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A New Variational Characterization Of Compact

Conformally Flat 4-Manifolds

Faen Wu, Xinnuan Zhao

Abstract. In this paper, we give a new variational characterization of cer-
tain 4-manifolds. More precisely, let R and Ric denote the scalar curvature
and Ricci curvature respectively of a Riemannian metric, we prove that if
(M4, g) is compact and locally conformally flat and g is the critical point
of the functional

F (g) =

∫
M4

(aR2 + b|Ric|2) dvg ,

where
(a, b) ∈ R2 \ L1 ∪ L2

L1 : 3a+ b = 0 ; L2 : 6a− b+ 1 = 0 ,

then (M4, g) is either scalar flat or a space form.

1 Introduction
Let (Mn, g) be an n-dimensional compact smooth manifold. Denote by M and
G the space of smooth Riemannian metric and the diffeomorphism group of M
respectively. We call a functional F : M→ R Riemannian if F is invariant under
the action of G, i. e. F (ϕ∗g) = F (g) for ϕ ∈ G and g ∈M.

By letting S2(M) denote the bundle of symmetric (0, 2) tensors on Mn, we say
that F has a gradient ∇F at g ∈M if for h ∈ S2(M)

d

dt
F (g + th)|t=0 =

∫
M

〈h,∇F 〉g dvg

In [6], Gursky and Viaclovsky studied the functional

F (g) =

∫
M3

σk(Cg) dvg

2010 MSC: 53C20, 53C25
Key words: conformally flat, 4-manifold, variational characterization
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where σk(Cg) is the k-th elementary symmetric function of the eigenvalues of the
Schonten tensor Cg = Ric− 1

2
R
n−1g. They proved that

Theorem 1. [6] Let M be a compact 3-manifold, then a metric g with F2(g) ≥ 0
is critical for F2|M1

if and only if g has constant sectional curvature,where M1 =
{g ∈M|Vol(g) = 1}

This gives a new variational characterization of three-dimensional space forms.
In [7], Hu and Li generalized the above result to the case n ≥ 5. There are
many deep on going results about the 4-manifolds. M. J. Gursky considered in [5]
4-manifolds with harmonic self-dual Weyl tensor and obtained a lower bound of
the L2 norm of the self-dual part of Weyl tensor. S.-Y. A. Chang, M. J. Gursky
and P. Yang obtained in [3] some sufficient geometric conditions for a 4-manifold
to have certain conformal class of metric and consequently to have finite funda-
mental group. C. LeBrun and B. Maskit [9] completely determined compact simply
connected and oriented 4-manifolds up to homomorphism which admit scalar flat,
anti-self-dual Riemannian metrics. There is a rich literature concerning results
related to the variation of curvature functional [1], [4], [10], [11], [12].

Early in 1938, before the higher dimensional Gauss-Bonnet formula were dis-
covered, C. Lanczos [8] studied the functional

φa,b,c(g) =

∫
M4

(
a|Rie|2 + b|Ric|2 + cR2

)
dvg

on 4-manifolds. He found that the functional φ1,−4,1 has a gradient which is iden-
tically zero. In fact this establishes that this integral is a differential invariant of
the manifold M . It is even a topological invariant, namely 32π2χ(M), where χ(M)
the Euler-Poincare characteristic of M , i. e.

32π2χ(M) =

∫
M4

(
|Rie|2 − 4|Ric|2 +R2

)
dvg (1)

Taking this Gauss-Bonnet formula into account, we naturally study the functional

F (g) =

∫
M4

(
aR2

g + b|Ricg|2
)

dvg (2)

We obtain a new variational characterization of 4-manifolds as follow

Theorem 2. Suppose that (M4, g) is compact and locally conformally flat. If g is
a critical point of the functional (2) with any pairs (a, b) in the real plane with two
fixed lines deleted, that is

(a, b) ∈ R2 \ L1 ∪ L2 ; L1 : 3a+ b = 0 ; L2 : 6a− b+ 1 = 0 ,

then (M4, g) is either scalar flat or a space form.
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2 Preliminaries
Recently, the first author [13] studied the variation formulas of a metric by the
moving frame method. He obtained the first and the second variation formulas
for the Riemannian curvature tensor, Ricci tensor and scalar curvature of a metric
in another formalism which should be equivalent to the classical ones. He also
obtained some interesting applications of these formulas. We believe that these
formulas are more convenient in the computations of calculus of variation, especially
in the computations where the second variation of a metric is involved. We follow
the notations as in [13]. Classical variational formulas of metric can be found in [2]
and [12].

Suppose that

g(t) =

n∑
i=1

θ2
i (t)

is a variation of a given metric g. For the sake of simplicity, from now on we use
Einstein summation convention; i. e., the repeated indices imply summation. The
indices i, j, k, . . . are from 1 to n unless otherwise stated. Let θij(t) and Ωij(t) are
connection one-forms and curvature two-forms determined respectively by

dθi(t) = θij(t) ∧ θj(t)

Ωij(t) = dθij(t)− θik(t) ∧ θkj(t) = −1

2
Rijkl(t)θk(t) ∧ θl(t)

where d is the exterior differential operator on the manifold. These equations are
known as the structural equation of the Levi-Civita connection of the metric. Rijkl
are the components of the (0, 4) type Riemannian curvature tensor. Assume that

θi(t) = θi + ωit+ o(t) Rijkl(t) = Rijkl + rijklt+ o(t)

where θi = θi(t)|t=0 , ωi = dθi(t)
dt

∣∣∣
t=0

= aijθj , Rijkl = Rijkl(t)|t=0 , rijkl =

dRijkl(t)
dt

∣∣∣
t=0

.

By a crucial lemma proved in [13], there exists an isometry of g(t), such that
aij are symmetric. So we may always assume aij = aji without loss of generality.
With these preparation we have [13]

rijkl = −(aik,jl − ail,jk + ajl,ik − ajk,il +Rijkmaml +Rijmlamk) (3)

where aij,kl is defined by

aij,klθl = daij,k + alj,kθli + ail,kθlj + aij,lθlk

and aij,k is defined by

aij,kθk = daij + akjθki + aikθkj ,

θij = θij(t)|t=0
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aij,k and aij,kl are the first and the second covariant derivatives of aij with respect
to the initial metric g.

Defined the Ricci curvature

Rij(t) =

n∑
k=1

Rikjk(t) = Rij + rijt+ o(t)

and the Scalar curvature

R(t) =

n∑
i=1

Rii(t) = R+ rt+ o(t)

of g(t) respectively the above two formulas, then by making contraction from (3)
one obtain immediately

∂Rij(t)

∂t

∣∣∣
t=0

= rij = −∆aij − akk,ij + aik,kj + akj,ik −Rikakj −Rikjlakl (4)

∂R(t)

∂t

∣∣∣
t=0

= r = 2(aij,ij −∆aii − aijRij) (5)

where ∆aij denotes the Laplacian of aij with respect to the original metric g. For
more details see [13].

3 Proof of the theorem 2
By (4) and (5) we have

d

dt
F (t)

∣∣
t=0

=

∫
M4

{
2
(
aR(t)

dR(t)

dt
+ bRij

dRij(t)

dt

)
+ (aR2 + bR2

ij)amm

}
dvg
∣∣
t=0

=

∫
M4

{
2aR · 2(aij,ij −∆aii − aijRij)

+ 2bRij(−∆aij − akk,ij + aik,kj + akj,ik −Rimamj −Rikjlakl)
+ (aR2 + bR2

ij)amm
}

dvg

=

∫
M4

aij(∇F )ij dvg

where

(∇F )ij = 4aR,ij − 4a∆Rδij − 4aRRij − 2b∆Rij

− 2bRkl,klδij + 2bRik,kj + 2bRkj,ik − 2bRimRmj

− 2bRklRik,jl + (aR2 + bR2
kl)δij .

(6)

Since g is a critical point of the functional (2), we have

(∇F )ij = 0 . (7)

Taking trace of (7) and making use of the following identities which are obtained
from the second Bianchi identity and the Ricci identity respectively

2Rij,i = R,j ,
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2Rij,ij = ∆R,

Rij,kl −Rij,lk = RmjRmikl +RimRmjkl,

Rkj,ik =
1

2
R,ij +RikRkj +RklRiklj ,

then we have

4a∆R− 4 · 4a∆R− 4aR2 − 2b∆R− 4b∆R+ b∆R+ b∆R

− 2bR2
ij − 2bR2

ij + 4(aR2 + bR2
ij) = 0

or after simplifying we arrive at

(3a+ b)∆R = 0 .

By the assumptions of the theorem, 3a + b 6= 0. This gives ∆R = 0. Since M4 is
compact, R must be a constant. In this case, from (7) and (6) we have

− 4aRRij − 2b∆Rij + 2b(RinRnj +RklRiklj)

− 2bRimRmj + 2bRklRiklj + (aR2 + bR2
kl)δij = 0 . (8)

If (M4, g) is locally conformally flat, then

Rijkl =
1

2
(Rikδjl −Rilδjk + δikRjl − δilRjk)− 1

6
R(δikδjl − δilδjk) .

Substituting this expression into (8) we have(
4a+

2

3
b
)
REij + 2b∆Eij − 4bEikEkj + bE2

klδij = 0 (9)

where

Eij = Rij −
1

4
Rδij ,

is the traceless part of the Ricci tensor. If b 6= 0, then

∆Eij = 2EikEkj −
1

b

(
2a+

b

3

)
REij −

1

2
E2
klδij . (10)

Comparing the standard result in [7]

∆Eij = 2EikEkj −
1

3
REij −

1

2
E2
klδij

on a locally conformally flat 4-manifold. We have

−1

b

(
2a+

1

3

)
REij = −1

3
REij

or equivalently
(6a− b+ 1)REij = 0 .
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Again by the assumption of the theorem, 6a− b+ 1 6= 0, then

REij = 0 . (11)

So R = 0 or Eij = 0. In the first case, (M4, g) is scalar flat and in the second
case, considering g is also locally conformally flat we see that (M4, g) has constant
sectional curvature. If b = 0, then a 6= 0 by the assumption. From (9) we still
have REij = 0, and the same conclusion remains true. This completes the proof
of theorem 2.

Remark 1.

1. If 3a+ b = 0 and 6a− b+ 1 = 0, then (a, b) = (− 1
9 ,

1
3 ). It can be checked that

R2
ijkl − 4R2

ij +R2 = −6
(
−1

9
R2 +

1

3
R2
ij

)
that is, the integrand of our functional is a multiple of the integrand of the
Gauss-Bonnet formula. In this case, the variation is identically zero.

2. All points (a, b) considered in our functional fall into four regions. It would
be interesting to study further property of the functional.
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On a problem of Bednarek

Florian Luca

Abstract. We answer a question of Bednarek proposed at the 9th Polish,
Slovak and Czech conference in Number Theory.

There are several problems in the literature concerning various arithmetic proper-
ties of the digit sum number function, see e.g. [1] and the references given there. In
this paper, we deal with a particular problem. Namely, at the 9th Polish, Slovak
and Czech Conference on Number Theory, June 11–14, 2012, W. Bednarek (via
A. Schinzel) asked the following question.

Question Is there a positive integer n divisible by 11 . . . 1︸ ︷︷ ︸
k times

whose digit sum is less
than k?

Here, we prove that the answer is no in a slightly more general setting. For integers
N ≥ 1 and b ≥ 2, let N = dmdm−1 . . . d0(b) be the base b representation of N , where

d0, . . . , dm ∈ {0, 1, . . . , b− 1} with dm 6= 0. We have the following result.

Theorem If n ≥ 2 is a multiple of 11 . . . 1︸ ︷︷ ︸
k times

(b), then the sum of its base b digits is
greater than or equal to k.

Proof. We may assume that k ≥ 2, otherwise there is nothing to prove. Write

n =

m∑
i=0

dib
i ,

where d0, . . . , dm are in {0, 1, . . . , b − 1} with dm 6= 0. We may also assume that
d0 6= 0. Put N = (bk − 1)/(b− 1). Then bk ≡ 1 (mod N). Thus,

n ≡
k−1∑
j=0

cjb
j (mod N) ,

where

cj =
∑

0≤i≤m
i≡j (mod k)

di .

2010 MSC: 11A63
Key words: sum of digits
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It is clear that c0 + · · ·+ ck−1 is the sum of the digits of n.
For each ` ∈ {0, 1, . . . , k − 1}, put

rj,` = j + `− k
⌊
j + `

k

⌋
,

and consider the integer

m` =

k−1∑
j=0

cjb
rj,` .

Note that since bk ≡ 1 (mod N), it follows that

m` ≡
k−1∑
j=0

bj+`cj (mod N) ≡ b`n (mod N) ≡ 0 (mod N) ,

and since cj > 0 for some j, we get that m` ≥ N . Summing this up for all
` ∈ {0, 1, . . . , k − 1}, we get

kN ≤
k−1∑
`=0

k−1∑
j=0

brj,`cj =

k−1∑
j=0

cj

k−1∑
`=0

brj,` = N

k−1∑
j=0

cj ,

so
∑k−1
j=0 cj ≥ k, which is what we wanted to prove. �

Note After this paper was submitted, we learned that Bednarek’s question was
also asked by Zhi–Wei Sun in [3], who solved the particular case when the modulus
b is a prime. We also learned that the main result of this paper was obtained
independently by Pan in [2].

Acknowledgements I thank the referee for comments which improved the quality
of this note and Professor A. Schinzel for advice. This work was supported in part
by Project PAPIIT 104512 and a Marcos Moshinsky fellowship.
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On the Diophantine equation x2 + 2α5β17γ = yn

Hemar Godinho, Diego Marques, Alain Togbé

Abstract. In this paper, we find all solutions of the Diophantine equa-
tion x2 + 2α5β17γ = yn in positive integers x, y ≥ 1, α, β, γ, n ≥ 3 with
gcd(x, y) = 1.

1 Introduction
There are many results concerning the generalized Ramanujan-Nagell equation

x2 + C = yn, (1)

where C > 0 is a given integer and x, y, n are positive integer unknowns with
n ≥ 3. Results obtained for general superelliptic equations clearly provide effec-
tive finiteness results for this equation, too (see for example [8], [31], [32] and the
references given there). The first result concerning the above equation was due
to V. A. Lebesgue [23] and it goes back to 1850, where he proved that the above
equation has no solutions for C = 1. More recently, other values of C were consid-
ered. Tengely [33] solved the equation with C = b2, b odd and 3 ≤ b ≤ 501. The
case where C = pk, a power of a prime number, was studied in [5], [21], [20] for
p = 2, in [6], [4], [24] for p = 3, in [1], [2] for p = 5, and in [27] for p = 7. The
case C = p2k with 2 ≤ p < 100 prime and gcd(x, y) = 1 was solved by Bérczes
and Pink [9]. For arbitrary primes, some advances can be found in [7]. In [13],
the cases with 1 ≤ C ≤ 100 were completely solved. The solutions for the cases
C = 2a ·3b, C = 2a ·5b and C = 5a ·13b, when x and y are coprime, can be found in
[3], [25], [26], respectively. Recent progress on the subject were made in the cases
C = 5a · 11b, C = 2a · 11b, C = 2a · 3b · 11c, C = 2a · 5b · 13c and can be found in
[16], [15], [14], [18]. For related results concerning equation (1) see [10], [22], [29],
[30] and the references given there. For a survey concerning equation (1) see [12].

In this paper, we are interested in solving the Diophantine equation

x2 + 2α5β17γ = yn, gcd(x, y) = 1 , x, y ≥ 1 , α, β, γ ≥ 0 , n ≥ 3 . (2)

2010 MSC: Primary 11D61, Secondary 11Y50
Key words: Diophantine equation, exponential equation, primitive divisor theorem
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Our result is the following.

Theorem 1. The equation (2) has no solution except for:

n = 3 the solutions given in Table 1;

n = 4 the solutions given in Table 2;

n = 5 (x, y, α, β, γ) = (401, 11, 1, 3, 0);

n = 6 (x, y, α, β, γ) = (7, 3, 3, 1, 1), (23, 3, 3, 2, 0);

n = 8 (x, y, α, β, γ) = (47, 3, 8, 0, 1), (79, 3, 6, 1, 0) .

One can deduce from the above result the following corollary.

Corollary 1. The equation

x2 + 5k17l = yn, x ≥ 1 , y ≥ 1 , gcd(x, y) = 1 , n ≥ 3 , k ≥ 0 , l ≥ 0 (3)

has only the solutions

(x, y, k, l, n) = (94, 21, 2, 1, 3) , (2034, 161, 3, 2, 3) , (8, 3, 0, 1, 4) .

Therefore, our work extends that of Pink and Rábai [28]. We will follow the
standard approach to work on equation (2) but with another version of MAGMA
(V2.18-6) that gives better results when we deal with the corresponding elliptic
curves.

2 The case n = 3
Lemma 1. When n = 3, all the solutions to equation (2) are given in Table 1.

For n = 6, we have (x, y, α, β, γ) = (7, 3, 3, 1, 1) , (23, 3, 3, 2, 0).

Proof. Equation (2) can be rewritten as( x
z3

)2

+A =
( y
z2

)3

, (4)

where A is sixth-power free and defined implicitly by 2α5β17γ = Az6. One can see
that A = 2α15β117γ1 with α1, β1, γ1, ∈ {0, 1, 2, 3, 4, 5}. We thus get

V 2 = U3 − 2α15β117β1 , (5)

with U = y/z2, V = x/z3 and α1, β1, γ1 ∈ {0, 1, 2, 3, 4, 5}. We need to determine
all the {2, 5, 17}-integral points on the above 216 elliptic curves. Recall that if S is a
finite set of prime numbers, then an S-integer is rational number a/b with coprime
integers a and b, where the prime factors of b are in S. We use the command
SIntegralPoints of MAGMA [17] to determine all the {2, 5, 17}-integer points on the
above elliptic curves. Here are a few remarks about the computations:

1. We eliminate the solutions with UV = 0 because they yield to xy = 0.
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Table 1: Solutions for n = 3 .

