonical commutation relation, the same method applies to give the
corresponding weights.

6 Concluding Remarks
Since the Toeplitz operators introduced here are only densely defined, one has the
standard problems in the analysis of such operators. For example, we know they
are closable, but can we identify exactly what the closure is? And if a Toeplitz
operator is symmetric, then we would like to know what its self-adjoint extensions
are. In particular, we would like to know exactly what are the conditions for a
Toeplitz operator to be essentially self-adjoint.

We have given necessary and sufficient conditions for the Toeplitz Tθiθj to be
bounded or compact. But the full story remains to be told for Tg where g is
an arbitrary symbol, though our results allow us to form sufficient conditions for
boundedness and compactness by expanding Tg as a linear combination of Tθiθj ’s.
We expect such conditions to be far from necessary.

Another possibility for further research is to define coherent states in this con-
text, much as was done in [3] in a similar finite dimensional case. This would allow
the introduction of a coherent state transform and a coherent state quantization.
(Also see [4].) This would relate the material in this paper with yet another aspect
of mathematical physics. Also it might be of interest to study in more detail the
classical space CQq(θ, θ) from a physics point of view as a sort of non-commutative
phase space.
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Given the positive result in the finite dimensional case presented in [9] it seems
reasonable to conjecture that CQq(θ, θ) also has its own reproducing kernel, at
least in the case when its inner product is non-degenerate. We also leave this as a
problem for another day.
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Supplementary balance laws for Cattaneo heat

propagation

Serge Preston

Abstract. In this work we determine for the Cattaneo heat propagation
system all the supplementary balance laws (shortly SBL) of the same order
(zero) as the system itself and extract the constitutive relations (expression
for the internal energy) dictated by the Entropy Principle. The space of
all supplementary balance laws (having the functional dimension 8) con-
tains four original balance laws and their deformations depending on 4
functions of temperature (λ0(ϑ),KA(ϑ), A = 1, 2, 3). The requirements of
the II law of thermodynamics leads to the exclusion of three functional de-
grees (KA = 0, A = 1, 2, 3) and to further restriction to the form of internal
energy. In its final formulation, entropy balance represents the deformation
of the energy balance law by the functional parameter λ0(ϑ).

1 Introduction
Systems of balance equations form the cornerstone of the Continuum Thermody-
namics, [1], [2], [4], [5]. With each system of this type, there is associated the space
of “supplementary balance laws” (see next Section) playing, for the systems of bal-
ance equations, the role similar to the role the conservation laws play for general
systems of differential equations. In this work we determine explicitly all supple-
mentary balance laws for the Cattaneo heat propagation system (CHP-system) (1)
of the same order (zero) that the Cattaneo system itself. We will solve directly
the Lagrange-Liu system of differential equations associated with the CHP model
[7], [8], and, on our way, specify the constitutive relation – the form of internal
energy as the function of temperature θ and heat flux q. If this condition is ful-
filled, the total space of SBL (modulo trivial balance laws) is 8-dimensional. If this
condition does not hold, there are no new SBL except trivial (see [6]). Then we
show that the positivity condition for the production in the new balance laws place
additional restriction to the form of internal energy and determine the unique SBL
having nonnegative production – the entropy balance law.

2010 MSC: 35Q79, 70S10
Key words: Cattaneo balance equations, conservation laws, entropy
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2 Supplementary balance laws of a balance system
Let one have a system of balance equations for the fields yi(t, xA, A = 1, 2, 3)

∂tF
0
i + ∂xAF

A
i = Πi , i = 1, . . . ,m, (1)

with the densities F 0
i , fluxes FAi , A = 1, 2, 3 and sources Πi being functions of

space-time point (t, xA, A = 1, 2, 3), fields yi and their derivatives (by t, xA) up to
the order k = 0. Number k is called the order of balance system (1). In continuum
thermodynamics people mostly work with the balance system of order 0 (case of
Rational Extended Thermodynamics) and 1.

Definition 1. A balance law (2) of order r (in the same sense as the system (1) is
of order k)

∂tK
0 +

3∑
A=1

∂xAK
A = Q (2)

is called a supplementary balance law (SBL) for the system (1) if every solution of
the system (1) is, at the same time, solution of the balance equation (2).

Examples of supplementary balance laws are: entropy balance, provided the
Entropy Principle is admitted for system (1) (see [5], [10], [11]), Noether balance
laws corresponding to the Lie groups of symmetry (see [7], [8]) and some linear
combinations of the balance equations of original balance system with variable co-
efficients satisfying some condition (“gauge symmetries” of system (1), see [7], [8]).

As a rule, in classical physics one looks for entropy balance laws of the same
order as the original balance systems. Higher order SBL are also of an interest
for studying the balance system (1) – for example, a study of integrable systems
leads to the hierarchy of conservation laws (often having form of conservation laws
themselves) of higher order.

For a balance system (1) of order 0 (case of Rational extended Thermodynamics,
see [5]), density and flux of a SBL (2) satisfy the system of equations

λiFµi,yj = Kµ
,yj , (3)

where summation over repeated indices is considered. Functions λi(yj) (main fields
in terminology of [5]) are to be found from the conditions of solvability of this
system. We call this system the LL-system referring to the Liu method of using
Lagrange method for formulating dissipative inequality for a system (1), see [3], [5].
Source/production in the system (2) is then found as Q =

∑
i λ

iΠi.

3 Cattaneo Heat propagation balance system
Consider the heat propagation model containing the temperature ϑ and heat flux q
as the independent dynamical fields y0 = ϑ, yA = qA, A = 1, 2, 3.

Balance equations of this model have the form{
∂t(ρε) + div(q) = 0 ,

∂t(τq) +∇Λ(ϑ) = −q .
(4)
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The second equation in (4) can be rewritten in the conventional form

∂t(τq) + λ · ∇ϑ = −q ,

where λ = ∂Λ
∂ϑ . If the coefficient λ may depend on the density ρ, the equation is

more complex.
Constitutive relations specify dependence of the internal energy ε on ϑ, q and

possible dependence of coefficients τ,Λ on the temperature (including the require-
ment Λ,ϑ 6= 0). The simplest case is the linear relation ε = kϑ, but for our purposes
it is too restrictive, see [2, Sec.2.1].

Since ρ is not considered here as a dynamical variable, we merge it with the
field ε and from now on and till the end it will be omitted. On the other hand, in
this model the energy ε depends on temperature ϑ and on the heat flux q (see [2,
Sec.2.1.2]) or, by change of variables, temperature ϑ = ϑ(ε, q) will be considered as
the function of dynamical variables.

Cattaneo equation q + τ∂t(q) = −λ · ∇ϑ has the form of the vectorial balance
law and, as a result there is no need for the constitutive relations to depend on the
derivatives of the basic fields. No derivatives appear in the constitutive relation,
therefore, this is the RET model. In the second equation there is a nonzero pro-
duction ΠA = −qA. The model is homogeneous, there is no explicit dependence of
any functions on t, xA.

4 LL-system for supplementary balance laws of CHP-system
To study the LL-system for the supplementary balance laws we start with the i×µ
matrix of density/flux components

Fµi =


ε τq1 τq2 τq3

q1 Λ(ϑ) 0 0
q2 0 Λ(ϑ) 0
q3 0 0 Λ(ϑ)

 .

Assuming that coefficients τ and the function Λ are independent on the heat flux
variables qA we get the “vertical (i.e. by fields ϑ, qA) differentials” of densities and
flux components Fµi

dvF
µ
i =


εϑ dϑ+ εqA dq

A τϑq
1 dϑ+ τ dq1 τϑq

2 dϑ+ τ dq2 τϑq
2 dϑ+ τ dq3

dq1 Λϑ dϑ 0 0
dq2 0 Λϑ dϑ 0
dq3 0 0 Λϑ dϑ

 .

Let now
∂tK

0(x, y) + ∂xAK
A(x, y) = Q(x, y) (5)

be a supplementary balance law for the Cattaneo balance system (4). It is easy to
see that the LL-system has the form:
Subsystem of LL-system with µ = 0 has the form:{

λ0εϑ + τϑλ
AqA = K0

,ϑ

λ0εqA + λAτ = K0
,qA

, A = 1, 2, 3 . (6)
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For µ = A = 1, 2, 3, using cyclic notations, we have LL-equations:
Λϑλ

A = KA
,ϑ

λ0 = KA
,qA

0 = KA
qA+1

0 = KA
qA+2

, A = 1, 2, 3 . (7)

Looking at systems (6), (7) we see that if we make the change of variables
ϑ̃ = Λ(ϑ) then the system of equations (6), (7) takes the form (wherever is the
derivative by ϑ we multiply this equation by Λ,ϑ){

λ0εϑ̃ + τϑ̃λ
AqA = K0

,ϑ̃

λ0εqA + λAτ = K0
qA

;

{
KA
,ϑ̃

= λA

KA
qB = λ0δAB

, A,B = 1, 2, 3. (8)

The second subsystem is equivalent to the relation

dvK
A = λAdϑ̃+ λ0dqA.

These integrability conditions imply the expression KA = KA(xµ, ϑ̃, qA) and

KA
qA = λ0, A = 1, 2, 3 ⇒ λ0 = λ0(ϑ̃).