α1 β1 γ1 z α β γ x y
1 0 0 1 1 0 0 5 3
1 0 0 2 · 5 7 6 0 383 129
2 0 0 1 2 0 0 11 5
4 0 1 5 4 6 1 5369 321
3 0 2 5 3 6 2 167589 3041
1 1 1 22 13 1 1 93 89
1 1 1 5 1 7 1 1531 171
1 1 1 1 1 1 1 453 59
3 1 1 1 3 1 1 7 9
1 1 2 1 1 1 2 63 19
2 1 2 1 2 1 2 59 21
1 1 3 2 7 1 3 5471 321
1 1 3 5 1 7 3 17052501 66251
3 2 0 1 3 2 0 23 9
3 2 0 2 9 2 0 17771 681
5 2 0 1 5 2 0 261 41
0 2 1 1 0 2 1 94 21
0 2 1 2 6 2 1 55157 1449
3 3 1 2 9 3 1 10763 489
3 3 1 22 15 3 1 4617433 27729
0 3 2 1 0 3 2 2034 161
3 3 5 25 33 3 5 2037783243169 160733121
1 4 0 1 1 4 0 9 11
4 4 1 2 · 5 10 10 1 3274947 22169
5 4 2 2 · 5 11 10 2 699659581 788121
1 5 0 17 1 5 6 916769 9971
1 5 1 17 1 5 7 846227 14859
1 5 1 2 7 5 1 17579 681

2. We consider only solutions such that the numerators of U and V are coprime.

3. If U and V are integers then z = 1. So α1 = α, β1 = β, and γ1 = γ.

4. If U and V are rational numbers which are not integers, then z is determined
by the denominators of U and V . The numerators of these rational numbers
give x and y. Then α, β, γ are computed knowing that 2α5β17γ = Az6.

Therefore, we first determine (U, V, α1, β1, γ1) and then we use the relations

U =
y

z2
, V =

x

z3
, 2α5β17γ = Az6,

to find the solutions (x, y, α, β, γ) listed in Table 1.
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For n = 6, equation
x2 + 2α5β17γ = y6 (6)

becomes equation

x2 + 2α5β17γ =
(
y2
)3
. (7)

We look in the list of solutions of Table 1 and observe that y is a perfect square
only when y = 9 corresponding to two solutions. Therefore, the only solutions to
equation (2) for n = 6 are the two solutions listed in Theorem 1. This completes
the proof of Lemma 1. �

Remark 1. Notice that with the old version of MAGMA, it was difficult to determine
the rational points of certain elliptic curves when 2α5β17γ is very high. That is
the case of the following elliptic curves:

V 2 = U3 − 23 · 55 · 175, V 2 = U3 − 25 · 51 · 174.

We thank the team MAGMA, particularly Steve Donnelly for the new version (Magma
V2.18-6) and their help.

3 The case n = 4
Here, we have the following result.

Lemma 2. If n = 4, then the only solutions to equation (2) are given in Table 2.
If n = 8, then the only solution to equation (2) is (x, y, α, β, γ) = (47, 3, 8, 0, 1),

(79, 3, 6, 1, 0).

Table 2: Solutions for n = 4 .

α1 β1 γ1 z α β γ x y
1 0 0 2 5 0 0 7 3
0 1 0 2 4 1 0 1 3
0 0 1 22 8 0 1 1087 33
0 0 1 1 0 0 1 8 3
0 0 1 22 8 0 1 47 9
1 0 1 2 5 0 1 9 5
3 0 1 2 7 0 1 15 7
3 0 1 22 11 0 1 495 23
2 1 0 2 6 1 0 79 9
2 2 1 2 6 2 1 409 21
3 2 2 2 7 2 2 511 33
1 0 3 22 9 0 3 4785 71

Proof. Equation (2) can be written as( x
z2

)2

+A =
(y
z

)4

, (8)
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where A is fourth-power free and defined implicitly by 2α 5β 17γ = Az4. One can
see that A = 2α1 5β1 17γ1 with α1, β1, γ1 ∈ {0, 1, 2, 3}. Hence, the problem consists
of determining the {2, 5, 17}-integer points on the totality of the 64 elliptic curves

V 2 = U4 − 2α1 5b1 17γ1 , (9)

with U = y/z, V = x/z2 and α1, β1, γ1 ∈ {0, 1, 2, 3}. Here, we use the command
SIntegralQuarticPoints of MAGMA [17] to determine the {2, 5, 17}-integer points on
the above elliptic curves. As in Section 2, we first find (U, V, α1, β1, γ1), and then
using the coprimality conditions on x and y and the definition of U and V , we
determine all the corresponding solutions (x, y, α, β, γ) listed in Table 2.

Looking in the list of solutions of equation Table 2, we observe the 2 solutions
in Table 2 whose values for y are perfect squares. Thus, the only solutions to
equation (2) with n = 8 are those listed in Theorem 1. This concludes the proof
of Lemma 2. �

4 The case n ≥ 5
The aim of this section is to determine all solutions of equation (2), for n ≥ 5
and to prove its unsolubility for n = 7 and n ≥ 9. The cases when n is of the
form 2a3b were treated in previous sections. So, apart from these cases, in order
to prove that (2) has no solution for n ≥ 7, it suffices to consider n prime. In fact,
if (x, y, α, β, γ, n) is a solution for (2) and n = pk, where p ≥ 7 is prime and k > 1,
then (x, yk, α, β, γ, p) is also a solution. So, from now on, n will denote a prime
number.

Lemma 3. The Diophantine equation (2) has no solution with n ≥ 5 prime except
for

n = 5 (x, y, α, β, γ) = (401, 11, 1, 3, 0) .

Proof. Let (x, y, α, β, γ, n) be a solution for (2). We claim that y is odd. In fact,
if y is even and since gcd(x, y) = 1, one has that x is odd, and then −2α5β17γ ≡
x2 − yn ≡ 1 (mod 4), but this contradicts the fact that −2α5β17γ ≡ 0, 2 or 3
(mod 4) (according to α ≥ 2, α = 1 or α = 0, respectively). Now, write equation (2)
as x2 + dz2 = yn, where

d = 2α−2bα/2c5β−2bβ/2c17γ−2bγ/2c ,

and z = 2bα/2c5bβ/2c17bγ/2c. Since x− 2bx/2c ∈ {0, 1}, we have

d ∈ {1, 2, 5, 10, 17, 34, 85, 170} .

We then factor the previous equation over K = Q[i
√
d] = Q[

√
−d] as

(x+ i
√
dz)(x− i

√
dz) = yn.

Now, we claim that the ideals (x + i
√
dz)OK and (x − i

√
dz)OK are coprime.

If this is not the case, there must exist a prime ideal p containing these ideals.
Therefore, x± i

√
dz and yn (and so y) belong to p. Thus 2x ∈ p and hence either 2
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or x belongs to p. Since gcd(2, y) = gcd(x, y) = 1, then 1 belongs to the ideals
〈2, y〉 and 〈x, y〉, then 1 ∈ p leading to an absurdity of p = OK. By the unique
factorization of ideals, it follows that (x + i

√
dz)OK = jn, for some ideal j of OK.

Using Mathematica’s command NumberFieldClassNumber[Sqrt[-d]], we obtain that
the class number of K is either 1, 2, 4 or 12 and so coprime to n, then j is a principal
ideal yielding

x+ i
√
dz = εηn, (10)

for some η ∈ OK and ε a unit of K. Since the group of units of K is a subset
of {±1,±i} and n is odd, then ε is a n-th power. Thus, (10) can be reduced to
x+ i
√
dz = ηn. Since K is an imaginary quadratic field and −d 6≡ 1 (mod 4), then

{1, i
√
d} is an integral basis and we can write η = u + i

√
dv, for some integers u

and v. We then get

ηn − ηn

η − η
=

2bα/2c5bβ/2c17bγ/2c

v
, (11)

where, as usual, w denotes the complex conjugate of w.

Let (Lm)m≥0 be the Lucas sequence given by

Lm =
ηm − ηm

η − η
, for m ≥ 0 .

We recall that the Primitive Divisor Theorem for Lucas sequences ensures for
primes n ≥ 5, that there exists a primitive divisor for Ln, except for the finitely
many (defective) pairs (η, η) given in Table 1 of [11] (a primitive divisor of Ln is

a prime that divides Ln but does not divide (η − η)2
∏n−1
j=1 Lj). And a helpful

property of a primitive divisor p is that p ≡ ±1 (mod n).

For n = 5, we find in Table 1 in [11] that L5 has a primitive divisor except for
(u, d, v) = (1, 10, 1) which leads to a number η = 1+i

√
10 ∈ Q[i

√
10] (d = 10 is one

of the possible values of d described in the beginning of this proof), which gives
the solution with n = 5.

Apart from this case, let p be a primitive divisor of Ln, n ≥ 7. The identity
(11) implies that p ∈ {2, 5, 17} and so p = 17, since p 6≡ ±1 (mod n), for p = 2,5.
Hence, n is a prime dividing 17 ± 1 and so n = 2 or 3 which contradicts the fact
that n ≥ 7. This completes the proof of Theorem 1. �
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[3] F. S. Abu Muriefah, F. Luca, A. Togbé: On the Diophantine equation x2 + 5a · 13b = yn.
Glasgow Math. J. 50 (2006) 175–181.

[4] S. A. Arif, F. S. Abu Muriefah: On a Diophantine equation. Bull. Austral. Math. Soc. 57
(1998) 189–198.

[5] S. A. Arif, F. S. Abu Muriefah: On the Diophantine equation x2 + 2k = yn. Int.
J. Math. Math. Sci. 20 (1997) 299–304.

[6] S. A. Arif, F. S. Abu Muriefah: On the Diophantine equation x2 + 3m = yn. Int.
J. Math. Math. Sci. 21 (1998) 619–620.

[7] S. A. Arif, F. S. Abu Muriefah: On the Diophantine equation x2 + q2k+1 = yn.
J. Number Theory 95 (2002) 95–100.

[8] A. Bérczes, B. Brindza, L. Hajdu: On power values of polynomials. Publ. Math.
Debrecen 53 (1998) 375–381.
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The principle of stationary action in the calculus of

variations

Emanuel López, Alberto Molgado, José A. Vallejo

Abstract. We review some techniques from non-linear analysis in order to
investigate critical paths for the action functional in the calculus of vari-
ations applied to physics. Our main intention in this regard is to expose
precise mathematical conditions for critical paths to be minimum solutions
in a variety of situations of interest in Physics. Our claim is that, with
a few elementary techniques, a systematic analysis (including the domain
for which critical points are genuine minima) of non-trivial models is possi-
ble. We present specific models arising in modern physical theories in order
to make clear the ideas here exposed.

1 Introduction

The calculus of variations is one of the oldest techniques of differential calculus.
Ever since its creation by Johann and Jakob Bernoulli in 1696–97, to solve the prob-
lem of the brachistochrone (others solved it, too: Newton, Leibniz, Tschirnhaus and
L’Hôpital, but their methods were different), it has been applied to a variety of
problems both in pure and applied mathematics. While occupying a central place
in modern engineering techniques (mainly in control theory, see [9], [41], [50], [68],
[78]), it is in physics where its use has been promoted to the highest level, that of the
basic principle to obtain the equations of motion, both in the dynamics of particles
and fields: the principle of stationary action (see [5], [10], [35], [59]). Accordingly
to that point of view, almost every text on mechanics include a chapter on the
calculus of variations although, surprisingly enough, the treatment in these texts
is expeditious and superficial, directly oriented towards the obtention of Euler-
Lagrange’s equations, leaving aside the question of whether the solutions are true
minima or maxima, despite the importance of this distinction (for instance, while

2010 MSC: 49K15, 49S05, 34K11
Key words: Stationary action, Functional extrema, conjugate points, oscillatory solutions,

Lane-Emden equations
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in fields such as optics one is interested in the minimal optical length, in stochas-

tic dynamics one seeks to maximize the path entropy [74]. On the other hand,

while the principle of stationary action just selects critical paths, experimentally

an actual minimum is detected in some systems, see [27]).

It is interesting to note that the principle was once called the principle of least

action, although it was soon realized that many physical phenomena does not

follow a trajectory that realizes a minimum of the action, but just a critical path

(the main example is the harmonic oscillator, whose trajectory in phase space only

minimizes the action for a time interval of length which depends on its frequency,

see Sec. V of [37], which we recommend to get details about the physical meaning

of the action integral and its extremals). In view of these phenomena, and because

the emphasis was on the equations of motion, the elucidation of the true nature of

the critical paths of the action functional was omitted, and the interest focused on

the stationary property. However, some recent papers have made a “call to action”

(the pun is not ours, see [36], [37], [54], [69]), renewing the interest in their extremal

properties, not only their character of paths rendering the action stationary.

Our aim in this paper is twofold: on the one hand, to offer a concise, yet

rigorous and self-contained, overview of some elementary techniques of non-linear

analysis to investigate the extremals of an action functional. On the other hand,

we intend to show several non trivial examples of physical interest illustrating the

use of these techniques. We have avoided the well-known cases, so our examples

go beyond oscillators and central potentials, and are taken from modern theories,

ranging from astrophysics (Lane-Emden equations) to relativistic particles with

energy dissipation. Each one of these examples has been chosen to illustrate some

particular feature. Thus, example 6.1 shows a Lagrangian for a dissipative system;

in example 6.2.3, as a bonus of the theory developed, we explicitly compute the

solution (and its zeros) of an equation of the form y′′ + q(x)2y = 0 with q(x)

rational; example 6.6 contains a justification of the use of Lagrange multipliers in

the maximum entropy principle, etc.

We also differ from previous works, such as [36] or [37], in the flavour of the

treatment: we feel that discussions trying to explain some plain analytic effects in

physical terms are too lengthy, and sometimes add confusion instead of enlight-

enment when it comes to explicit computations. Thus, we center our exposition

around the analytic definition and properties of the Gâteaux derivatives of func-

tionals defined by integration (Lagrange functionals) and the techniques for the

study of the behaviour of solutions of differential equations such as convexity or

the comparison theorems of the Sturmian theory. This will be particularly patent

in Section 5, where we show that the main result in [37] is a direct consequence of

well-known properties of the zeros of the Jacobi equation (see Proposition 4 and

comments).

We offer short proofs for those results that seem to be not common in the

physics literature. The bibliography, although by no means complete, is somewhat

lengthy as a result of our efforts to make it useful.
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2 Calculus of variations
In this section we will briefly describe some basic concepts in the calculus of varia-
tions in order to set up our notation and conventions, and also in order to introduce
the Jacobi equation and conjugate points as explicit criteria for a given extremal
solution to be a minimum. We will start by discussing Gâteaux derivatives and
extrema of functionals. For general references on the topics of functional analysis
and calculus of variations, see [16], [19], [28], [30], [63], [65], [72], [73], [79]. Note
that we deal with the local aspects of the theory, exclusively. There are several
approaches to the global setting, some of these were developed in [26], [32], [62];
more modern versions are developed in [48]. For detailed accounts of the theory
involved in the global analysis, see [29] and [47].

2.1 Gâteaux derivatives

Let (E, ‖·‖) be a Banach space, D ⊆ E an open subset of E and y0 ∈ D. Given
a functional J : D → R, if v ∈ E is a non zero vector and |t| small enough, y0 + tv
will lie in D so the following definition makes sense.

Definition 1. Whenever it exists, the limit

δJ(y0, v) := lim
t→0

J(y0 + tv)− J(y0)

t

is called the Gâteaux derivative (or first variation) of J at y0 in the direction v ∈ E.
This defines a mapping δJ(y0, ·) : E → R. If this mapping is linear and continuous,
we denote it by J ′(y0) and say that J is Gâteaux differentiable at y0. Thus, under
these conditions, δJ(y0, v) = J ′(y0)(v). Another common notation is δJ(y0, v) =
δy0J(v).
The y0 ∈ D such that J ′(y0) = 0 are called critical points of the functional J .

The extension to higher-order derivatives is immediate. If, for a fixed v ∈ E,
δJ(z, v) exists for every z ∈ D, we have a mapping D : → R and we can compute
its Gâteaux derivative. Given an y0 ∈ D and z, v ∈ E, the second Gâteaux
derivative (or second variation) of J at y0 in the directions v and z (in that order)
is

δ2J(y0, v, z) := lim
t→0

δJy0+tz(v)− δy0J(v)

t
.

If δ2J(y0, v, z) exists for any z, v ∈ E, and (v, z) 7→ δ2J(y0, v, z) is bilinear and
continuous, we say that J is twice Gâteaux differentiable at y0 ∈ D, and write
J ′′(y0) for this mapping. With these notations, we will write

δ2
y0J(v) = δ2J(y0, v) := δ2J(y0, v, v) .

Remark 1. For fixed y0 ∈ D and v ∈ E, if we consider the function j(y0,v) : R→ R
by j(y0,v)(t) = J(y0 +tv), it is obvious that it is defined in some open neighborhood
of 0, ]−ε, ε[, and the higher-order variations of J are given by

δnJ(y0, v) = j
(n)
(y0,v)(0) .
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We will be interested in a particular class of functionals. To introduce it, we
first need a technical observation: given an open subset U ⊂ R3, the set

DU = {y ∈ C1([a, b]) : ∀x ∈ [a, b] , (x, y(x), y′(x)) ∈ U}

(the prime denotes derivation, although we will also make free use of the physi-
cist’s dot notation for derivatives) is evidently contained in the Banach space(
C1([a, b]), ‖·‖

)
, endowed with the norm

‖y‖ = ‖y‖0 + ‖y′‖0 ,

where ‖·‖0 is the supremum norm. Moreover, DU ⊂ C1([a, b]) is an open subset.
This follows from the fact that for a given y0 ∈ DU the set {x, y0(x), y′0(x) : x ∈
[a, b]} is compact, so it has an open neighborhood contained in U .

Definition 2. A function L ∈ C2(U) is called a Lagrangian. To every Lagrangian
it corresponds a functional J : DU → R, called its action, defined by

J(y) =

∫ b

a

L
(
x, y(x), y′(x)

)
dx .

Proposition 1. For any U ⊂ R3, the action J is Gâteaux differentiable on DU .

Proof. Let y ∈ DU . Taking into account the remark 1, note that for any t ∈ ]−ε, ε[
(applying Leibniz’s theorem of derivation under the integral):

j′(y,v)(t) =

∫ b

a

d

dt

(
L
(
s, y(s) + tv(s), y′(s) + tv′(s)

))
ds .

Evaluating the derivative at t = 0, we get

δJ(y, v) =

∫ b

a

(
v(s)D2L

(
s, y(s), y′(s)

)
+ v′(s)D3L

(
s, y(s), y′(s)

))
ds . (1)

Note that δJ(y, v) is linear in v. Moreover,

∣∣δJ(y, v)
∣∣ ≤ ‖v‖ ∫ b

a

(∣∣D2L
(
s, y(s), y′(s)

)∣∣+
∣∣D3L

(
s, y(s), y′(s)

)∣∣) ds ,

where the integral exists (because the DiL, i ∈ {1, 2}, are continuous on U and
y, y′ on [a, b]) and it is a number depending only on y, thus constant for fixed y.
Then, δJ(y, v) is also continuous in v. �

2.2 Local extrema of functionals

Definition 3. Let J : D → R be a functional and let y0 ∈ D. We will say that J
has a local maximum (local minimum, respectively) in y0 if for all y ∈ G, where
G ⊂ D is a convex neighborhood of the point y0, it follows that

J(y0) ≥ J(y)

(J(y0) ≤ J(y), respectively).
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Theorem 1. Let J : D → R be a functional and y0 ∈ D. Then:

1. (Necessary condition) If J has a local extremal and the variation δJ(y0, v)
exists for some v ∈ E, then δJ(y0, v) = 0. Thus, if J is Gâteaux differentiable
at y0, J ′(y0) = 0.

2. (Sufficient condition for a minimum) The functional J has a local minimum
at y0 whenever the following hold:

(a) For each v ∈ E, δJ(y0, v) = 0.

(b) (Coercivity) For any y in a convex neighborhood of y0, the second vari-
ation δ2J(y, v) exists for each v ∈ E. Moreover, there exists a c > 0
such that

δ2J(y0, v) ≥ c‖v‖2,

for all v ∈ E.

(c) (Weak continuity) Given ε > 0, there exists an η > 0 such that∣∣δ2J(y, v)− δ2J(y0, v)
∣∣ ≤ ε‖v‖2,

for any v ∈ E and y satisfying ‖y − y0‖ < η.

Proof.

1. Consider j(y0,v)(t) = J(y0 +tv), so if J has a local extremal at y0, j(y0,v) has a
local extremum at t = 0. Then, it must be (recall remark 1) 0 = j′(y0,v)(0) =

δJ(y0, v).

2. Suppose each of (2a), (2b), (2c) holds. As before, we have j′(y0,v)(t) = δJ(y0+

tv, v) and j′′(y0,v)(t) = δ2J(y0+tv, v). The hypothesis on the second derivatives

of J allows us to develop j(y0,v)(t) by Taylor in the interval [0, 1], and there
exists a ξ ∈ ]0, 1[ such that

J(y0 + v)− J(y0) = j(y0,v)(1)− j(y0,v)(0) =
1

2
j′′(y0,v)(ξ) .

As j′′(y0,v)(ξ) = δ2J(y0 + ξv, v), we have the following bound:

J(y0 + v)− J(y0) =
1

2
δ2J(y0, v) +

1

2

(
δ2J(y0 + ξv, v)− 1

2
δ2J(y0, v)

)
≥ 1

2
c‖v‖2 +

1

2

(
δ2J(y0 + ξv, v)− 1

2
δ2J(y0, v)

)
Taking ε = c/4 in (2c), there exists an η > 0 such that∣∣δ2J(y, v)− δ2J(y0, v)

∣∣ ≤ c

4
‖v‖2,

for ‖y−y0‖ < η. Choosing now ‖v‖ < cη/2, it is ‖y0 +ξv−y0‖ ≤ ‖v‖ < cη/2,
so ∣∣δ2J(y0 + ξv, v)− δ2J(y0, v)

∣∣ ≤ c

4
‖v‖2.
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Substituting:

J(y0 + v)− J(y0) ≥ 1

2
c‖v‖2 − 1

4
c‖v‖2 =

1

4
c‖v‖2 > 0 ,

so J has a local minimum.
�

Remark 2. Writing c < 0 and reversing the inequality for δ2J(y0, v) in (2b), we
get sufficient conditions for a local maximum.

Remark 3. Note that condition (2a) alone does not guarantee the existence of a
local minimum, see counter-examples in [56], §2.10.

It is interesting to particularize the condition δJ(y0, v) = 0 to the case of an
action functional. For this, we need a couple of technical results whose proof is
straightforward, but anyway can be found in any of the references cited at the
beginning of this section. We will denote

Ck0 ([a, b]) = {f ∈ Ck([a, b]) : f(a) = 0 = f(b)} .

Lemma 1 (Lagrange). Let f ∈ C([a, b]) be a continuous real-valued function over
the interval [a, b] such that ∫ b

a

f(x)µ(x) dx = 0

for all µ ∈ C0([a, b]). Then it follows f ≡ 0.

Lemma 2 (DuBois-Reymond). Let f ∈ C([a, b]) and g ∈ C1([a, b]) such that∫ b

a

(
f(x)µ(x) + g(x)µ′(x)

)
dx = 0

for all µ ∈ C1
0([a, b]). Then it follows g′ = −f .

Now, a simple integration by parts in (1), and the application of Lemmas 1, 2 and
Theorem 1, leads directly to the following result.

Theorem 2 (Euler-Lagrange). If y ∈ D is an extremal (maximum or minimum)
for the action functional J : D → R given as in Definition 2, then y must satisfy
the Euler-Lagrange equations

D2L
(
x, y(x), y′(x)

)
− d

dx
D3L

(
x, y(x), y′(x)

)
= 0 . (2)

Remark 4. In physics literature, it is common to commit a slight abuse of notation
and to write the Euler-Lagrange equations in the form

∂

∂y
L
(
x, y(x), y′(x)

)
− d

dx

∂

∂y′
L
(
x, y(x), y′(x)

)
= 0 .
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Note that, for the case at hand, writing L
(
s, y(s) + tv(s), y′(s) + tv′(s)

)
= L(s) for

simplicity:

j′′(y,v)(t) =

∫ b

a

(
v2(s)D22L(s) + 2v(s)v′(s)D23L(s) + (v′)2(s)D33L(s)

)
ds ,

so, evaluating at t = 0,

δ2J(y, v) =

∫ b

a

(
v2(s)D22L

(
s, y(s), y′(s)

)
+ 2v(s)v′(s)D23L

(
s, y(s), y′(s)

)
+ (v′)2(s)D33L

(
s, y(s), y′(s)

))
ds .

(3)

It is now a routine computation (continuity arguments and Schwarz inequality) to

prove that for an action functional J(y) =
∫ b
a
L(x, y, y′) dx with L ∈ C2(U) such

that its second partial derivatives are bounded on U , under the hypothesis (2a)
and (2b) of Theorem 1, the condition (2c) is satisfied ([30], pg. 224). Thus, a path
y0 ∈ D is a minimum if it satisfies Euler-Lagrange’s equations (2) and the second
Gâteaux differential at y0 is coercive, that is, there exists a c > 0 such that, for all
v ∈ E:

δ2J(y0, v) ≥ c‖v‖2. (4)

2.3 Problems with constraints

The calculus of variation is frequently applied when there are constraints. The
problem can be reduced to that of extremizing a single functional constructed out
from the original one and the constraints.

Definition 4. Let J be a functional defined on a Banach space (X, ‖·‖). We say
that δJ is weakly continuous at y ∈ X if:

(a) The domain of J contains an open neighborhood D 3 y, and, for each h ∈ X,
the variation δJ(y, h) is defined.

(b) lim
z→y

δJ(z, h) = δJ(y, h).

If there exists an r > 0 such that δJ is weakly continuous for every z ∈ B(y; r), we
say that δJ is locally weakly continuous at y, or simply weakly continuous near y.

When we have an open subset U = ]a, b[×R×R ⊂ R3 and an action functional

J : DU → R, J(y) =
∫ b
a
L(x, y, y′) dx, it is easy to see that imposing some mild

conditions on the Lagrangian L ∈ C2(U) we obtain a weakly continuous functional.
For instance, it is enough to require that the second partial derivatives of L be
bounded on U , or that its first partial derivatives be uniformly continuous. For
most of the actions appearing in physics, however, it is usually easier to prove the
weak continuity directly from the definition (cfr. Example 6.6).

Let now J =: K0,K1, . . . ,Kr be functionals defined on D, all of them Gâteaux
differentiables at each point y ∈ D. We will assume that the set

S = {y ∈ D : Ki(y) = ki, 1 ≤ i ≤ r}
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is not empty, and that y0 is an interior point of S such that J |S has a local extremal
at y0.

Proposition 2. Let δKj be weakly continuous near y0, 0 ≤ j ≤ r. Then, for any
h =: h0, h1, . . . , hr ∈ X we have:

det(δKj(y0, hm)) = 0, 0 ≤ j,m ≤ r .

Proof. By reduction to the absurd. Let us assume that there exist h, h1, . . . , hr
such that the determinant is non zero. As y0 has an open neighborhood D, there
exist a set of scalars α, β1, . . . , βr such that y0 + αh + β1h1 + · · · + βrhr ∈ D,
and the variations δJ, δK1, . . . , δKr are continuous at y0 +αh+ β1h1 + · · ·+ βrhr.
Let us define the function F : Rr+1 → Rr+1, on a neighborhood G of the origin
(0, . . . , 0) ∈ Rr+1, by

Fp+1(α, β1, . . . , βr) = Kp(y0 + αh+ β1h1 + · · ·+ βrhr) ,

for 0 ≤ p ≤ r (remember K0 = J and h0 = h). It is immediate that

Dq+1Fp+1(α, β1, . . . , βr) = δKp(y0 + αh+ β1h1 + · · ·+ βrhr, hq) ,

for 0 ≤ q ≤ r. Now, as δJ, δK1, . . . , δKr are continuous near y0, by shrinking G if
necessary we can assume F ∈ C1(G), with Jacobian at the origin:

det(δKj(y0, hm)) 6= 0, 0 ≤ j,m ≤ r

by hypothesis. Applying to F the inverse function theorem in the neighborhood
of the origin, we get that there exists an open subset V ⊂ Rr+1, containing
F (0, . . . , 0) =

(
J(y0), k1, . . . , kr

)
, and a local diffeomorphism ϕ : V → G such

that G̃ = ϕ(V ) ⊂ G is an open neighborhood of the origin in Rr+1, and for
all (x, y1, . . . , yr) ∈ V :

(x, y1, . . . , yr) = F
(
ϕ(x, y1, . . . , yr)

)
.

In particular, ϕ
(
J(y0), k1, . . . , kr

)
= (0, 0, . . . , 0). As

(
J(y0), k1, . . . , kr

)
is a point

of the open set V ⊂ Rr+1, we can find in V two different points (x1, k1, . . . , kr) and
(x2, k1, . . . , kr) such that x1 < J(y0) < x2. Their corresponding images by ϕ are
(α1, β1

1 , . . . , β
1
r ) = ϕ(x1, k1, . . . , kr) and (α2, β2

1 , . . . , β
2
r ) = ϕ(x2, k1, . . . , kr). Thus,

the vectors u = y0 +α1h+β1
1h1 + · · ·+β1

rhr and v = y0 +α2h+β2
1h1 + · · ·+β2

rhr
belong to D. Moreover,

F (α1, β1
1 , . . . , β

1
r ) = (x1, k1, . . . , kr) ,

F (α2, β2
1 , . . . , β

2
r ) = (x2, k1, . . . , kr) ,

so, equating components:

J(u) = K0(u) = F0(α1, β1
1 , . . . , β

1
r ) = x1 ,

Kp(u) = Fp(u) = Fp(α
1, β1

1 , . . . , β
1
r ) = kp ,
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for 1 ≤ p ≤ r, and

J(v) = K0(v) = F0(α2, β2
1 , . . . , β

2
r ) = x2 ,

Kp(v) = Fp(v) = Fp(α
2, β2

1 , . . . , β
2
r ) = kp ,

so u, v ∈ S too. But, because of our choices, J(u) = x1 < J(y0) < x2 = J(v),
and this construction can be repeated for x1, x2 arbitrarily close to J(y0), so (by
the continuity of ϕ) the corresponding vectors u, v will be arbitrarily close to y0,
contradicting the assumption that y0 is a local extremal of J |S . �

Theorem 3. Let δKj be weakly continuous near y0. Then, either

det(δKi(y0, hl)) = 0, 1 ≤ i, l ≤ r ,

or there exist a set of real numbers (the Lagrange multipliers) λ1, . . . , λr such that

δJ(y0, h) =

m∑
i=1

λiδKi(y0, h) .

Proof. By Proposition 2, det(δKj(y0, hj)) = 0, 0 ≤ j ≤ r; developing by the first
column (where K0 = J and h0 = h), we get

δJ(y0, h) det(δKi(y0, hl)) +

m∑
i=1

µiδKi(y0, h) = 0 , (5)

for some set of scalars µ1, . . . , µr (which depend on the vectors (h1, . . . , hr)).
Then, either

det
(
δKi(y0, hl)

)
= 0, 1 ≤ i, l ≤ r ,

or there exist some set of vectors v1, . . . , vr ∈ X such that det(δKi(y0, vl)) 6= 0. In
this case, substituting in (5), we obtain

δJ(y0, h) =

m∑
i=1

λiδKi(y0, h) ,

where

λi = − µi

det
(
δKi(y0, hl)

) .
�

3 Conjugate points

Let us rewrite the conditions for a minimum of the action J , found in the pre-
vious section, in terms of a differential equation involving the derivatives of the
Lagrangian L.
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Proposition 3. Let the action J be given as in Definition 2, and let y0 ∈ D. Then,
the second variation of J at y0, in the direction of a v ∈ C1

0([a, b]), δ2J(y0, v), reads

δ2J(y0, v) =
1

2

∫ b

a

(
Pv′ 2 +Qv2

)
dx , (6)

where the functions P (x) and Q(x) are explicitly given by

P (x) = D33L
(
x, y(x), y′(x)

)
(7)

Q(x) = D22L
(
x, y(x), y′(x)

)
− d

dx
D23L

(
x, y(x), y′(x)

)
(8)

Proof. Just make an integration by parts in the middle term of the integrand in (3),
taking into account the boundary conditions on v ∈ C1

0([a, b]). �

Remark 5. The notation used in physics is:

P =
∂2L

∂(y′)2
,

Q =
∂2L

∂y2
− d

dx

(
∂2L

∂y∂y′

)
.

Lagrange considered equation (6) already in 1786. He thought that a sufficient
condition to have a minimum would be the positivity of the second variation
δ2J(y0, v) > 0 (which is not true: coercivity is needed), so he tried to “com-
plete the square” in (6) by introducing a boundary term of the form gv2/2, where
g ∈ C([a, b]) is to be determined. In this way, we have

δ2J(y0, v) =

∫ b

a

(
P (v′)2 +Qv2

)
dx+

∫ b

a

d

dx
(gv2) dx

=

∫ b

a

(
P (v′)2 + 2gvv′ + (g′ +Q)v2

)
dx

=

∫ b

a

P
(
v′ +

g

P
v
)2

dx+

∫ b

a

(
g′ +Q− g2

P

)
v2 dx .

(9)

Thus, it is straightforward that δ2J(y0, v) will be positive definite if the following
conditions are satisfied

P = D33L(x, y(x), y′(x)) > 0 , (10)

g′ +Q− g2

P
= 0 has a solution g . (11)

Condition (10) is known as the Legendre condition. Also, note that equation (11)
is of Riccati type. This equation is basic to determine the extremality properties
of critical points of the action.
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Definition 5. Let J be an action functional, and let f ∈ C([a, b]). The differential
equation for f

− d

dx

(
P

df

dx

)
+Qf = 0 , (12)

where P and Q are given in (7) and (8), respectively, is called the Jacobi equation.

Notice that Jacobi equation is simply obtained by introducing the change of variable
g = −Pd(ln f)/dx in equation (11), which renders it linear. Once we solve the
equation for f , we get g and then we can assure that, if P > 0, then δ2J(y0, v) > 0.
Although we know that this is not enough to guarantee a minimum (recall Remark
3), the properties of the solutions to the Jacobi equation (12) will lead us to an
equivalent condition for a minimum of the action, given in terms of quantities
determined by the Lagrangian.

Definition 6. Two points p, q ∈ R (with p < q) are called conjugate with respect
to the Jacobi equation (12) if there is a solution f ∈ C2([a, b]) of (12) such that
f |]p,q[ 6= 0 and f(p) = 0 = f(q).

The following result is just a particular case of K. Friedrichs’ inequalities for the
one-dimensional case (see [1]). Its proof can also be done directly, as an application
of the Schwarz inequality.

Lemma 3. For any v ∈ C1
0([a, b]), we have∫ b

a

v2(x)dx ≤ (b− a)2

2

∫ b

a

(v′)2(x) dx

Theorem 4. Let J(y) be an action functional as in Definition 2. Sufficient condi-
tions for a critical point y0 of J(y) to be a local minimum in the interval [a, b] are
given by

(a) For all x ∈ [a, b]
P (x) = D33L(x, y(x), y′(x)) > 0 .