Integrating equation KA
qA = λ0(ϑ̃) by qA we get

KA = λ0(ϑ̃)qA + K̃A(ϑ̃) (9)

with some functions K̃A(ϑ̃).
The first equation of each system now takes the form

λA = KA
ϑ̃

= λ0
ϑ̃
qA + K̃A

,ϑ̃
(ϑ̃). (10)

Substituting these expressions for λA into the 0-th system{
λ0εϑ̃ + τϑ̃λ

AqA = K0
,ϑ̃

λ0εqA + λAτ = K0
qA

, A = 1, 2, 3,

we get {
K0
,ϑ̃

= λ0εϑ̃ + τϑ̃
(
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)
K0
qA = λ0εqA + τ

(
λ0
ϑ̃
qA + K̃A

,ϑ̃
(ϑ̃)
) , A = 1, 2, 3, (11)

where ‖q‖2 =
∑
A q

A 2.
Integrating A-th equation by qA and comparing results for different A we obtain

the following representation

K0 = λ0ε+ τ(ϑ̃)
[1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

]
+ f(ϑ̃) (12)
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for some function f(ϑ̃, xµ).
Calculate derivative by ϑ̃ in the last formula for K0 and subtract the first

formula of the previous system. We get

0 = λ0
,ϑ̃
ε+ τ(ϑ̃)

[(1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)]
,ϑ̃
− 1

2
τ,ϑ̃λ

0
,ϑ̃
‖q‖2 + f,ϑ̃(ϑ̃). (13)

This is the compatibility condition for the system (6) for K0. As such, it is real-
ization of the general compatibility system (8).

Take qA = 0 in the last equation, i.e. consider the case where there is no heat
flux. Then the internal energy reduces to its equilibrium value εeq(ϑ̃) and we get
f,ϑ̃(ϑ̃) = −λ0

,ϑ̃
εeq. Integrating here we find

f(ϑ̃) = f0(xµ)−
∫ ϑ̃

λ0
,ϑ̃

(s)εeq(s) ds . (14)

Substituting this value for f into the previous formula we get expressions for Kµ: K0 = λ0ε−
∫ ϑ̃

λ0
,ϑ̃
εeq ds+ τ(ϑ̃)

[1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

]
+ f0

KA = λ0(ϑ̃)qA + K̃A(ϑ̃)

, A = 1, 2, 3.

(15)
In addition to this, from (13) and obtained expression for f(ϑ̃), we get the expres-
sion for internal energy

ε = εeq(ϑ̃) +
1

2
τ,ϑ̃‖q‖

2 − τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

[1

2
λ0
,ϑ̃ϑ̃
‖q‖2 + K̃A

,ϑ̃ϑ̃
(ϑ̃)qA

]
. (16)

This form for internal energy presents the restriction to the constitutive relations
in Cattaneo model placed on it by the entropy principle.

The zeroth main field λ0 is an arbitrary function of ϑ̃ while λA are given by the
relations (15):

λA = (λ0
ϑ̃
qA + K̃A

,ϑ̃
(ϑ̃)). (17)

Using this we find the source/production term for the SBL (5)

Q = λAΠA = −λAqA = −
(
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)
.

Now we combine obtained expressions for components of a secondary balance
law. We have to take into account that the LL-system defines Kµ only modC∞(X).
This means first of all that all the functions may depend explicitly on xµ. For en-
ergy ε, field Λ(ϑ) and the coefficient τ this dependence is determined by constitutive
relations and is, therefore, fixed. Looking at (16) we see that the coefficients of
terms linear and quadratic by qA are also defined by the constitutive relation, i.e.
in the representation

ε = εeq(ϑ̃) + µ(ϑ̃)‖q‖2 +MA(ϑ̃)qA

= εeq(ϑ̃) +
1

2
τ,ϑ̃‖q‖

2 − τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

[1

2
λ0
,ϑ̃ϑ̃
‖q‖2 + K̃A

,ϑ̃ϑ̃
(ϑ̃)qA

]
,

(18)
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coefficients

µ(ϑ̃, x) =
1

2
τ,ϑ̃ −

1

2

τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

λ0
ϑ̃ϑ̃
, MA = − τ(ϑ̃)

λ0
ϑ̃
(ϑ̃)

K̃A
,ϑ̃ϑ̃

(ϑ̃) (19)

are defined by the CR – by expression of internal energy as the quadratic function
of the heat flux.

More than this, quantities
λ0
ϑ̃ϑ̃

λ0
ϑ̃

and
K̃A
,ϑ̃ϑ̃

(ϑ̃)

λ0
ϑ̃

are also defined by the constitutive
relations.

Rewriting the first relation (18) we get

(
ln(λ0

ϑ̃
)
)
,ϑ̃

= ln(τ),ϑ̃ − 2
µ(ϑ̃)

τ(ϑ̃)
⇒ ln(λ0

ϑ̃
) = ln(τ) + b0 − 2

∫ ϑ̃ µ

τ
(s) ds

⇒ λ0
ϑ̃

= ατe−2
∫ ϑ̃ µ

τ (s)ds, α = eb
0

> 0 .

From this relation we find

λ0(ϑ̃, x) = a0 + αλ̂0 = a0 + α

∫ ϑ̃[
τe−2

∫ u µ(s)
τ(s)

ds] du (20)

Here a0 and α are constants (or, maybe, functions of xµ).

Using obtained expression for λ0(ϑ̃, x) in the second formula (19) we get the
expression for coefficients K̃A and, integrating twice by ϑ̃, for the functions KA(ϑ̃)

K̃A
,ϑ̃ϑ̃

= −MA ·
λ0
ϑ̃
(ϑ̃)

τ(ϑ̃)
= −MAαe

−2
∫ ϑ̃ µ

τ (s)ds

⇒ K̃A = kAϑ̃+mA + α · K̂A(ϑ̃)

= kAϑ̃+mA − α
∫ ϑ̃

dw

∫ w

[MA(u)e−2
∫ u µ

τ (s)ds] du .

(21)

Functions K̂A(ϑ̃) are defined by the second formula in the second line.

Thus, functions λ0
ϑ, K̃

A
,ϑϑ are defined by the constitutive relations while coeffi-

cients α > 0, a0, kA,mA are arbitrary functions of xµ.

5 Supplementary balance laws for CHP-system

Combining obtained results, returning to the variable ϑ (and using repeatedly the
relation f,ϑ̃ = ϑ,ϑ̃f,ϑ = (ϑ̃,ϑ)−1f,ϑ = Λ−1

,ϑ f,ϑ) we get the general expressions for
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admissible densities/fluxes of the supplementary balance laws

K0 = λ0ε−
∫ ϑ̃

λ0
,ϑ̃
εeq ds+ τ(ϑ̃)

[1

2
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

]
+ f0

= (a0 + αλ̂0)ε− α
∫ ϑ

λ̂0
,ϑε

eq ds

+
τ(ϑ)

Λ,ϑ

[α
2
λ̂0
ϑ‖q‖2 +

(
Λ,ϑk

A + αK̂A
,ϑ(ϑ)

)
qA
]

+ f0,

KA = λ0(ϑ̃)qA + K̃A(ϑ̃)

= (a0 + αλ̂0(ϑ))qA + kAΛ(ϑ) +mA + αK̂A(ϑ) , A = 1, 2, 3

Q = −λAqA = −
(
λ0
ϑ̃
‖q‖2 + K̃A

,ϑ̃
(ϑ̃)qA

)
= −Λ−1

,ϑ

(
λ0
ϑ‖q‖2 + Λ,ϑk

AqA + αK̂A
,ϑ(ϑ)qA

)
= −Λ−1

,ϑ

(
αλ̂0

ϑ‖q‖2 + Λ,ϑk
AqA + αK̂A

,ϑ(ϑ)qA
)
.

Collecting previous results together we present obtained expressions for sec-
ondary balance laws first in short form and then in the form where original balance
laws and the trivial balance laws are separated from the general form of SBL


K0

K1

K2

K3

Q

 =



λ0ε−
∫ ϑ

λ0
,ϑε

eq ds+ τ(ϑ)Λ−1
ϑ [ 1

2λ
0
ϑ‖q‖2 + αK̃A

,ϑ(ϑ)qA] + f0

λ0(ϑ)q1 + K̃1(ϑ)

λ0(ϑ)q2 + K̃2(ϑ)

λ0(ϑ)q3 + K̃3(ϑ)

−Λ−1
,ϑ (λ0

,ϑ‖q‖2 + K̃A
,ϑ(ϑ)qA)



= a0


ε

q1

q2

q3

0

+
∑
A

kA


τ(ϑ)qA

δ1
AΛ(ϑ)

δ2
AΛ(ϑ)

δ3
AΛ(ϑ)

−qA

+



ατΛ(ϑ)−1K̂A
,ϑ(ϑ)qA

K̂1(ϑ)

K̂2(ϑ)

K̂3(ϑ)

−Λ−1
,ϑ K̂

A
,ϑ(ϑ)qA



+ α



λ̂0ε−
∫ ϑ

λ̂0
,ϑε

eq ds+ τ(ϑ)Λ−1
ϑ [ 1

2 λ̂
0
,ϑ‖q‖2]

λ̂0(ϑ)q1

λ̂0(ϑ)q2

λ̂0(ϑ)q3

−Λ−1
,ϑ λ̂

0
,ϑ‖q‖2


+


f0

m1

m2

m3

0

 .

(22)

To get the second presentation of the SBL we use the decompositions (21)

λ0 = αλ̂0 + a0 and (20) K̃A(ϑ̃) = kAϑ̃+mA − K̂A.

Remark 1. Notice the duality between the tensor structure of the basic fields of
Cattaneo system – one scalar field (temperature ϑ) and one vector field (heat
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flux qA, A = 1, 2, 3) – and the structure of space SBL(C) of supplementary balance
laws – elements of SBL(C) depend on one scalar function of temperature λ0(ϑ)
and one covector function of temperature K̂A.

Remark 2. It is easy to see that none of new SBL can be written as a linear com-
bination of original balance equations with variable coefficients (Noether balance
laws generated by vertical symmetries v = vk(yi)∂yk , see [7], [8]). The easiest way
to prove this is to compare the source terms of different balance equations.