(b) The interval [a, b] does not contain conjugate points at x = a with respect to
Jacobi equation (12).

Proof. Recall from (9) the expression

δ2J(y0, v) =

∫ b

a

(
P (v′)2 + 2gvv′ + (g′ +Q)v2

)
dx .

Because of the assumptions made on the continuity of the derivatives of L and the
compactness of [a, b], we can choose a number σ such that 0 ≤ σ < min[a,b]{P (x)}.
Inserting σP (v′)2−σP (v′)2 in the equation above, and repeating the computation
in (9) gives

δ2J(y0, v) =

∫ b

a

(P − σ)
(
v′ +

g

P − σ

)2

dx

+

∫ b

a

(
g′ +Q− g2

P − σ

)
v2 dx+ σ

∫ b

a

(v′)2 dx .

(13)
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As P (x) > 0 and we have chosen σ such that P (x)−σ > 0 on [a, b], the first integral
is positive, as it is the third one. In order to cancel out the second integral, we
must take a g ∈ C1([a, b]) such that

g′ +Q− g2

P − σ
= 0 .

Introducing a function f ∈ C2([a, b]) through

g = −f
′

f
(P − σ) , (14)

we arrive at the equation for f :

− d

dx

(
(P − σ)

df

dx

)
+Qf = 0 . (15)

By the theorem on the dependence on parameters of the solutions to a second order
differential equation, the general solution of (15) can be written as f(x, σ), with
f(x, 0) = f(x). Note that, by hypothesis, f(x, 0) does not admit points conjugate
to a in [a, b], so (by continuity), neither does f(x, σ) for σ > 0 but close enough
to 0. If f̃(x) = f(x, σ) is such a solution, by substituting the corresponding g̃ of
equation (14) into (13), we get:

δ2J(y0, v) =

∫ b

a

(P − σ)
(
v′ +

g̃

P − σ

)2

dx+ σ

∫ b

a

(v′)2 dx

≥ σ
∫ b

a

(v′)2 dx .

Now, applying Lemma 3,

δ2J(y0, v) ≥ σ

1 + (b−a)2

2

‖v‖2 := c‖v‖2 .

The statement follows then from Theorem 1 (see also the comments at the end of
Subsection 2.2). �

Remark 6. We can obtain a criterion for a local maximum just by considering the
condition P (x) = D33L

(
x, y(x), y′(x)

)
< 0 and repeating the computations in the

theorem with the inequalities reversed.

Remark 7. In order to apply the criterion of conjugate points in practice, it is
desirable to have at our disposal some tools for explicitly computing solutions of the
Jacobi equation (12). An old (but useful) method ([56] pp. 56–57, [24] pp. 42–43)
is the following: the general solution of Euler-Lagrange’s equations (which are
second order) has the form y = y(x;α, β), where α, β are constants of integration
(on which the y dependence is differentiable, under some mild conditions. In the
examples this will be obvious). Then, D2y(x;α, β) ≡ ∂y

∂α and D3y(x;α, β) ≡ ∂y
∂β



The principle of stationary action in the calculus of variations 101

are two independent solutions of the Jacobi equation1. We will use this method in
Example 6.2.3.

4 Convex functionals
In this section we will discuss the particular case of convex Lagrangians. We will
start by recalling that a subset S ⊂ Rn is said to be convex if for all p, q ∈ S the
interval [p, q] lies entirely inside of S. This is equivalent to say that

[p, q] := {p+ t(q − p) = tq + (1− t)p : 0 ≤ t ≤ 1} ⊂ S . (16)

Definition 7. A function f : S ⊂ R2 defined over a convex set, is said to be convex
if

f([p, q]) ≤ [f(p), f(q)]

or, equivalently, for all t ∈ [0, 1]:

f
(
p+ t(q − p)

)
≤ f(p) + t

(
f(q)− f(p)

)
. (17)

Let f : S → R be a convex differentiable function. For any t ∈ [0, 1], p, q ∈ S
we have (17), and, on the other hand, by the intermediate value theorem, there
exists a wt ∈ [p, p+ t(q − p)] such that

f
(
p+ t(q − p)

)
= f(p) + tdwtf(q − p) , (18)

where dwtf denotes the differential of f at wt. From (17) and (18) we get f(p) +
tdwtf(q − p) ≤ tf(q) + (1− t)f(p), that is:

f(p) + dwtf(q − p) ≤ f(q) .

Taking the limit t→ 0 implies wt → p, so:

f(p) + dpf(q − p) ≤ f(q) . (19)

Remark 8. There exist well-known criteria (in terms of the Hessian matrix) to
decide whether a function f : S → R is convex or not, see for instance [73] Sec. 10.7.
We will apply one such criterion in Example 6.2.1.

As a straightforward application of these results, we have the following theorem,
stating that the critical points of an action with a convex Lagrangian are always
minimals.

Theorem 5. Consider a set U = [a, b]× S ⊂ R3, such that for each fixed x ∈ [a, b]
the set Sx = {(x, u, v) ∈ U} ⊂ R2 is convex. Suppose that for any x ∈ [a, b],
the Lagrangian function L(x, ·, ·) : Sx → R is convex. Then, any critical path
y0 = y0(x) is a minimal solution, among the paths with the same endpoints, for

the corresponding action functional J(y) =
∫ b
a
L
(
x, y(x), y′(x)

)
dx.

1The proof is extremely simple: just take derivatives with respect to, say, α in Euler-Lagrange’s
equations (applying the chain rule) and collect terms, taking into account that

d

dx

(
∂2L

∂y∂y′
∂y

∂α

)
=

d

dx

(
∂2L

∂y∂y′

)
∂y

∂α
+

∂2L

∂y∂y′
∂y′

∂α
.
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Proof. The hypothesis of convexity implies, by (19),

L(x, u2, v2) ≥ L(x, u1, v1) + d(x,u1,v1)L((u2, v2)− (u1, v1)) (20)

= L(x, u1, v1) +D1L(x, u1, v1)(u2 − u1) +D2L(x, u1, v1)(v2 − v1) .

Now we compute the action on a critical path, y0(x), and an arbitrary nearby one
y(x), with the same endpoints (y0(a) = y(a) and y0(b) = y(b)), and compare them.
From (20):

J(y)− J(y0) =

∫ b

a

(
L
(
x, y(x), y′(x)

)
− L

(
x, y0(x), y′0(x)

))
dx

≥
∫ b

a

(
D1L(x, y0, y

′
0)(y − y0) +D2L(x, y0, y

′
0)(y′ − y′0)

)
dx . (21)

The second term in the last integrand can be –as usual– integrated by parts, we
then get:

J(y)− J(y0) ≥
∫ b

a

(
D1L(x, y0, y

′
0)− d

dx
D2L(x, y0, y

′
0)
)

(y − y0) dx .

But, by hypothesis, y0(x) is a critical path; equivalently, for each x ∈ [a, b] it
satisfies the Euler-Lagrange equations (2), and this implies J(y) ≥ J(y0). �

Remark 9. Reversing the inequalities, we obtain the corresponding result for con-
cave functionals.

5 Sturmian Theory
Sturmian theory is concerned with the analysis of the zeros that a solution of a
linear second order differential equation, of the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0, (22)

(with p(x), q(x) piecewise continuous) has in a given interval of the independent
variable. This theory is an invaluable tool to check the properties of critical points,
as we will see in the examples of the next section.
The results stated here without proof are well-known (see [2], [64]). We write them
just for easy reference.
As it is well-known, the differential equation (22) may be written, through the
change of variable v = y exp( 1

2

∫
p dx), in its normal form

d2v

dx2
+ r(x)v = 0 , (23)

where r(x) = q(x) − 1
4p

2(x) − 1
2p
′(x), which clearly preserves the zeros of the

solutions to (22) if
∫ x

p(s) ds is finite for finite x. The first observation is that the
zeros of such an equation cannot accumulate.
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Proposition 4. Let y(x) be a non trivial solution of (22) or (23). Then, its zeros
are simple and the set they form does not have accumulation points. Thus, on each
closed interval [a, b], y(x) only possess a finite number of zeros.

Proof. If x0 were a double zero, y(x0) = 0 = y′(x0), so y(x) would be the trivial
solution by uniqueness.
If x0 were an accumulation point for the zeros of y(x), there would be a sequence of
zeros (xn) such that xn → x0. By Rolle’s theorem, there is a zero of the derivative
between any two consecutive zeros of the function, so there would be a sequence
(um) of zeros of y′(x) such that um → x0. Then, by continuity of both y and y′,
we would have y(x0) = 0 = y′(x0), which, as we have just seen, is impossible. �

As a corollary, the zeros of a non trivial solution of (22) or (23) are: either a finite
set, or a sequence diverging to +∞, or a sequence diverging to −∞, or a sequence
diverging to ±∞.
This applies in particular to the Jacobi equation (12). Thus, if we have a solution
f(x) on the interval [a, b] such that f(a) = 0, its first zero after x = a must be
located at a point c > a. In other words: there exists a c > a such that there are no
conjugate points in the interval [a, c]. A direct consequence of this fact is that for

a short enough interval, critical points of the action J(y) =
∫ b
a
L(x, y, y′) dx such

that P (x) = D33L(x, y, y′) > 0, are local minimizers.
Some authors state, erroneously, that for any Lagrangian the critical points are
local minimizers. The origin of the confusion can be traced back to the fact that
this is true for natural Lagrangians2, in particular it is true for free Lagrangians
(V = 0), for which the trajectories are geodesics. However, not every system of
interest in Physics is natural. Of all the examples presented in this note, only
Example 6.5 is natural; and in Example 6.6 we present a case for which the critical
points are maximizers.

Definition 8. If every solution y of (22) or (23) has arbitrarily large (in absolute
value) zeros, then the equation (and all its solutions) are called oscillatory. Other-
wise, the equation and all of its solutions are called non-oscillatory.

Theorem 6. Let be y1(x) and y2(x) denote two linear independent solutions of
equation (23). Then, the zeros of both functions are distinct and alternating in
the sense that y1(x) has a zero between any two consecutive zeros of y2(x), and
vice-versa.

Theorem 7. If r(x) ≤ 0 on [a, b], then no non-trivial solution of (23) can have two
zeros on [a, b].

Theorem 8 (Sturm’s Comparison Theorem). Let y1(x) and y2(x) be non-trivial
solutions to the differential equation (23) with r1(x) and r2(x), respectively. If
r1 > r2 in a certain interval [a, b], then y1(x) has at least a zero between two
consecutive zeros of y2(x), unless y1 = y2 on [a, b].

2That is, those of the form L(y, y′) = K(y′) − V (y) where K is a positive-definite quadratic
form associated to some metric (usually K(y′) = (y′)2/2, that is, the metric is the euclidean one)
and V is some C1 function. Note that in this case P ≥ 0.
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6 Examples
In this section we will develop some physically motivated examples in order to
elucidate the ideas analysed so far. In each case, the regularity conditions on the
Lagrangian are trivially satisfied. Unless otherwise explicitly stated, we will work
on the space X = C1([a, b]). Also, in some examples we will follow the notation
common in physics, taking t as the independent variable and x, ẋ = dx/dt as the
dependent ones.

6.1 Driven harmonic oscillator

As it is well known, the differential equation for a driven damped harmonic oscil-
lator under a sinusoidal external force is given by [33], [39], [44], [70], [71]:

ẍ+ βẋ+ ω2
0x = sin(ωt) . (24)

Its solutions are well-known. They have the form

x(t) =
1

ωZ
sin(ωt+ ϕ) , (25)

where Z =
√
β2 + 1

ω2 (ω2
0 − ω2) is the impedance and ϕ = arctan

(
βω

ω2
0−ω2

)
is the

phase.
The corresponding Lagrangian function is:

L(t, x, ẋ) =
1

2
eβt
(
ẋ2 − β sin(ωt)− ω cos(ωt)

ω2 + β2
ẋ− ω2

0x
2
)
.

Here we follow the standard conventions and denote ω0 ∈ R as the natural oscil-
lation frequency, β ∈ R+ is the damping parameter, and ω ∈ R stands for the
frequency of the driving force. For this Lagrangian, we straightforwardly note that
the functions P = eβt > 0 and Q = −ω2

0eβt, given by (7) and (8), respectively, lead
to the Jacobi equation

d2f

dt2
+ β

df

dt
+ ω2

0f = 0 (26)

which is the damped harmonic oscillation equation for the function f . Note that
this equation is damped by the same amount as the driven equation (24).
This is a second-order linear equation of constant coefficients, so it can be analyt-
ically solved and we get the general solution (for the underdamped3 case β < ω0)
in the form

f(t) = e−
β t
2

(
k1 sin

(√
4ω2

0 − β2 t

2

)
+ k2 cos

(√
4ω2

0 − β2 t

2

))
,

where k1, k2 are constants of integration. The solution verifying f(0) = 0 can be
written as

f(t) = C
2√

4ω2
0 − β2

e−
β t
2 sin

(√
4ω2

0 − β2 t

2

)
,

3The other cases (critical damping and overdamping) are treated similarly.
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from which we clearly see that its zeros are located at the values t = 2kπ√
4ω2

0−β2
, for

k ∈ Z. The first zero after t = 0 is located at t = 2π√
4ω2

0−β2
, so the solution (25) is

a minimum on the interval [0, 2π√
4ω2

0−β2
[. When β = 0 this interval becomes [0, πω0

[,

which is the particular case of the harmonic oscillator (see [37], pg. 446).

6.2 Lane-Emden Equations

The Lane-Emden second-order differential equation was originally proposed by
Lane [49], and studied in detail by Emden [17] and Fowler [21], [20], [22], [23],
in order to understand equilibrium configurations of spherical clouds of gas (self-
gravitating polytropic gas spheres) [7], [13], [15]. Lane-Emden equations also ap-
pears in several other contexts such as viscous fluid dynamics, radiation, con-
densed matter, relativistic mechanics, and even for systems under chemical reac-
tions (see [31], [77], and references therein for an account of its applications; for
a mathematical treatment of their zeros, see [14]). The Lane-Emden equation is
characterized by a non-linear term yn(x), where the non-negative parameter n ∈ Z
(the polytropic index, in its original context) defines the nature of the second-order
differential equation

1

x2

d

dx

(
x2 dy

dx

)
+ yn = 0 , (27)

which may be obtained from the associated Lagrangian

L(x, y, y′) = x2

(
y′ 2

2
− yn+1

n+ 1

)
, (28)

in the sense that its Euler-Lagrange equations reduce to (27). For this Lagrangian,
the functions (7) and (8) are given by P = x2 and Q = −nx2yn−1, respectively.
As in the preceding example, the function P is always positive definite on any
interval of the form ]0, b], b ∈ R. We also note that the function Q depends on the
parameter n. In this way, we obtain the Jacobi equation (12)

1

x2

d

dx

(
x2 df

dx

)
+ nyn−1f = 0 . (29)

As the most frequent analytical solutions to the Lane-Emden equation are those
corresponding to the values n = 0, 1, 5, [77] (but see [31] for other cases), we will
focus next on solution of both, Euler-Lagrange and Jacobi equations, for these
cases.

6.2.1 n = 0

Consider any interval [0, b]. For this case, the general solution y(x) of Euler-
-Lagrange’s equation (27) reads

y(x) = −x
2

6
+
k2

x
+ k1 ,
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where k1, k2 are arbitrary integration constants. Note that this function is singular
at the origin. The physical origin of the problem demands that the solution verify
y(0) = 1, y′(0) = 0, so we must take k2 = 0, k1 = 1. The solution is then

y(x) = −x
2

6
+ 1 .

In this very simple case, it is not necessary to deal with the Jacobi equation, as
the corresponding Lagrangian

L(x, y, y′) = x2

(
y′2

2
− y
)
,

determines, for each x ∈ [a, b] fixed, a function L(x, ·, ·) which is convex on the
convex set R× R, as it has a semi-definite Hessian: for any u, v ∈ R,

det HessL(x, u, v) = 0

D22L(x, u, v) = 0

D33L(x, u, v) = x2 ≥ 0 .

Thus, the solution is minimal on ]0, b], for any b > 0.

6.2.2 n = 1

The general solution the Lane-Emden equation (27) is given by

y(x) = k1
sin(x)

x
+ k2

cos(x)

x
(30)

where k1, k2 are constants. Again, the physical meaning of the problem imposes
the condition that the solutions be defined at x = 0 (where it must be y(0) = 1),
so we must take k1 = 1, k2 = 0, getting the sinc function

y(x) =
sin(x)

x
. (31)

As the functions P = x2, Q = −x2 in this case, Jacobi equation (29) results again a
Lane-Emden equation with n = 1 for the function f(x). Hence, for n = 1 solutions
of the Jacobi equation and the Lane-Emden equation are of an identical nature.
Thus, in view of (30), the solutions of the Jacobi equation defined for x = 0 are
those of the form f(x) = C sinc(x). They have zeros located at the points x = kπ,
k ∈ Z − {1}. So, on any interval of the form ](k − 1)π, kπ[, k ∈ Z − {0, 1}, the
solutions (31) are minimal. A minimum is also obtained on ]−π, 0[ and ]0, π[.