Returning to the variable ϑ in the expression (16) and using the relation ∂ϑ̃ =
1

Λ(ϑ),ϑ
∂ϑ we get the expression for the internal energy

ε = εeq(ϑ) +
τ,ϑ

2Λ,ϑ
‖q‖2 − τ(ϑ)

λ0
,ϑ

[
1

2

(
λ0
,ϑ

Λ,ϑ

)
,ϑ

‖q‖2 +

(
K̃A
,ϑ

Λ,ϑ

)
,ϑ

qA
]

=Λ,ϑ=κ−const εeq(ϑ) +
τ,ϑ
2κ
‖q‖2 − τ(ϑ)

κλ0
,ϑ

[
1

2
λ0
,ϑϑ‖q‖2 + K̃A

,ϑϑq
A

]
.

Notice that for λ0 = 0, balance laws given by the 4th column in (22) (the
one with coefficient α) vanish. The same is true for deformations of the Cattaneo
equation (second column) defined by the third column when K̃A(ϑ) = 0.

The first and second balance laws in (22) are the balance laws of the original
Cattaneo system. The last one is the trivial balance law. Third and fourth columns
give the balance law

∂t

[
λ̂0ε−

∫ ϑ

λ0
,ϑε

eq ds+ τ(ϑ)Λ−1
ϑ

[1

2
λ0
ϑ‖q‖2 + K̂A

,ϑ(ϑ)qA
]]

+ ∂xA
[
λ̂0(ϑ)qA + K̂A(ϑ)

]
= −Λ−1

,ϑ

(
λ̂0
ϑ‖q‖2 + K̂A

,ϑ(ϑ)qA
)
. (23)

Source/production term in (23) equation has the form

−Λ−1
,ϑ

(
λ̂0
ϑ‖q‖2 + K̂A

,ϑ(ϑ)qA
)

= −Λ−1
,ϑ λ̂

0
ϑ

(
‖q‖2 +

K̂A
,ϑ(ϑ)

λ̂0
ϑ

qA
)

= −Λ−1
,ϑ λ̂

0
ϑ

[∑
A

(
qA +

K̂A
,ϑ(ϑ)

2λ̂0
ϑ

)2

−
∑
A

(
K̂A
,ϑ(ϑ)

2λ̂0
ϑ

)2]
.

By physical reasons, Λ,ϑ > 0. As (20) shows, λ,ϑ may have any sign. We assume
that this sign does not depend on ϑ.

For a fixed ϑ expression for the production in the balance law (23) may have
constant sign for all values of qA if and only if K̂A

,ϑ(ϑ) = 0, A = 1, 2, 3. Therefore
this is possible only if the internal energy has the form

ε = εeq(ϑ) +

[
τ,ϑ

2Λ,ϑ
− τ(ϑ)

2λ̂0
,ϑ

(
λ̂0
,ϑ

Λ,ϑ

)
,ϑ

]
‖q‖2

=τ−const, Λ,ϑ−const εeq(ϑ)− τ(ϑ)

2kλ̂0
,ϑ

λ̂0
,ϑϑ‖q‖2
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with some function λ̂0(ϑ). This being so, Cattaneo system has the entropy (sup-
plementary balance) law

∂t

[
λ̂0ε −

∫ ϑ

λ̂0
,ϑε

eq ds +
1

2
τ(ϑ)Λ−1

ϑ λ̂0
,ϑ‖q‖2

]
+ ∂xA

[
λ̂0
,ϑq

A
]

= −Λ−1
,ϑ λ̂

0
,ϑ‖q‖2

with the production term that may have constant sign – nonnegative, provided (we

use the fact that λ̂0
,ϑ = λ0

,ϑ)

Λ−1
,ϑ λ

0
,ϑ 5 0 . (24)

This inequality (which is equivalent, if Λ,ϑ = 0, to the inequality λ0
,ϑ 5 0) is the

II law of thermodynamics for Cattaneo heat propagation model.
If we take q = 0 in obtained entropy balance we have to get the value of entropy

at the equilibrium seq:

seq = λ̂0εeq −
∫ ϑ

λ0
,ϑε

eq ds =

∫ ϑ

λ̂0εeq
,ϑ dϑ.

From this it follows that at a homogeneous state dseq = λ̂0 dεeq. Comparing this
with the Gibbs relation dεeq = ϑdseq we conclude that

λ̂0 =
1

ϑ
. (25)

Using (17) we also conclude that

λA = −q
A

ϑ2
, A = 1, 2, 3 .

It follows from this that the condition (24) (II law) takes here the form well known
from thermodynamics (see [2], [4], [5]):

Λ,ϑ = 0 .