6.2.3 n = 5

Analogously, in this case, the general solution to (27) reads (see [13], [42]4):

y(x;α, β) =

√
α

(αx)2

β + β
3

. (32)

4Although in these references only a 1-parameter family of solutions is given, it is easy to trace
back the missing parameter α from the calculations presented there (it is fixed at certain point
to make the output of an integral more manageable).
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We further note that if we impose the boundary conditions y(0) = 1 and y′(0) = 0
(which set α = 1, β = 3) our solution becomes the common one

y(x; 1, 3) =

√
3√

3 + x2
. (33)

We will work on this simplified solution. For this case, the function Q = −5x2y4,
thus yielding the Jacobi equation

d2f

dx2
+

2

x

df

dx
+

45

(3 + x2)2
f = 0 , (34)

which may be simplified to its normal form (23) by the change f(x) = u(x)/x:

d2u

dx2
+

45

(3 + x2)2
u = 0 . (35)

Let us apply the method outlined in Remark 7. The derivative of the general
solution with respect to the parameter α, evaluated at the values that give the
solution we are considering, is

D2L(x; 1, 3) = −
√

3
(
x2 − 3

)
2 (x2 + 3)

3
2

.

It is immediate to check that this is indeed a solution of Jacobi’s equation (34).
The derivative with respect to β gives nothing new (a multiple of D2L(x; 1, 3)). By
making the change of variables stated above, we get:

u(x) = −
√

3x
(
x2 − 3

)
2 (x2 + 3)

3
2

.

Note that u(0) = 0. The first (and only) zero of u(x) after x = 0 is given by
x =

√
3. Thus, the solution to the Lane-Emden equation for n = 5 (33), is a

minimum for x ∈ [0,
√

3[.

6.3 Quantum gravity in one dimension

In modern physics, spin foams models have been introduced in order to analyse
certain generalizations of path integrals appearing in gauge theories. In particu-
lar, in quantum gravity the spin foam approach has been developed as a tool to
understand dynamical issues of the theory by the introduction of discretizations
describing the metric properties of spacetime [3]. To some extent, spin foams for
quantum gravity were motivated by a particular discretization of general relativ-
ity known as Regge calculus [76]. In this context, a discrete model for a scalar
field representing gravity in one temporal dimension has been studied in detail
in [38]. Here we present the continuum analogue of this model. The general action
functional is:

J(y) =
1

2

∫ √
g(x)

(
g−1(x)y′(x)2 + ωy2(x)

)
dx ,
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where g : R → R is a positive function which acts as the metric on R, and will be
taken in what follows as g(x) = exp(x), for simplicity. Thus our model Lagrangian
will be

L(x, y, y′) =
1

2
exp(x/2)

(
exp(−x)(y′)2 + ωy2

)
.

The Euler-Lagrange equations readily follow:

ω exp(x/2)y +
1

2
exp(−x/2)y′ − exp(−x/2)y′′ = 0 ,

or, as exp(−x/2) > 0,

y′′ − 1

2
y′ − ωexy = 0 . (36)

By making the change of variable u = exp(x/2), we can put (36) in the form

u2

(
1

4

dy

du
− ωy(u)

)
= 0 ,

which, as u = exp(x/2) > 0, reduces to

dy

du
− 4ωy(u) = 0 .

This equation is integrated by elementary techniques; its solutions are:

y(u) = k1 exp(2
√
ωu) + k2 exp(−2

√
ωu) ,

(with k1, k2 constants of integration) or, in the original variable x:

y(x) = k1 exp(2
√
ω exp(x/2)) + k2 exp

(
−2
√
ω exp(x/2)

)
. (37)

The coefficients of the Jacobi equation are P = exp(−x/2) > 0 andQ = ω exp(x/2),
so the Jacobi equation is (after simplifying an exp(x/2) > 0 factor):

d2f

dx2
− 1

2

df

dx
− ωexf = 0 ,

which has the same form as the Euler-Lagrange equation (36) (a phenomenon
already encountered in the case of the Lane-Emden equation for n = 1, recall
Example 6.2.2). Thus, the general solution to the Jacobi equation is

f(x) = c1 exp
(
2
√
ω exp(x/2)

)
+ c2 exp

(
−2
√
ω exp(x/2)

)
,

with c1, c2 constants of integration which can be fixed by the initial conditions
f(0) = 0, f ′(0) = 1, giving

c1 =
e−2
√
ω

2
√
ω
, c2 = −e

2
√
ω

2
√
ω
.
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Substituting in the expression for f(x) above, the solution to the Jacobi equation
can be written as

f(x) =
1

2
√
ω

(
exp
(
(ex/2 − 1)2

√
ω
)
− exp

(
−(ex/2 − 1)2

√
ω
))

=
1√
ω

sinh(2
√
ω(ex/2 − 1)) ,

which clearly shows that there are no conjugate points to x = 0. The solutions
(37) are thus minimals on their interval of definition.

6.4 Square root Hamiltonian with a dissipation term

Square-root Hamiltonians (or Lagrangians) are a standard feature of many repa-
rametrization invariant field theories [11], [57]. The action of a relativistic parti-
cle [18], [25], [51], and the action of the Nambu string are familiar examples [4],
[81]. Further examples of physical theories where this sort of Hamiltonians appear
include general relativity [25], [53], as well as certain approaches to quantum grav-
ity [12], [53], and also, they appear in brane motivated models [4], [61]. Aspects on
the quantization of these kind of Hamiltonian theories may be found in [6] and [57],
to mention some. In this section, we will study the Hamiltonian for a free particle
under relativistic motion with a linear dissipation term, as proposed in [34]. This
Hamiltonian reads

H(p, x, t) := eγt
√

1 + p2e−2γt , (38)

where p stands for the canonical momentum associated to the dependent variable
x = x(t), and γ is the dissipation term. As discussed in [34], in the low velocity
regime, this Hamiltonian reduces to the Caldirola-Kanai Hamiltonian which de-
scribes the motion of a non-relativistic particle with a linear dissipation term [60].
The Lagrangian associated to (38) is given by

L(t, x, ẋ) = −eγt
√

1− (ẋ)2 , (39)

and thus the solution to Euler-Lagrange equation

d

dt

(
eγtẋ√

1− (ẋ)2

)
= 0 (40)

is given by

x(t) = −A0 arcsinh (e−γ t |A0|)
γ |A0|

, (41)

where A0 is an integration constant. The functions (7) and (8) are P = eγt/(1 −
(ẋ)2)3/2 and Q = 0, respectively, and thus the Jacobi equation yields

d

dt

(
eγt

(1− (ẋ)2)3/2

df

dt

)
= 0 . (42)
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In this last equation, the term ẋmust be understood as the time-depending function
ẋ(t) = A0e−γt/

√
1 +A2

0e−2γt. Therefore, for this model we are able to explicitly
find the solution to Jacobi equation (42)

f(t) = c0 −
c1
γ

e−γt√
1 +A2

0e−2γt
, (43)

being c0 and c1 integration constants. We then note that this solution has a unique
zero at the value t = (1/γ) log

(√
c21 −A2

0γ
2c20/γc0

)
, so there are no conjugate points

for the function f(t), and the solution (41) is a minimum for the action on any
interval [0, b], b ∈ R.

6.5 Quartic potential model

In this section we will develop a model inspired by the static kink of the well-known
φ4 model in quantum field theory [45], [58]. The model can be resolved both on
classical and quantum grounds, and contains soliton solutions (see below). In the
context of brane theories, the so-called kink model also appears by the inclusion
of rigidity terms associated to the intrinsic curvature in their effective actions [55],
[80].
The Lagrangian for our model is

L(t, x, ẋ) =
1

2
(ẋ)2 +

λ

4

(
x2 − m2

λ

)2

, (44)

where m and λ > 0 are arbitrary real constants. The Euler-Lagrange equation
associated to this Lagrangian reads

ẍ− λx
(
x2 − m2

λ

)
= 0 . (45)

This equation is of Lénard type: ẍ + f(x)ẋ + g(x) = 0, where f ≡ 0 and g(x) =

−λx
(
x2 − m2

λ

)
. The change of variables u(x) = ẋ converts it in the first-order

equation uu′ = λx
(
x2 − m2

λ

)
, which is immediately integrated to give∫

dx√
λx4 − 2m2x2 − 2b

=
1√
2

∫
dt =

t− a√
2
, (46)

where a, b ∈ R are integration constants. The solutions commonly found in the

literature (cited above) are obtained by taking b = −m
4

2λ , so to get a perfect square
in the radicand of (46). In this way, the resulting solutions are:

y(t) = ± m√
λ

tanh

(
m(t− a)√

2

)
.

The solution with the plus sign is commonly termed the kink solution, while the one
with the minus sign is called the anti-kink solution. Both solutions are bounded by
the values±m/

√
λ. In particular, the energy density of the kink solution goes as the

fourth power of the hyperbolic secant, and is localised within a width characterised
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by the quantity l/m [58]. However, other solutions exist. For instance, we could
as well take b = 0 in (46) to get (through an obvious change of variable):

t− a√
2

=

∫
dx√

λx4 − 2m2x2
=

1

m
√

2

∫
dη

η
√
η2 − 1

=
1

m
√

2
arcsin η ,

and hence the solution to the Euler-Lagrange equation (45):

x(t) = m

√
2

λ
sec
(
m(t− a)

)
. (47)

In order to get the Jacobi equation (12), we consider the functions P = 1 > 0 and
Q = 3λx2 −m2, which set the equation for the function f(t):

d2f

dt2
+m2

(
1− 6 sec2

(
m(t− a)

))
f = 0 . (48)

We can take a = 0 and m = 1 without loss of generality (these are just re-scalings).
Then, the Jacobi equation has the form f̈ + φ(t)f = 0, where φ(t) = 1− sec2 t ≤ 0
in the interval ]−π/2, π/2[. At the points t = ±π/2, the solutions have a blow-up
and are not defined (so they can not be extended beyond these points). Thus,
the solutions to the Jacobi equation are defined on ]−π/2, π/2[, do not possess
conjugate points in this interval (see Theorem 7) and the solution (48) is a true
minimum on ]−π/2, π/2[.

6.6 Probability density and maximal entropy

In this section we implement a constrained Lagrangian system related to a prob-
ability density function [67]. In Bayesian probability theory and in statistical me-
chanics, this system is related to the principle of maximum entropy [43], which also
appears in other branches of physics, and in chemistry and biology [8], [46], [52],
[74]. The model is defined as follows. Let Z be a random variable, and let ρ(x) its
associated density function, so ρ : R→ ]0,+∞[. Suppose that we know the second
order momentum

σ2 =

∫
R
x2ρ(x) dx , (49)

and that we want to obtain the least biased density function ρ(x). This may be
written as the problem of finding the maximals for the entropy functional (defined
in terms of the information theory):

S(ρ) = −
∫
R
ρ(x) log ρ(x) dx , (50)

and subject to the constraints ∫
R
ρ(x) dx = 1 , (51)∫

R
x2ρ(x) dx = σ2. (52)
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Notice that the Lagrangian here, is defined on U = R× ]0,+∞[× R, although its
dependence on the first and third variables is trivial.
Thus, we have the three functionals (in the notation of subsection 2.3)

S(ρ) = −
∫
R
ρ(x) log ρ(x) dx ,

K1(ρ) =

∫
R
ρ(x) dx ,

K2(ρ) =

∫
R
x2ρ(x) dx .

It is immediate to compute the variations:

δS(ρ, h) = −
∫
R
h(x)(1 + log ρ(x)) dx ,

δK1(ρ, h) =

∫
R
h(x) dx ,

δK2(ρ, h) =

∫
R
x2h(x) dx ,

so it is obvious that they are weakly continuous. Let us apply the theorem 3 on
Lagrange multipliers. The case det(δKi(y, hl)) = 0 (1 ≤ i, l ≤ 2), would lead to

det

( ∫
R h1(x) dx

∫
R h2(x) dx∫

R x
2h1(x) dx

∫
R x

2h2(x) dx

)
= 0

for arbitrary h1, h2 ∈ X, or:∫
R x

2h1(x) dx∫
R h1(x)

=

∫
R x

2h2(x) dx∫
R h2(x)

,

which is absurd. Thus, we can introduce two Lagrange multipliers λ1, λ2 and
consider the Lagrangian

L(x, ρ, ρ′) = −ρ(x) log ρ(x) + λ1ρ(x) + λ2x
2ρ(x) .

The Euler-Lagrange equation yields

− log ρ(x)− 1 + λ1 + λ2x
2 = 0

with solution ρ(x) = e−1+λ1+λ2x
2

. Substitution of this solution into the con-
straints (51) and (52) implies that the Lagrange multipliers are equal to λ1 =
1 + log 1√

2πσ
and λ2 = −1/(2σ2), respectively. Thus, the solution of the Euler-

-Lagrange equation reads

ρ(x) = (
√

2π σ)−1 exp
(
−x2/(2σ2)

)
. (53)

Finally, we see that the original Lagrangian L0(x, ρ, ρ′) = −ρ(x) log ρ(x), can actu-
ally be seen as a real function of a single variable on ]0,+∞[, for which the second
derivative L′′0(ρ) = −1/ρ is always negative. Therefore, L0 is concave and, due to
Theorem 5 and Remark 9, the solution obtained is a (global) maximal in ]0,+∞[.
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Remark 10. A posteriori, we see that the solution we have found, (53), belongs
to C1(R). However, this is not obvious a priori. Indeed, the method of Lagrange
multipliers is not the best one to deal with the problem involving higher order
moments, precisely because the eventual solution may lie outside the space from
which we start, see [40].
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Project CB-2012 179115 (JAV).

References

[1] R. A. Adams: Sobolev spaces. Academic Press (1978).

[2] R. P. Agarwal, D. O’Regan: An introduction to ordinary differential equations. Springer
Verlag (2008).

[3] J. C. Baez: Spin foam models. Class. Quant. Grav. 15 (1998) 1827–1858.

[4] L. M. Baker, D. B. Fairlie: Hamilton-Jacobi equations and Brane associated Lagrangians.
Nucl. Phys. B 596 (2001) 348–364.

[5] J. L. Basdevant: Variational principles in Physics. Springer (2010).

[6] V. Berezin: Square-root quantization: application to quantum black holes. Nucl. Phys.
Proc. Suppl. 57 (1997) 181–183.

[7] J. Binney, S. Tremain: Galactic dynamics. Princeton University Press (1994).

[8] B. Buck, V. A. Macaulay (eds): Maximum Entropy in Action: A Collection of
Expository Essays. Oxford University Press (1991).

[9] D. N. Burghes, A. Graham: Introduction to Control Theory, Including Optimal Control.
Wiley (1980).

[10] A. Carlini, V. P. Frolov, M. B. Mensky, I. D. Novikov, H. H. Soleng: Time machines: the
Principle of Self-Consistency as a consequence of the Principle of Minimal Action. Int.
J. Mod. Phys. D 4 (1995) 557–580.

[11] A. Carlini, J. Greensite: Square Root Actions, Metric Signature, and the Path-Integral
of Quantum Gravity. Phys. Rev. D 52 (1995) 6947–6964.

[12] S. Carlip: (2 + 1)-Dimensional Chern-Simons Gravity as a Dirac Square Root. Phys.
Rev. D 45 (1992) 3584–3590. Erratum-ibid D47 (1993) 1729

[13] S. Chandrasekhar: An Introduction to the Study of Stellar Structure. Dover
publications (1967).

[14] C. V. Coffman, J. S. V. Wong: Oscillation and nonoscillation of solutions of generalized
Emden-Fowler equations. Transactions of the AMS 167 (1972) 399–434.

[15] G. W. Collins: The fundamentals of stellar astrophysics. Freeman (1989).

[16] R. F. Curtain, A. J. Pritchard: Functional analysis in modern applied mathematics.
Academic Press (1977).

[17] R. Emden: Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie
und meteorologische Probleme. B. G. Teubner (1907).

[18] P. P. Fiziev: Relativistic Hamiltonian with square root in the path integral formalism.
Theor. Math. Phys. 62 (1985) 123–130.
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E-mail: emanuellc a©uaslp.edu.mx, molgado a©fc.uaslp.mx, jvallejo a©fc.uaslp.mx

Received: 8 October, 2012
Accepted for publication: 29 October, 2012
Communicated by: Olga Rossi



Communications in Mathematics 20 (2012) 117–136
Copyright c© 2012 The University of Ostrava 117

Associative and Lie deformations of Poisson algebras

Elisabeth Remm

Abstract. Considering a Poisson algebra as a nonassociative algebra satisfy-
ing the Markl-Remm identity, we study deformations of Poisson algebras as
deformations of this nonassociative algebra. We give a natural interpreta-
tion of deformations which preserve the underlying associative structure and
of deformations which preserve the underlying Lie algebra and we compare
the associated cohomologies with the Poisson cohomology parametrizing
the general deformations of Poisson algebras.

1 Introduction
The Poisson bracket is a multiplication which naturally appears when studying de-
formations of associative commutative algebras. For instance the algebra C∞(R2)
with its ordinary multiplication µ = µ0 admits a formal deformation

∑∞
0 tnµn

such that the skew-symmetric bracket {a, b} = µ1(a, b) − µ1(b, a) is the classical
Poisson bracket (recalled in Section 2). This deformation is connected to the star
product and then to the theory of deformation quantization (see Section 1 of [10]).
This naturally leads to study deformations of Poisson algebras. But a Poisson
algebra is usually defined by two multiplications, an associative commutative one
a ∗ b and a Lie bracket {a, b} (also called Poisson bracket) which are linked by the
Leibniz rule {a ∗ b, c} = a ∗ {b, c}+ {a, c} ∗ b. The deformations of Poisson algebras
which are classically considered consist of those deforming the Lie bracket while the
associative product remains unchanged. The first studied Poisson algebras were
defined on associative algebras of functions whose product is undeformable. This
explains why this type of deformations, that we call Lie deformations of Poisson
algebras, were first studied. They are parametrized by the Poisson-Lichnerowicz
cohomology. Here we want to give a general approach of deformations of Poisson
algebras, that is, we make deformations where both products are deformed. We
then use the presentation of Poisson algebras in [13] with a single nonassociative
multiplication which capture all informations. Then we find the Lie deformations

2010 MSC: 17B63, 17Dxx, 53Dxx
Key words: Poisson algebras, Deformations, Operads, Cohomology
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as a particular case of deformations of this single multiplication but also the asso-
ciative deformations obtained by deforming the associative product and letting the
Lie bracket unchanged. We call Poisson-Hochschild the cohomology parametrizing
the associative deformations (see Section 4.2). We then describe the Poisson coho-
mology parametrizing the general deformations of Poisson algebras and study the
interactions between Poisson, Poisson-Lichnerovicz and Poisson-Hochschild coho-
mologies.

2 Generalities on Poisson algebras
2.1 Definition

Let K be a field of characteristic 0. A K-Poisson algebra is a K-vector space P
equipped with two bilinear products denoted by x∗y and {x, y}, with the following
properties:

1. The couple (P, ∗) is an associative commutative K-algebra.

2. The couple (P, {·, ·}) is a K-Lie algebra.

3. The products ∗ and {·, ·} satisfy the Leibniz rule:

{x ∗ y, z} = x ∗ {y, z}+ {x, z} ∗ y

for any x, y, z ∈ P.

The product {·, ·} is usually called Poisson bracket and the Leibniz identity means
that the Poisson bracket acts as a derivation of the associative product.

Classical examples: Poisson structures on the polynomial algebra. The polynomial
algebra An = C[x1, . . . , xn] is provided with several Poisson algebra structures.
These examples are well studied, see, for example, [2], [8], [20] for results on clas-
sifications, or [16] for the study of the Poisson-Lichnerowicz cohomology.

2.2 Non standard example: Poisson algebras defined by a contact structure

The first Poisson structures appeared in classical mechanics. In 1809 Siméon Denis
Poisson introduced a bracket in the algebra of smooth functions on R2r:

{f, g} =

r∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
.

This classical example has a natural generalization in symplectic geometry ([3]):
Let (M2p, θ) be a symplectic manifold. For any Pfaffian form α on M2p, we will
denote by Xα the vector field defined by α = i(Xα)θ, where i(X) is the interior
product by X: (i(X)θ)(Y ) = θ(X,Y ). The Poisson bracket of two Pfaffian forms
α, β on M2p is the Pfaffian form {α, β} = i([Xα, Xβ ])θ. If D(M2p) denotes the
associative commutative algebra of smooth functions on M2p, we provide it with
a Poisson algebra structure letting {f, g} = −θ(Xdf , Xdg). This Poisson bracket
satisfies d({f, g}) = {df, dg}.

We can also define a Poisson bracket in contact geometry ([5]). Let (M2p+1, α)
be a contact manifold, that is, α is a Pfaffian form on the (2p + 1)-dimensional
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differential manifold M2p+1 satisfying (α ∧ (dα)p)(x) 6= 0 for any x ∈ M2p+1.
There exists one and only one vector field Zα on M2p+1, called the Reeb vector
field of α, such that α(Zα) = 1 and i(Zα)dα = 0 at any point of M2p+1. Let
Dα(M2p+1) be the set of first integrals of Zα, that is,

Dα(M2p+1) = {f ∈ D(M2p+1), Zα(f) = 0} .

Since we have Zα(f) = i(Zα)df = 0, then df is invariant by Zα.

Lemma 1. Dα(M2p+1) is a commutative associative subalgebra of D(M2p+1).

Proof. This is a consequence of the classical formulae

Zα(f + g) = Zα(f) + Zα(g) and Zα(fg) =
(
Zα(f)

)
g + f

(
Zα(g)

)
.

�

Lemma 2. For any non zero Pfaffian form β on M2p+1 satisfying β(Zα) = 0, there
exists a vector field Xβ with β(Y ) = dα(Xβ , Y ) for any vector field Y . Two vector
fields Xβ and X ′β with this property satisfy i(Xβ −X ′β)dα = 0.

This means that Xβ is uniquely defined up to a vector field belonging to the
distribution given by the characteristic space of dα,

A(dα)x = {Xx ∈ TxM2p+1, i(Xx)dα(x) = 0} .

In any Darboux open set, the contact form writes as α = x1dx2 + · · ·+x2p−1dx2p+
dx2p+1. The Reeb vector field is Zα = ∂/∂x2p+1 and the form β satisfying β(Zα) =

0 writes as β =
∑2p
i=1 βidxi. Then we have

Xβ =

p∑
i=1

(β2i∂/∂x2i−1 − β2i−1∂/∂x2i) .

For any f ∈ Dα(M2p+1), we writes Xf for Xdf .

Theorem 1. The algebra Dα(M2p+1) is a Poisson algebra.

Proof. (see [5]). Let f1, f2 be in Dα(M2p+1). Since we have

dα(Xf1 , Xf2) = dα(Xf1 + U1, Xf2 + U2)

for any U1, U2 ∈ A(dα), the bracket

{f1, f2} = dα(Xf1 , Xf2)

is well defined. It is a Poisson bracket. �
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2.3 Poisson algebra viewed as nonassociative algebra

In [13], we prove that any Poisson structure on a K-vector space is also given by a
nonassociative product denoted by xy and satisfying the nonassociative identity

3A(x, y, z) = (xz)y + (yz)x− (yx)z − (zx)y , (1)

where A(x, y, z) is the associator A(x, y, z) = (xy)z−x(yz). In fact, if P is a Poisson
algebra with associative product x ∗ y and Poisson bracket {x, y}, then xy is given
by xy = {x, y}+x∗y. Conversely, the Poisson bracket and the associative product
of P are the skew-symmetric part and the symmetric part of the product xy. Thus
it is equivalent to present a Poisson algebra classically or by this nonassociative
product.

If P is a Poisson algebra given by the nonassociative product (1), we denote by
gP the Lie algebra on the same vector space P whose Lie bracket is {x, y} = xy−yx

2
and by AP the commutative associative algebra, on the same vector space, whose
product is x ∗ y = xy+yx

2 .
In [7], we have studied algebraic properties of the nonassociative algebra P.

In particular we have proved that this algebra is flexible, power-associative, and
admits a Pierce decomposition.

Remark 1. A class of Poisson algebras is already defined with a single noncommu-
tative multiplication but starting with a Jordan algebra. In [19], a noncommutative
Jordan algebra is viewed as a Jordan commutative algebra J with an additional
skew-symmetric operator [·, ·] : J × J → J such that

[x2, y] = 2[x, y] · x .

This definition is equivalent to consider only one multiplication satisfying

(xy)x− x(yx) = (x2y)x− x2(yx).

A particular class of such algebras for which A(+) is associative corresponds to
Poisson algebras.

2.4 Classification of complex Poisson algebras of dimension 2 and 3

If e is an idempotent of the associative algebra, then the Leibniz rule implies that
it is in the center of the Lie algebra corresponding to the Poisson bracket. In fact
if e satisfies e ∗ e = e, thus {e ∗ e, x} = 2e ∗ {e, x} = {e, x}. But if y is a non zero
vector with e ∗ y = λy, then

(e ∗ e) ∗ y = e ∗ y = λy = e ∗ (e ∗ y) = λ2y.

This gives λ2 = λ, that is, λ = 0 or 1. Since we have e ∗ {e, x} = 2−1{e, x}, the
vector {e, x} is zero for any x and e is in the center of the Lie algebra corresponding
to the Poisson bracket. This remark simplifies the determination of all possible
Poisson brackets when the associative product is fixed. In the following, we give
the associative and Lie products in a fixed basis {ei} and the null products or
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the products which are deduced by commutativity or skew-symmetry are often not
written.

Dimension 2

algebra associative product Lie product

P2
1 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

e2 ∗ e2 = e2

P2
2 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

P2
3 e1 ∗ e1 = e2 {ei, ej} = 0

P2
4 e1 ∗ e1 = e1 {ei, ej} = 0

P2
5 ei ∗ ej = 0 {e1, e2} = e2

P2
6 ei ∗ ej = 0 {ei, ej} = 0

Dimension 3

P3
1 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e2 ∗ e2 = e2

e3 ∗ e3 = e3

P3
2 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e2 ∗ e2 = e2

e3 ∗ e3 = e2 − e1

P3
3 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e2 ∗ e2 = e2

P3
4 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

e3 ∗ e3 = e2

P3
5 e1 ∗ ei = ei , i = 1, 2, 3 {e2, e3} = e3

P3
6 e1 ∗ ei = ei , i = 1, 2, 3 {ei, ej} = 0

P3
7 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

e2 ∗ e2 = e2

P3
8 e1 ∗ e1 = e1 {e2, e3} = e3

P3
9 e1 ∗ e1 = e1 {ei, ei} = 0

P3
10 e1 ∗ ei = ei , i = 1, 2 {ei, ej} = 0

P3
11 e1 ∗ e1 = e1 {ei, ej} = 0

e2 ∗ e2 = e3

P3
12(b) e1 ∗ e1 = e2 {e1, e3} = e2 + be3

P3
13 e1 ∗ e1 = e2 {e1, e3} = e3

P3
14 e1 ∗ e1 = e2 {ei, ej} = 0

P3
15 e1 ∗ e1 = e2 {ei, ej} = 0

e1 ∗ e2 = e3

P3
16(a) ei ∗ ej = 0 any Lie algebra
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It is also possible to establish this classification in small dimension starting from
the nonassociative product. We can use, for example, technics used in [4] where
we classify all the complex 2-dimensional algebras (and in particular the Poisson
algebras).

3 Deformations of Poisson algebras
In this section we recall briefly the classical notion of formal deformations of a
K-algebra. These deformations are parametrized by a cohomology, called deforma-
tion cohomology, which is often difficult to define globally and to compute explicitly.
But using the operadic approach, we can sometimes obtain this cohomology using
the associated operad: when the operad is Koszul, which is the case for the op-
erad associated to Poisson algebras. When the operad is non Koszul the operadic
and deformation cohomologies differ and the last one is even more complicated
to describe see [14]. Using the Markl-Remm definition of a Poisson algebra, we
describe the formal deformations. So in this section, we mean by Poisson algebra
a K-algebra defined by a nonassociative product satisfying Identity (1).

3.1 Formal deformations of a Poisson algebra

Let R be a complete local augmented ring such that the augmentation ε takes
values in K. If B is an R-Poisson algebra, we consider the K-Poisson algebra
B = K ⊗R B given by α(β ⊗ b) = αβ ⊗ b, with α, β ∈ K and b ∈ B. It is clear
that B satisfies (1). An R-deformation of a K-Poisson algebra A is an R-Poisson
algebra B with a K-algebra homomorphism

% : B → A .

A formal deformation of A is an R-deformation with R = K[[t]], the local ring
of formal series on K. We assume also that B is an R-free module isomorphic to
R⊗A.

Let K[Σ3] be the K-group algebra of the symmetric group Σ3. We denote by
τij the transposition exchanging i and j and by c the cycle (1, 2, 3). Every σ ∈ Σ3

defines a natural action on any K-vector space W by:

Φσ : W⊗
3 −→ W⊗

3

x1 ⊗ x2 ⊗ x3 −→ xσ(1) ⊗ xσ(2) ⊗ xσ(3).

We extend this action of Σ3 to an action of the algebra K[Σ3]. If v = Σiaiσi ∈
K[Σ3], then

Φv = ΣiaiΦσi .

Consider vP the vector of K[Σ3]

vP = 3Id− τ23 + τ12 − c+ c2.

Let P be a Poisson algebra and µ0 its (nonassociative) multiplication. Identity (1)
writes as

(µ0 ◦1 µ0) ◦ ΦvP − 3(µ0 ◦2 µ0) = 0
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where ◦1 and ◦2 are the compi operations given by

(µ ◦1 µ′)(x, y, z) = µ(µ′(x, y), z) ,

(µ ◦2 µ′)(x, y, z) = µ(x, µ′(y, z))

for any bilinear maps µ and µ′.

Theorem 2. A formal deformation B of the K-Poisson algebra A is given by a
family of linear maps

{µi : A⊗A→ A, i ∈ N}
satisfying

(i) µ0 is the multiplication of A,

(ii) (Dk):
∑

i+j=k,
i,j≥0

(µi ◦1 µj) ◦ ΦvP = 3
∑

i+j=k,
i,j≥0

µi ◦2 µj for each k ≥ 1.

Proof. The multiplication in B is determined by its restriction to A⊗A ([1]). We
expand µ(x, y) for x, y in A into the power series

µ(x, y) = µ0(x, y) + tµ1(x, y) + t2µ2(x, y) + · · ·+ tnµn(x, y) + · · ·

then µ is a Poisson product if and only if the family {µi} satisfies condition (Dk)
for each k. �

Remark 2. As R is a complete ring, this formal expansion is convergent. It is also
the case if R is a valued local ring (see [6]).

Let K = C or an algebraically closed field. If {e1, . . . , en} is a fixed basis of Kn,
we denote by Pn the set of all Poisson algebra structures on Kn, that is, the
set of structure constants {Γkij} given by µ(ei, ej) =

∑n
k=1 Γkijek. Relation (1) is

equivalent to

n∑
l=1

(
3ΓlijΓ

s
lk − 3ΓsilΓ

l
jk − ΓlikΓslj − ΓljkΓsli + ΓljiΓ

s
lk + ΓlkiΓ

s
lj

)
= 0.

Thus Pn is an affine algebraic variety. If we replace Pn by a differential graded
scheme, we call Deformation Cohomology, the cohomology of the tangent space of
this scheme.

Remark 3. This cohomology of deformation is defined in same manner for any
K-algebra and more generally for any n-ary algebra. If we denote by Hdef(A) =⊕

n≥0H
n
def(A) the deformation cohomology of the algebra A, then H0

def(A) = K,

H1
def(A) is the space of outer derivations of A and the coboundary operator δ1

def

corresponds to the operator of derivation, and the space of 2-cocycles is determined
by the linearization of the identities defining A. Thus, in any case, the three first
spaces of cohomology are easy to compute. But the determination of the spaces
Hn

def(A) for n ≥ 3 is usually not easy; we cannot deduce for example H3
def(A)

directly from the knowledge of H2
def(A). However we have the following result:
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Proposition 1. Let PA be the quadratic operad related to A. If PA is a Koszul
operad, then Hdef(A) coincides with the natural operadic cohomology.

For example, if A is a Lie algebra or an associative algebra, the corresponding
operads Lie and Ass are Koszul and Hdef(A) coincides with the operadic cohomol-
ogy, that is, respectively, the Chevalley-Eilenberg cohomology and the Hochschild
cohomology. Examples of determination of Hdef(A) in the non-Koszul cases can
be found in [9], [17]. A theory of deformations on non-Koszul operads in presented
in [14].

3.2 The operadic cohomology of a Poisson algebra

Let Poiss be the quadratic binary operad associated with Poisson algebras. Recall
briefly its definition. Let E = K [Σ2] be the K-group algebra of the symmet-
ric group on two elements. The basis of the free K-module F(E)(n) consists of
the “n-parenthesized products” of n variables {x1, . . . , xn}. Let R be the K[Σ3]-
submodule of F(E)(3) generated by the vector

u = 3x1(x2x3)− 3(x1x2)x3 + (x1x3)x2 + (x2x3)x1 − (x2x1)x3 − (x3x1)x2 .

Then Poiss is the binary quadratic operad with generators E and relations R. It
is given by

Poiss(n) = (F(E)/R)(n) =
F(E)(n)

R(n)

where R is the operadic ideal of F(E) generated by R satisfying R(1) = R(2) = 0,
R(3) = R. The dual operad Poiss! is equal to Poiss, that is, Poiss is self-dual.
In [18] we defined, for a binary quadratic operad E , an associated quadratic operad

Ẽ which gives a functor

E ⊗ Ẽ → E .

In the case E = Poiss, we have Ẽ = Poiss! = Poiss. All these properties show that
the operad Poiss is a Koszul operad (see also [12]). In this case the cohomology
of deformation of Poiss-algebras coincides with the natural operadic cohomology.
An explicit presentation of the space of k-cochains is given in [15]:

Ck(P,P) = Lin(Poiss(n)! ⊗Σn V
⊗n, V ) = End(P⊗k,P)

where V is the underlying vector space (here Cn). The cohomology associated with
the complex (Ck(P,P), δkP )k where δkP denotes the coboundary operator

δkP : Ck(P,P)→ Ck+1(P,P) ,

is denoted by H∗P (P,P). We will describe the coboundary operators δ2
P in Subsec-

tion 3.3 and δkP in Section 5.
Consequence: The deformation cohomology of a Poisson algebra. If P is
a Poisson algebra, then Hdef(P) is the operadic cohomology H∗P (P,P) or briefly
H∗P (P).
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3.3 Some relations on the coboundary operator δ2P
Let P be a Poisson algebra whose nonassociative product µ0(X,Y ) is denoted by
X ·Y . Let gP and AP be its corresponding Lie and associative algebras. We denote
by H∗C(gP , gP) the Chevalley-Eilenberg cohomology of gP and by H∗H(AP ,AP) the
Hochschild cohomology of AP . A important part of this work devoted to describe
the coboundary operator and its links with the Chevalley-Eilenberg and Hochschild
coboundary operators. We focus in this section on the degree 2 because it is related
to the parametrization of deformations. The condition (D1) writes as

(µ0 ◦1 µ1 + µ1 ◦1 µ0) ◦ ΦvP = 3(µ0 ◦2 µ1 + µ1 ◦2 µ0) ,

that is,

3µ1(µ0(x, y), z)− 3µ1(x, µ0(y, z))− µ1(µ0(x, z), y)− µ1(µ0(y, z), x)

+ µ1(µ0(y, x), z) + µ1(µ0(z, x), y) + 3µ0(µ1(x, y), z)− 3µ0(x, µ1(y, z))

− µ0(µ1(x, z), y)− µ0(µ1(y, z), x) + µ0(µ1(y, x), z) + µ0(µ1(z, x), y) = 0

for any x, y, z ∈ P. If ϕ is a 2-cocycle of H2
def(P), this implies

δ2
Pϕ = (ϕ ◦1 µ+ µ ◦1 ϕ) ◦ ΦvP − 3(ϕ ◦2 µ+ µ ◦2 ϕ) ◦ ΦId.