Substituting (14) into (17) and calculating

−τ(ϑ)

2λ̂0
,ϑ

(
λ̂0
,ϑ

Λ,ϑ

)
,ϑ

=
τ(ϑ)ϑ2

2

(
−1

ϑ2Λ,ϑ

)
,ϑ

= −τ(ϑ)ϑ2

2

−(2ϑΛ,ϑ + ϑ2Λ,ϑϑ)

ϑ4Λ2
,ϑ

=
τ(ϑ)

ϑΛ,ϑ
+
τ(ϑ)Λ,ϑϑ
2(Λ,ϑ)2

we get the expression for internal energy in the form

ε = εeq(ϑ) +

[
τ,ϑ

2Λ,ϑ
+

τ

ϑΛϑ
+

τΛ,ϑϑ
2(Λ,ϑ)2

]
‖q‖2

=τ−const, Λ,ϑ−const εeq(ϑ) +
τ

ϑΛ,ϑ
‖q‖2.

(26)
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For the entropy density we have

s = seq + λ̂0(ε− εeq) +
1

2
τ(ϑ)Λ−1

ϑ λ̂0
,ϑ‖q‖2 =

= seq +
1

ϑ

[
τ,ϑ

2Λ,ϑ
+

τ

ϑΛϑ
+

τΛ,ϑϑ
2(Λ,ϑ)2

]
‖q‖2 − τ(ϑ)

2ϑ2Λϑ
‖q‖2

= seq +
1

ϑ

[
τ,ϑ

2Λ,ϑ
+

τ

2ϑΛϑ
+

τΛ,ϑϑ
2(Λ,ϑ)2

]
‖q‖2

= seq +
τ

2ϑΛ,ϑ

[
τ,ϑ
τ

+
1

ϑ
+

Λ,ϑϑ
Λ,ϑ

]
‖q‖2

=τ−const, Λ,ϑ−const seq +
τ

2ϑ2Λ,ϑ
‖q‖2.

(27)

Correspondingly, the entropy balance law takes the form

∂t

(
seq +

τ

2ϑΛ,ϑ

[
τ,ϑ
τ

+
1

ϑ
+

Λ,ϑϑ
Λ,ϑ

]
‖q‖2

)
+ ∂xA

(
qA

ϑ

)
=

1

Λ,ϑ

∥∥∥ q
ϑ

∥∥∥2

.

Remark 3. If in the absence of the heat flow (q = 0) the “equilibrium state” is
not homogeneous, more general constitutive relations with λ0 different from (25)
and more general form of energy and entropy balances satisfying the II law of
Thermodynamics, are possible.

We collect obtained results in the following

Theorem 1. 1. For the Cattaneo heat propagation balance system (1) compati-
ble with the entropy principle and having a nontrivial supplementary balance
law that is not a linear combination of the original balance laws with con-
stant coefficients, the internal energy has the form (7). If (7) holds, all
supplementary balance laws for Cattaneo balance system (including original
equations and the trivial ones) are listed in (6). New supplementary balance

laws depend on the 4 functions of temperature – λ̂0(ϑ), K̃A(ϑ), A = 1, 2, 3.
Corresponding main fields λµ, µ = 0, 1, 2, 3, have the form (17), (20).

2. The additional balance law (23) given by the sum of third and fourth columns
in (22) has the nonnegative production term if and only if the internal energy ε
has the form (26) and, in addition, the condition (24) holds. Cattaneo systems
satisfying these conditions depend on one arbitrary function of time εeq(ϑ).

3. The supplementary balance law having nonnegative production term (en-
tropy) is unique modulo linear combination of original balance laws and the
trivial balance laws.

6 Conclusion
Description of the supplementary balance laws for Cattaneo heat propagation sys-
tem given in this paper can probably be carried over for other systems of balance
equations for the couples of fields: scalar + vector field.
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One observes a kind of duality between the tensorial structure of dynami-
cal fields (here ϑ, q) and the list of free functions of temperature λ0(ϑ), K̃A(ϑ),
A = 1, 2, 3 entering the description of SBL.

It would be interesting to follow up if similar duality exists for the balance
systems of more complex tensorial structure and for the systems of order 1 (recently
the author completed the classification of SBL of order 0 and 1 for the Navier-Stokes
fluid balance system, [9]).

In the case of Cattaneo heat propagation system, the II law of thermodynam-
ics – existence of the SBL having the nonnegative production term – defines the
entropy balance uniquely (modulo addition of trivial balance laws and the linear
combination of the original balance laws). It would be interesting to look at other
balance systems to determine the character of non-unicity of the SBL with the
positive production – “abstract entropy balances” – to find the place of “physical
entropy” in this list and to see if this “physical entropy balance” is “optimal” in
some sense.
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Method of infinite ascent applied on

−(2p ·A6) +B3 = C2

Susil Kumar Jena

Abstract. In this paper, the author shows a technique of generating an in-
finite number of coprime integral solutions for (A,B,C) of the Diophantine
equation −(2p · A6) + B3 = C2 for any positive integral values of p when
p ≡ 1 (mod 6) or p ≡ 2 (mod 6). For doing this, we will be using a pub-
lished result of this author in The Mathematics Student, a periodical of the
Indian Mathematical Society.