Recall that vP = 3Id− τ23 + τ12 − c+ c2.

Let ϕ : P⊗2 → P be a bilinear map and µ be the nonassociative multiplication
of the Poisson algebra P. We denote by ϕa = ϕ−ϕ̃

2 and ϕs = ϕ+ϕ̃
2 the skew-

symmetric and symmetric parts of ϕ with ϕ̃(X,Y ) = ϕ(Y,X). We consider the
following trilinear maps:

LC(ϕ) =
1

2
[ϕ ◦1 µ ◦ ΦId+c+c2−τ12−τ13−τ23 + (µ ◦1 ϕ− µ ◦2 ϕ) ◦ ΦId+c+c2 ] ,

LH(ϕ) =
1

2
[µ ◦1 ϕ ◦ ΦId−c − µ ◦2 ϕ ◦ ΦId−c2 + ϕ ◦1 µ ◦ ΦId+τ12 − ϕ ◦2 µ ◦ ΦId+τ13 ].

If ϕ = ϕa, that is, if ϕ is skew-symmetric, then LC(ϕa) = δ2
C,{ ,}ϕa where δ2

C,{·,·} is
the Chevalley-Eilenberg coboundary operator of the cohomology of the Lie algebra
gP associated with P. Similarly if ϕ = ϕs, that is, if ϕ is symmetric, then LH(ϕs) =
δ2
H,∗ϕs where δ2

H,∗ is the Hochschild coboundary operator of the cohomology of the
associative algebra AP associated with P. Since no confusions are possible we will
write δ∗C and δ∗H in place of δ∗C,{·,·} δ

∗
H,∗. Then for any bilinear map ϕ on P⊗2

with
skew-symmetric part ϕa and symmetric part ϕs, we obtain

4δ2
Cϕa = (µ ◦1 ϕ+ ϕ ◦1 µ− µ ◦2 ϕ+ ϕ ◦2 µ) ◦ ΦV

with V = Id− τ12 − τ13 − τ23 + c+ c2 ,

4LC(ϕs) = (µ ◦1 ϕ− µ ◦2 ϕ) ◦ ΦW + (ϕ ◦1 µ+ ϕ ◦2 µ) ◦ ΦV

with W = Id+ τ12 + τ13 + τ23 + c+ c2 ,

4LH(ϕa) = µ ◦1 ϕ ◦ ΦId−τ12+τ13−c + µ ◦2 ϕ ◦ Φ−Id−τ13+τ23+c2

+ ϕ ◦1 µ ◦ ΦId+τ12+τ13+c + ϕ ◦2 µ ◦ Φ−Id−τ13−τ23−c2 ,

4δ2
Hϕs = µ ◦1 ϕ ◦ ΦId+τ12−τ13−c + µ ◦2 ϕ ◦ Φ−Id+τ13−τ23+c2

+ ϕ ◦1 µ ◦ ΦId+τ12−τ13−c + ϕ ◦2 µ ◦ Φ−Id+τ13−τ23+c2 .
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At least we introduce the following operators, L1 which acts on the space of
skew-symmetric bilinear maps and L2 which acts on the space of symmetric bilinear
maps on P:

4L1(ϕa) = µ ◦1 ϕ ◦ Φτ13−τ23−c+c2 + µ ◦2 ϕ ◦ Φ−Id−τ12+τ23+c

+ ϕ ◦1 µ ◦ ΦId+τ12 + ϕ ◦2 µ ◦ Φ−τ13−c2 ,

4L2(ϕs) = µ ◦1 ϕ ◦ Φ2Id+2τ12−τ13−τ23−c−c2 + µ ◦2 ϕ ◦ Φ−Id+τ12−τ13+c

+ ϕ ◦1 µ ◦ ΦId+τ12+2τ13−4c + ϕ ◦2 µ ◦ Φ−4Id+τ13+2τ23+c2 .

Lemma 3. We have L1(ϕa) = 0 if and only if ϕa is a skew derivation of the
associative product associated with µ, that is:

ϕa(x ∗ y, z) = x ∗ ϕa(y, z) + ϕa(x, z) ∗ y .

Proof.

ϕa(x ∗ y, z)− x ∗ ϕa(y, z)− ϕa(x, z) ∗ y

= 1
2

(
ϕa(xy + yx, z)− xϕa(y, z)− ϕa(y, z)x− ϕa(x, z)y − yϕa(x, z)

)
= 1

2

(
ϕa(xy, z) + ϕa(yx, z) + xϕa(z, y) + ϕa(z, y)x+ ϕa(z, x)y + yϕa(z, x)

)
= 1

4L1(ϕa)(x, y, z).

�

Proposition 2. For every bilinear map ϕ on P, we have

δ2
Pϕ = 2

(
δ2
Cϕa + LC(ϕs) + δ2

Hϕs + LH(ϕa) + L1(ϕa) + L2(ϕs)
)
. (2)

Corollary 1. Let ϕ be a bilinear map and ϕa and ϕs the skew-symmetric and the
symmetric parts of ϕ. We have:

12δ2
Cϕa = δ2

Pϕ ◦ ΦId−τ12−τ13−τ23+c+c2 (3)

and
12δ2

Hϕs = δ2
Pϕ ◦ ΦId−τ13+τ23−c2 . (4)

4 Particular deformations: Lie and associative deformations of
a Poisson algebra

In this section we study two particular types of deformations. Usually, only Lie
deformations of Poisson algebras are considered. This is a consequence of the
classical problem of considering Poisson algebras on the associative commutative
algebra of differential functions on a manifold. In this context, the associative
algebra is preserved when we consider deformations of Poisson structures on this
algebra, for example in problems of deformation quantization. Moreover, such an
associative structure is rigid, so it is not appropriate to consider deformations of this
multiplication. As consequence, the corresponding deformation cohomology is the
Poisson-Lichnerowicz cohomology [11]. So the first particular type we consider, the
Lie deformations, is when we deform the Poisson bracket and let the associative
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product unchanged. We study a second special case which is non classical, the
associative deformations. It consists in deformations of the associative product
with a preserved Poisson bracket. Such deformations appear naturally when the
Poisson bracket is a rigid Lie bracket. These deformations are parametrized by a
cohomology defined by a subcomplex of the Poisson complex. We called it Poisson-
-Hochschild cohomology and describe it explicitely.

4.1 Lie deformations

Definition 1. We say that the formal deformation µ of the Poisson multiplication
µ0 is a Lie formal deformation if the corresponding commutative associative mul-
tiplication is conserved, that is, if

µ0(x, y) + µ0(y, x) = µ(x, y) + µ(y, x)

for any x, y.

As µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y), if µ is a Lie deformation of µ0, then

µ(x, y) + µ(y, x) = µ0(x, y) + µ0(y, x) +
∑
n≥1

tn
(
µn(x, y) + µn(y, x)

)
.

So ∑
n≥1

tn
(
µn(x, y) + µn(y, x)

)
= 0

and

µn(x, y) + µn(y, x) = 0

for any n ≥ 1. Each bilinear maps µn is skew-symmetric. In particular µ1 is
skew-symmetric and (µ1)s = 0. As δ2

Pµ1 = 0, Relation (2) writes as

δ2
Cµ1 + LH(µ1) + L1(µ1) = 0 .

But, from (3), δ2
Pµ1 = 0 implies δ2

Cµ1 = 0. Thus we have LH(µ1) + L1(µ1) = 0.
Since µ1 is skew-symmetric:

LH(µ1)(x, y, z) = µ1(x, y) ∗ z − x ∗ µ1(y, z) + µ1(x ∗ y, z)− µ1(x, y ∗ z)
=− µ1(x, y ∗ z) + µ1(x, y) ∗ z + y ∗ µ1(x, z) + µ1(x ∗ y, z)
− x ∗ µ1(y, z)− µ1(x, z) ∗ y

= L1(µ1)(x, y, z) + L1(µ1)(y, z, x) .

So

LH(µ1) = L1(µ1) ◦ ΦId+c .

We deduce that

LH(µ1) + L1(µ1) = L1(µ1) ◦ Φ2Id+c

and LH(µ1) + L1(µ1) = 0 implies L1(µ1) = 0.
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Theorem 3. If µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y) is a Lie deformation of the
Poisson product µ0, then µ1 is a skew-symmetric map satisfying{

δ2
Cµ1 = 0,
L1(µ1) = 0.

Recall that Poisson-Lichnerowicz cohomology [11] is associated with the com-
plex

(C∗PL(P,P), δ∗C)

where the cochains are the skew-symmetric multilinear maps P × · · · × P → P
satisfying the Leibniz rule in each of their arguments (such maps are called skew-
symmetric multiderivations of the algebra P). The coboundary operators coin-
cide with the Chevalley-Eilenberg coboundary operator denoted by δ∗C . Of course
CnPL(P,P) is a vector subspace of CnP (P,P). The previous theorem shows that if
ϕ is a 2-cochain of C2

PL(P,P), thus its classes of cohomology in H2
PL(P,P) and

H2
P (P,P) are equal.

4.2 Associative deformations of Poisson algebras

Definition 2. We say that the formal deformation µ of the Poisson multiplication
µ0 is an associative formal deformation if the corresponding Lie multiplication is
conserved, that is, if

µ0(x, y)− µ0(y, x) = µ(x, y)− µ(y, x)

for any x, y.

As µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y), if µ is an associative deformation of
µ0, then

µ(x, y)− µ(y, x) = µ0(x, y)− µ0(y, x) +
∑
n≥1

tn
(
µn(x, y)− µn(y, x)

)
.

Thus ∑
n≥1

tn
(
µn(x, y)− µn(y, x)

)
= 0

and

µn(x, y)− µn(y, x) = 0

for any n ≥ 1. Each bilinear maps µn is symmetric. In particular µ1 is symmetric
and (µ1)a = 0. Since δ2

Pµ1 = 0, Relation (2) writes as

LC(µ1) + δ2
Hµ1 + L2(µ1) = 0 .

But, from (4), δ2
Pµ1 = 0 implies δ2

Hµ1 = 0. Thus

LC(µ1) + L2(µ1) = 0 .
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Lemma 4. When ϕ is a symmetric map with δ2
Hϕ = 0,

LC(ϕ)(x, y, z) = {ϕ(x, y), z}+ {ϕ(y, z), x}+ {ϕ(z, x), y}
+ ϕ({x, y} , z) + ϕ({y, z} , x) + ϕ({z, x} , y) ,

L2(ϕ)(x, y, z) = {y, ϕ(x, z)} − {z, ϕ(x, y)}+ 3ϕ(x, {z, y}) .

This is a direct consequence of the definition of LC(ϕs) and L2(ϕs) when ϕ is a
symmetric bilinear map, replacing µ0(x, y)− µ0(y, x) by 2 {x, y} .

We deduce(
LC(µ1) + L2(µ1)

)
(x, y, z) = 2{µ1(x, y), z}+ {µ1(y, z), x}+ µ1({x, y}, z)

+ µ1({z, x}, y) + 2µ1({z, y}, x)

= 2{µ1(x, y), z} − 2µ1({y, z}, x)− 2µ1({x, z}, y)

+ {µ1(y, z), x} − µ1({y, x}, z)− µ1({z, x}, y)

= 2∆µ1(x, y, z) + ∆µ1(y, z, x)

with
∆µ1(x, y, z) = {µ1(x, y), z} − µ1({y, z}, x)− µ1({x, z}, y) .

We deduce that (
LC(µ1) + L2(µ1)

)
= ∆µ1 ◦ Φ2Id+c .

But Φ2Id+c is an invertible map on P⊗3

. Then
(
LC(µ1) + L2(µ1)

)
= 0 if and only

if
∆µ1(x, y, z) = {µ1(x, y), z} − µ1

(
{y, z}, x

)
− µ1

(
{x, z}, y

)
= 0 .

Definition 3. Let P be a Poisson algebra and let {x, y} be its Poisson bracket.
A bilinear map ϕ on P is called a Lie biderivation if

{ϕ(x1, x2), x3} − ϕ
(
x1, {x2, x3}

)
− ϕ

(
{x1, x3}, x2

)
= 0

for any x1, x2, x3 ∈ P.

We deduce that µ1, which is a symmetric map, is a Lie biderivation.

Theorem 4. If µ(x, y) = µ0(x, y) +
∑
n≥1 t

nµn(x, y) is an associative deformation
of the Poisson product µ0, then µ1 is a symmetric map such that

1. δ2
Hµ1 = 0.

2. µ1 is a Lie biderivation.

In case of Lie deformation of the Poisson product µ0, we have seen that the relations
concerning µ1 can be interpreted in terms of Poisson-Lichnerowicz cohomology. We
propose a similar approach for the Lie deformations of µ0.

Recall that x∗y the associative commutative product associated with the Pois-

son product µ0, that is x ∗ y =
µ0(x, y) + µ0(y, x)

2
.



130 Elisabeth Remm

Lemma 5. Let ϕ be a symmetric bilinear map on P which is a Lie biderivation. If
δ2
Hϕ is the Hochschild coboundary operator, we have

δ2
Hϕ(x1, x2, x3) = x1 ∗ ϕ(x2, x3)− ϕ(x1 ∗ x2, x3)

+ ϕ(x1, x2 ∗ x3)− ϕ(x1, x2) ∗ x3

and

{δ2
Hϕ(x1, x2, x3), x4} = δ2

Hϕ({x1, x4}, x2, x3) + δ2
Hϕ(x1, {x2, x4}, x3)

+ δ2
Hϕ(x1, x2, {x3, x4})

for any x1, x2, x3, x4 ∈ P.

Proof. As ϕ is a Lie biderivation, we have

{ϕ(x1, x2), x3} − ϕ(x1, {x2, x3})− ϕ({x1, x3}, x2) = 0 .

Thus, using the definition of δ2
Hϕ, we obtain

{δ2
Hϕ(x1, x2, x3), x4} = {x1 ∗ ϕ(x2, x3), x4} − {ϕ(x1 ∗ x2, x3), x4}

+ {ϕ(x1, x2 ∗ x3), x4} − {ϕ(x1, x2) ∗ x3, x4}
= x1 ∗ {ϕ(x2, x3), x4} − x3 ∗ {ϕ(x1, x2), x4}

+ ϕ(x2, x3) ∗ {x1, x4} − ϕ(x1, x2) ∗ {x3, x4}
− {ϕ(x1 ∗ x2, x3), x4}+ {ϕ(x1, x2 ∗ x3), x4}

As ϕ is a Lie biderivation,

{δ2
Hϕ(x1, x2, x3), x4} = x1 ∗ ϕ({x2, x4}, x3) + x1 ∗ ϕ(x2, {x3, x4})

− x3 ∗ ϕ({x1, x4}, x2)− x3 ∗ ϕ(x1, {x2, x4})
+ ϕ(x2, x3) ∗ {x1, x4} − ϕ(x1, x2) ∗ {x3, x4}
− ϕ(x1 ∗ {x2, x4}, x3)− ϕ(x2 ∗ {x1, x4}, x3)

− ϕ(x1 ∗ x2, {x3, x4}) + ϕ({x1, x4}, x2 ∗ x3)

+ ϕ(x1, x2 ∗ {x3, x4}) + ϕ(x1, x3 ∗ {x2, x4}) .

But

δ2
Hϕ({x1, x4}, x2, x3) = {x1, x4} ∗ ϕ(x2, x3)− ϕ({x1, x4} ∗ x2, x3)

+ ϕ({x1, x4}, x2 ∗ x3)− ϕ({x1, x4}, x2) ∗ x3

δ2
Hϕ(x1, {x2, x4}, x3) = x1 ∗ ϕ({x2, x4}, x3)− ϕ(x1 ∗ {x2, x4}, x3)

+ ϕ(x1, {x2, x4} ∗ x3)− ϕ(x1, {x2, x4}) ∗ x3

δ2
Hϕ(x1, x2, {x3, x4}) = x1 ∗ ϕ(x2, {x3, x4})− ϕ(x1 ∗ x2, {x3, x4})

+ ϕ(x1, x2 ∗ {x3, x4})− ϕ(x1, x2) ∗ {x3, x4} .

As the product ∗ is commutative, we deduce

{δ2
Hϕ(x1, x2, x3), x4} = δ2

Hϕ({x1, x4}, x2, x3) + δ2
Hϕ(x1, {x2, x4}, x3)

+ δ2
Hϕ(x1, x2, {x3, x4}) .

�
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Observe that the last identity is not a consequence of the symmetry of ϕ. It is
satified for any bilinear Lie biderivation. Now, we can generalize these identities.

Definition 4. Let φ be a k-linear map on P. We say that φ is a Lie k-derivation if

{φ(x1, . . . , xk), xk+1} =

k∑
i=1

φ(x1, . . . , {xi, xk+1}, . . . , xk)

for any x1, . . . , xk+1 ∈ P, where {x, y} denotes the Lie bracket associated with the
Poisson product.

For example, from the previous lemma, if ϕ is a Lie 2-derivation (or biderivation),
then δ2

Hϕ is a Lie 3-derivation.

For any (k − 1)-linear map on P, let δk−1
H ϕ the k-linear map given by

δk−1
H ϕ(x1, . . . , xk) = x1 ∗ ϕ(x2, · · · , xk)− ϕ(x1 ∗ x2, · · · , xk) + ϕ(x1, x2 ∗ x3, · · · , xk)

+ · · ·+ (−1)k−1ϕ(x1, x2, · · · , xk−1 ∗ xk)

+ (−1)kϕ(x1, x2, · · · , xk−1) ∗ xk.