1 Introduction
Many people, viz., Lebesgue [14], Ljunggren [15], Nagell [19], [20], Chao [8],
Cohn [10], Mignotte & de Weger [18], Bugeaud, Mignotte & Siksek [7] have in-
vestigated on the solution of the Diophantine equation x2 + C = yn with x ≥ 1,
y ≥ 1, n ≥ 3 and C is any integer, positive or negative for different values of
|C| ≤ 100. Le [13], Luca [16]; Arif & Muriefah [1] have considered a different form
of the equation x2 +C = yn, when C is no longer a fixed integer but the power of
one or two fixed primes.

For other related results concerning equation x2 +C = yn see [2], [3], [4], [5], [9],
[11], [17], [21], [22], [23], [24]. For a survey relating equation x2 + C = yn see [6].
Allowing C to be the product of some power of 2 and an integral sixth power,
Theorem 3 and Theorem 4 give the main results of this paper. From a paper of
Jena [12], we reproduce two useful Theorems relating to the Diophantine equation

mA6 + nB3 = C2 (1)

for any pair of integers (m,n) and the integral variables (A,B,C). Basing on these
two theorems we obtain the main results of this paper.
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Key words: higher order Diophantine equations, method of infinite ascent, Diophantine equa-

tion −(2p ·A6) + B3 = C2
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Theorem 1 (Jena [12]). For any integer m, p and q,

m(2pq)6 + (mp6 − q2)(9mp6 − q2)3 = (27m2p12 − 18mp6q2 − q4)2. (2)

Proof. The proof is got by expanding the terms of both the LHS and RHS of (2)
and noting their equality. �

Theorem 2 (Jena [12]). If (At, Bt, Ct) is a solution of the Diophantine equation
mA6 + nB3 = C2 with m, n, A, B and C as integers then (At+1 , Bt+1 , Ct+1) is
also a solution of the same equation such that

(At+1, Bt+1, Ct+1)

=
{

(2AtCt),−Bt(9mA6
t − C2

t ), (27m2A12
t − 18mA6

tC
2
t − C4

t )
}

(3)

and if mAt, nBt and Ct are pairwise coprime where nBt is an odd integer and 3
is not a factor of Ct then mAt+1, nBt+1 and Ct+1 are also pairwise coprime where
nBt+1 is an odd integer and 3 is not a factor of Ct+1; in addition to this, mAt+1

will be always an even integer and Ct+1 always an odd integer.

Proof. We can get details of the proof in paper [12]. �

Now, let us proceed to the next section to note the principal results of this paper.

2 Results
In this paper, we prove that for any positive integer p, when p ≡ 1 (mod 6) or
p ≡ 2 (mod 6) the Diophantine equation −(2p · A6) + B3 = C2 has infinitely
many coprime integral solutions for (A,B,C). This is equivalent to proving the
statements of Theorem 3 and Theorem 4.

Theorem 3. For any positive integer q ≥ 1, the Diophantine equation

−(26q−5 ·A6) +B3 = C2 (4)

has infinitely many coprime integral solutions for (A,B,C).

Proof. We will prove Theorem 3 in three steps. Firstly, we have to establish that
equation (4) has infinitely many coprime integral solutions for (A,B,C) when
q = 1. Secondly, we will see how to use these coprime solutions of first step to
find the initial coprime solutions for (A,B,C) of equation (4) for other values of
q > 1. Next, we will show that the conditions of generating infinite number of
coprime integral solutions, as proposed by Theorem 2, are applicable to (4) for
each value of q.

Step I. Putting q = 1 in (4) we get

−(21 ·A6) +B3 = C2. (5)

We will denote the ith solution for (A,B,C) of equation (4) when q = j as
(Ai, Bi, Ci)q=j , where i and j take positive integral values. Now, we know that

−2 · 16 + 33 = 52. (6)
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Using the result of (6), we get the starting solution for (A,B,C) of equation (4) as

(A1, B1, C1)q=1 = (1, 3, 5). (7)

Comparing (5) with (1) we get m = −2 and n = 1. The conditions of generating
an infinite number of coprime integral solutions as proposed by Theorem 2 are
applicable for equation (5), because the three terms mA1, nB1 and C1 take values
−2, 3 and 5 respectively, and are pairwise coprime; nB1 is an odd integer and 3 is
not a factor of C1. Thus, Theorem 2 can be used repeatedly to generate an infinite
number of coprime integral solutions for (A,B,C). Using (3) we have

(A2, B2, C2)q=1 =
{

(2A1C1) ,−B1(9mA6
1 − C2

1 ),

(27m2A12
1 − 18mA6

1C
2
1 − C4

1 )
}

=
{

(2 · 1 · 5) ,−3 · (9 · (−2) · 16 − 52),

(27 · (−2)2 · 112 − 18 · (−2) · 16 · 52 − 54)
}

= (21 · 5, 129, 383). (8)

Using equation (3), we calculate the kth solution of (5) as

(Ak, Bk, Ck) = (2k−1 ·A′k, Bk, Ck)

where the integer k > 1, Ak = 2k−1A′k and all three terms A′k, Bk and Ck are
odd. By repeated use of equation (3) one can find any number of coprime integral
solutions for (A,B,C) of equation (5).

Step II. The first solution for (A,B,C) of equation (5) is (1, 3, 5). Using these
values for (A,B,C) in (5) we have

−2 · 16 + 33 = 52.

Or − 2 · 20 · 16 + 33 = 52.
(9)

The second solution for (A,B,C) of equation (5) is (21 · 5, 129, 383). Using these
values for (A,B,C) in (5) we get

−2 · 26 · 56 + 1293 = 3832.

Or − 27 · 56 + 1293 = 3832.
(10)

The kth solution for (A,B,C) of equation (5) is (2k−1 · A′k, Bk, Ck). Using these
values for (A,B,C) in (5) we obtain

−(26k−5 ·A′6k ) +B3
k = C2

k . (11)

When q = 1, from (9) we get the starting solution for (A,B,C) of equation (4) as
(20 · 1, 3, 5).
When q = 2, from (10) we get the starting solution for (A,B,C) of equation (4) as
(5, 129, 383).
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When q = k, from (11) we get the starting solution for (A,B,C) of equation (4)
as (A′k, Bk, Ck).

Step III. In Step I, we have already proved the validity of the statement of The-
orem 3 for q = 1. Putting q = 2 in (4) we get

−(27 ·A6) +B3 = C2. (12)

Now, for each integral value of q > 1, there is a starting solution for (A,B,C) for
equation (4) as we showed in Step II. Since the values of B and C in these starting
solutions are the same values which are generated by the subsequent solutions of
equation (4), they should be coprime; B and C are odd integers; and 3 is not a
factor of C. Hence, for any integer q > 1, the statement of Theorem 3 is valid,
because the conditions of generating infinite number of coprime integral solutions
as proposed by Theorem 2 are satisfied.

Thus, combining these three steps, we complete the proof of Theorem 3. �

Theorem 4. For any positive integer q ≥ 1, the Diophantine equation

−(26q−4 ·A6) +B3 = C2 (13)

has infinitely many coprime integral solutions for (A,B,C).

Proof. Since −(22 · 16) + 53 = 112, we get the first coprime solution for (A,B,C)
of the Diophantine equation (13) when q = 1 as

(A1, B1, C1)q=1 = (1, 5, 11) . (14)

Using Theorem 2 we obtain

(A2, B2, C2)q=1 = (21 · 11, 785,−5497) = (21 · 11, 785, 5497) . (15)

We can use (15) to get the first coprime solution for (A,B,C) of the Diophantine
equation (13) when q = 2 as

(A1, B1, C1)q=2 = (11, 785, 5497) .

Steps similar to the proof of Theorem 3 should be followed in establishing the
statement of Theorem 4. �

3 Conclusion
The proof of Theorem 3 and Theorem 4 establishes the infinitude characteristics
of the Diophantine equation

−(2p ·A6) +B3 = C2

for any positive integral values of p when p ≡ 1 (mod 6) or, p ≡ 2 (mod 6). But,
what about the status of this equation when p ≡ 0, 3, 4, or 5 (mod 6)? Well, we
don’t have the answer, because an initial starting coprime solution for (A,B,C) in
each of these cases is not available with us. It needs further investigation.
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Erratum

Communications in Mathematics No. 1, Vol. 20 (2012),
page 20, proof of Proposition 1

The Editorial Office regrets that there has been a printing error in the paper “Lo-
cally variational invariant field equations and global currents: Chern-Simons theo-
ries” by M. Francaviglia, M. Palese, E. Winterroth, Comm. Math. No. 1, Vol. 20
(2012). On page 20, one line is missing at the end of the proof of Proposition 1.
The correct version is:

. . . As stated in the section above it is clear that, if LΞdHγij = 0, then dH(νi+εi) is
global. Generators of such a global current lie in the kernel of the second variational
derivative and are symmetries of the variationally trivial Lagrangian dHγij . �

The technical editors are responsible for this mistake which occured during the
final preparation of the paper for publication. In the online version the mistake
has already been corrected.

The Editorial Office apologizes to the authors and the readers.





Communications in Mathematics 21 (2013) 181–183
Copyright c© 2013 The University of Ostrava 181

Contents of Previous Volumes∗

No. 1, Vol. 18 (2010)
Editorial

From the Editor-in-Chief

Research papers

David Saunders: Some geometric aspects of the calculus of variations in several
independent variables

Yong-Xin Guo, Chang Liu and Shi-Xing Liu: Generalized Birkhoffian realization
of nonholonomic systems

Mike Crampin: Homogeneous systems of higher-order ordinary differential
equations

Survey paper
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Zoltán Muzsnay, Péter T. Nagy: Tangent Lie algebras to the holonomy group
of a Finsler manifold
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