This operator is the coboundary operator of the Hochschild complex related to the
associative operad Ass.

Theorem 5. If ϕ is a Lie k-derivation of P, then δkHϕ is a Lie (k + 1)-derivation
of P.

Proof. It is analogous to the proof detailed for k = 3. It depends only of the
symmetry of the associative product x ∗ y. �

Recall that a k-linear map ϕ on a vector space is called commutative if it satisfies
ϕ ◦ φVk = 0 where Vk =

∑
σ∈Σk

ε(σ)σ = 0.

Lemma 6. For any k-linear commutative map ϕ on P, the (k+ 1)-linear map δkHϕ
is commutative.

Proof. In fact, consider the first term of δkHϕ(x1, . . . , xk+1), that is,

x1 ∗ ϕ(x2, . . . , xk+1) .

We have ∑
σ∈Σik+1

ε(σ)xi ∗ ϕ(xσ(1), . . . , xσ(i−1), xσ(i+1), . . . , xσ(k+1)) = 0

because ϕ is commutative, where Σik+1 = {σ ∈ Σk+1, σ(i) = i}. The same trick
vanishes the last terms, that is,∑

σ∈Σk+1

ϕ
(
xσ(1), xσ(2), · · · , xσ(k)

)
∗ xσ(k+1) .

The terms in between vanishes two by two when we compose with ΦVk . �
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Let CkPH(P,P) be the vector space constituted by k-linear maps on P which are
commutative and which are Lie k-derivations. From the previous result, the image
of the CkPH(P,P) by the map δkH is contained in Ck+1

PH (P,P). As these maps
coincide with the coboundary operators of the complex, we obtain a complex
(CkPH(P,P), δkH) whose associated cohomology is called the Poisson-Hochschild
cohomology.

Theorem 6. Let P be a Poisson algebra whose (nonassociative) product is denoted
µ0. For any associative deformation µ =

∑
n≥0 t

iµi of µ0, the linear term µ1 is a
2-cocycle for the Poisson-Hochschild cohomology.

4.3 Example: Poisson structures on rigid Lie algebras

Such Poisson structures have been studied in [8], [7]. We will study these struc-
tures in terms of Poisson-Hochschild cohomology. Consider, for example, the
3-dimensional complex Poisson algebra given, in a basis {e1, e2, e3}, by

e1e2 = 2e2 , e1e3 = −2e3 , e2e3 = e1 .

If {·, ·} and ∗ denote respectively the Lie bracket and the commutative associative
product attached with the Poisson product, we have

{e1, e2} = 2e2 , {e1, e3} = −2e3 , {e2, e3} = e1

and
ei ∗ ej = 0 ,

for any i, j. If ϕ is a Lie biderivation, it satisfies

{ϕ(ei, ej), ek} = ϕ({ei, ek}, ej) + ϕ({ej , ek}, ei) .

This implies ϕ = 0 and the Poisson algebra is rigid.

5 Coboundary operators of the general Poisson cohomology
In this section, we describe relations between the coboundary operators δkP of the
Poisson cohomology (the operadic cohomology or the deformation cohomology) of
a Poisson algebra P and the corresponding operators of the Poisson-Lichnerowicz
and Poisson-Hochschild cohomology of P.

5.1 The cases k = 0 and k = 1

• k = 0. We put

H0
P (P,P) = {X ∈ P such that ∀Y ∈ P, X · Y = 0} .

• k = 1. For f ∈ End(P,P), we put

δ1
P f(X,Y ) = f(X) · Y +X · f(Y )− f(X · Y )

for any X,Y ∈ P. Then we have

H1
P (P,P) = H1

C(gP , gP) ∩H1
H(AP ,AP) .
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5.2 Description of δ2P
In Section 4, we have seen that

δ2
Pϕ(x, y, z) = 3ϕ(x · y, z)− 3ϕ(x, y · z)− ϕ(x · z, y)− ϕ(y · z, x)

+ ϕ(y · x, z) + ϕ(z · x, y) + 3ϕ(x, y) · z − 3x · ϕ(y, z)

− ϕ(x, z) · y − ϕ(y, z) · x+ ϕ(y, x) · z + ϕ(z, x) · y

and
δ2
Pϕ = 2

(
δ2
Cϕa + LC(ϕs) + δ2

Hϕs + LH(ϕa) + L1(ϕa) + L2(ϕs)
)
.

Let us compare this operator with the corresponding Poisson-Lichnerowicz and
Poisson-Hochschild ones.

Example 1. Assume that the Poisson product is skew-symmetric. Then {x, y} =
x · y and x ∗ y = 0. If ϕ ∈ C2

P (P,P) is also skew-symmetric, then

δ2
Pϕ(x, y, z) = 2ϕ(x · y, z) + 2ϕ(y · z, x)− 2ϕ(x · z, y)

+ 2ϕ(x, y) · z + 2ϕ(y, z) · x− 2ϕ(x, z) · y
= δ2

PLϕ(x, y, z) ,

that is, the coboundary operator of the Poisson-Lichnerowicz cohomology.

The results of the previous sections imply:

Theorem 7. Let ϕ be in C2
P (P,P), ϕs and ϕa be its symmetric and skew-symmetric

parts. Then the following propositions are equivalent:

1. δ2
Pϕ = 0.

2.

{
i) δ2

Cϕa = 0, δ2
Hϕs = 0,

ii) LC(ϕs) + LH(ϕa) + L1(ϕa) + L2(ϕs) = 0.

Applications. Suppose that ϕ is skew-symmetric. Then ϕ = ϕa and ϕs = 0. Then
δ2
Pϕ = 0 if and only if δ2

Cϕ = 0 and LH(ϕ) + L1(ϕ) = 0. Morever if we suppose
than ϕ is a biderivation on each argument, that is, L1(ϕ) = 0, then δ2

Pϕ = 0 if and
only if LH(ϕ) = 0. But we have seen in Section 3 that

LH(ϕ) = L1(ϕ) ◦ ΦId+c.

Thus LH(ϕ) = 0 as soon as L1(ϕ) = 0.

Proposition 3. Let ϕ be a skew-symmetric map which is a biderivation, that is,
ϕ is a Poisson-Lichnerowicz 2-cochain. Then ϕ ∈ Z2

PL(P,P) if and only if ϕ ∈
Z2
P (P,P).

Similarly, if ϕ is symmetric, then δ2
Pϕ = 0 if and only if δ2

Hϕ = 0 and LC(ϕ) +
L2(ϕ) = 0. If ϕ be a skew-symmetric map which is a Lie biderivation, that is, if ϕ is
a Poisson-Hochschild 2-cochain, then ϕ ∈ Z2

PH(P,P) if and only if ϕ ∈ Z2
P (P,P).
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5.3 The case k ≥ 3

Let P be a Poisson algebra and H∗def (P) or H∗P (P,P) its operadic cohomology. We
propose here to describe Hn

P (P,P) for n ≥ 3. Let ϕ be a n-cochain of CnP (P,P),
that is, a n-linear map on P. Its skew-symmetric part is the skew-symmetric n-
linear map

ϕa =
1

n!
ϕ ◦ ΦVn

with Vn =
∑
σ∈Σn

ε(σ)σ; its symmetric part is the symmetric n-linear map

ϕs =
1

n!
ϕ ◦ ΦWn

with Wn =
∑
σ∈Σn

σ. We denote by δnP , δ
n
C and δnH respectively the coboundary

operators associated with the Poisson cohomology of P, the Chevalley-Eilenberg
cohomology of gP and the Hochschild cohomology of AP .

The formulae (3) and (4) can be generalized as follows

2(n+ 1)!δnCϕa = δnpϕ ◦ ΦVn , (5)

2(n+ 1)!δnHϕs = δnpϕ ◦ ΦUH,n , (6)

where UH,n =
∑
σ∈Σ1,n

σ + (−1)n
∑
σ∈Σn,n

σ with Σi,n = {σ ∈ Σn, σ(1) = i} .

Proposition 4. Let ϕ be a n-cochain of the Poisson complex of the Poisson alge-
bra P. Then

δnPϕ = 0⇒

{
δnCϕa = 0 ,

δnHϕs = 0 .

Let us consider L1,n acting on the skew-symmetric n-linear map by

2(n− 1)!L1,nϕa =
∑

σ−1∈Σi,i+1,n

ε(σ)ϕ ◦σ−1(1) µ ◦ Φ(Id+τ12)◦σ

+ (−1)n−1
∑

σ−1∈Σn,n

ε(σ)µ ◦1 ϕ ◦ Φ(Id+τ12)◦σ

−
∑

σ−1∈Σ1,n

ε(σ)µ ◦2 ϕ ◦ Φ(Id+τ12)◦σ

where Σi,i+1,n = {σ ∈ Σn, σ(1) = i, σ(2) = i+ 1}.

Lemma 7. ϕa is a skew-symmetric n-derivation, that is, a skew-symmetric n-linear
map which is a derivation for the associative product x ∗ y on each argument, if
and only if L1,nϕa = 0.

Now we define the operator LH,nwhich acts on the the skew-symmetric n-linear
map by

LH,nϕa = L1,nϕa ◦ ΦId+cn+c2n+···+cn−2
n

where cn ∈ Σn is the cycle (1, 2, . . . , n).



Associative and Lie deformations of Poisson algebras 135

Proposition 5. Let ϕ be a skew-symmetric linear map on P⊗n . Then δnPϕ = 0 if
and only if δnCϕ = 0 and L1,nϕ = 0.

We find again the classical result: the associative deformations of a Poisson
algebra are parametrized by the Poisson-Lichnerowciz cohomology.

Assume now that ϕ is a symmetric n-linear map. We have seen that:

δnPϕ = 0⇒ δnHϕs = δnHϕ = 0 .

Consider the operator ∇n acting on the symmetric n-linear maps by:

∇nϕs(x1, . . . , xn+1) = {ϕ(x1, . . . , xn), xn+1} − ϕ({x1, xn+1} , x2, . . . , xn)

− ϕ(x1, {x2, xn+1} , x3, . . . , xn)

− · · · − ϕ(x1, x2, . . . , xn−1, {xn, xn+1}) .

Then ϕ = ϕs is a Lie n-derivation if and only if ∇nϕs = 0.
Now we consider the following operator acting also on the symmetric n-linear

maps by:

LnCϕs = µ ◦1 ϕ ◦ Φ−c+c2+···+(−1)n+1cn+1 + µ ◦2 ϕ ◦ ΦId−c+c2+···+(−1)ncn

+ ϕ ◦1 µ ◦ Φ∑
1≤i,j≤n+1(−1)i+j+1cij

where cij is the permutation

(
1 2 3 · · · · · · · · · · · · · · · n+ 1
i j 1 · · · ǐ · · · ǰ · · · n+ 1

)
and

Ln2ϕs defined by:
LnCϕs + Ln2ϕs = ∇nϕs ◦ Φu

with u ∈ K[Σn] equal to τ12 + τ13 + · · ·+ τ1n. Since Φu is invertible, the equation
LnCϕs + Ln2ϕs = 0 implies ∇nϕs = 0 and we find that the Poisson-Hochschild
cohomology coincides with the Poisson cohomology when ϕ = ϕs.
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Université de Haute Alsace, LMIA, 4 rue des Frères Lumière, 68093 Mulhouse

E-mail: elisabeth.remm a©uha.fr

Received: 15 October, 2012
Accepted for publication: 29 October, 2012
Communicated by: Ilka Agricola



Communications in Mathematics 20 (2012) 137–145
Copyright c© 2012 The University of Ostrava 137

Distinguished Riemann-Hamilton geometry in the

polymomentum electrodynamics

Alexandru Oană, Mircea Neagu

Abstract. In this paper we develop the distinguished (d-) Riemannian dif-
ferential geometry (in the sense of d-connections, d-torsions, d-curvatures
and some geometrical Maxwell-like and Einstein-like equations) for the
polymomentum Hamiltonian which governs the multi-time electrodynam-
ics.

1 Introduction

Let Mn be a smooth real manifold of dimension n, whose local coordinates are
x = (xi)i=1,n, having the physical meaning of “space of events”. In order to justify
the “electrodynamics” terminology used in this paper, we recall that, in the study
of classical electrodynamics, the Lagrangian function L : TM → R that governs
the movement law of a particule of mass m 6= 0 and electric charge e, placed
concomitantly into a gravitational field and an electromagnetic one, is expressed
by

L(x, y) = mcϕij(x)yiyj +
2e

m
Ai(x)yi + P(x) , (1)

where the semi-Riemannian metric ϕij(x) represents the gravitational potentials
of the space M , Ai(x) are the components of an 1-form on M representing the
electromagnetic potential, P(x) is a smooth potential function on M and c is the
velocity of light in vacuum. The Lagrange space Ln = (M,L(x, y)), where L is
given by (1), is known in the literature of specialty as the autonomous Lagrange
space of electrodynamics. A deep geometrical study of the Lagrange space Ln

is now completely done in Miron-Anastasiei’s book [15]. More general, in the
study of classical time-dependent electrodynamics, a central role is played by the

2010 MSC: 70S05, 53C07, 53C80
Key words: jet polymomentum Hamiltonian of electrodynamics, Cartan canonical connection,

Maxwell-like and Einstein-like equations
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autonomous time-dependent Lagrangian function of electrodynamics:

L(t, x, y) = mcϕij(x)yiyj +
2e

m
Ai(t, x)yi + P(t, x) , (2)

where L : R×TM → R. Note that the non-dynamical character (i.e., the indepen-
dence on the temporal coordinate t) of the spatial semi-Riemannian metric ϕij(x)
determines the usage of the term “autonomous” in the preceding definition.

Let (T m, hab(t)) be a “multi-time” smooth Riemannian manifold of dimension
m (please do not confuse with the mass m 6= 0), having the local coordinates
t = (tc)c=1,m, and let J1(T ,M) be the 1-jet space produced by the manifolds T
and M .

Remark 1. The use in our work of the “multi-time” terminology was lent by us
from Dickey’s monograph [6]. However, it is important to note that “multi-time”
does not mean a “multidimensional time”, but has the sense of a “multi-parameter”
or “many parameters”.

By a natural extension of the preceding examples of electrodynamics Lagrangian
functions, we can consider the jet multi-time Lagrangian function

L(tc, xk, xkc ) = mchab(t)ϕij(x)xiax
j
b +

2e

m
A

(a)
(i) (t, x)xia + P(t, x) , (3)

where A
(a)
(i) (t, x) is a d-tensor on J1(T ,M) and P(t, x) is a smooth function on the

product manifold T ×M .

Remark 2. Throughout this paper, the indices a, b, c, . . . run from 1 to m, while
the indices i, j, k, . . . run from 1 to n. The Einstein convention of summation is
also adopted all over this work.

The pair EDMLnm = (J1(T ,M), L), where L is given by (3), is called the au-
tonomous multi-time Lagrange space of electrodynamics. The distinguished Rie-
mannian geometrization of the multi-time Lagrange space EDMLnm is now com-
pletely developed in the Neagu’s works [17] and [18].

Via the classical Legendre transformation, the jet multi-time Lagrangian func-
tion of electrodynamics (3) leads us to the Hamiltonian function of polymomenta

H =
1

4mc
habϕ

ijpai p
b
j −

e

m2c
habϕ

ijA
(b)
(j)p

a
i +

e2

m3c
‖A‖2 − P , (4)

where H : J1∗(T ,M)→ R, and

‖A‖2 (t, x) = habϕ
ijA

(a)
(i)A

(b)
(j) .

Definition 1. The pair EDMHn
m = (J1∗(T ,M), H), where H is given by (4), is

called the autonomous multi-time Hamilton space of electrodynamics.
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But, using as a pattern the Miron’s geometrical ideas from [16], the distinguished
Riemannian geometry for quadratic Hamiltonians of polymomenta (geometry in the
sense of d-connections, d-torsions, d-curvatures and geometrical Maxwell-like and
Einstein-like equations) is constructed on dual 1-jet spaces in the Oană-Neagu’s
paper [21]. Consequently, in what follows, we apply the general geometrical re-
sult from [21] for the particular Hamiltonian function of polymomenta (4), which
governs the multi-time electrodynamics.

2 The geometry of the autonomous multi-time Hamilton space
of electrodynamics EDMHn

m

To initiate our Hamiltonian geometrical development for multi-time electrodynam-
ics, let us consider on the dual 1-jet space E∗ = J1∗(T ,M) the fundamental vertical
metrical d-tensor

Φ
(i)(j)
(a)(b) =

1

2

∂2H

∂pai ∂p
b
j

= h∗ab(t
c)ϕij(xk) ,

where h∗ab(t) := (4mc)
−1 · hab(t). Let χabc(t) (respectively γkij(x)) be the Christof-

fel symbols of the metric hab(t) (respectively ϕij(x)). Obviously, if
∗
χ abc are the

Christoffel symbols of the Riemannian metric h∗ab(t), then we have
∗
χ abc = χ abc.

Using a general result from the geometrical theory of multi-time Hamilton
spaces (see [2] and [21]), by direct computations, we find

Theorem 1. The pair of local functions NED =
(
N
1

(a)
(i)b, N2

(a)
(i)j

)
on the dual 1-jet

space E∗, which are given by

N
1

(a)
(i)b = χabfp

f
i , N

2

(a)
(i)j = γrij

[
2e

m
A

(a)
(r) − p

a
r

]
− e

m

∂A(a)
(i)

∂xj
+
∂A

(a)
(j)

∂xi

 ,
represents a nonlinear connection on E∗. This nonlinear connection is called the
canonical nonlinear connection of the multi-time Hamilton space of electrodynamics
EDMHn

m.

Now, let {
δ

δta
,
δ

δxi
,
∂

∂pai

}
⊂ χ (E∗) ,

{
dta, dxi, δpai

}
⊂ χ∗ (E∗)

be the adapted bases produced by the nonlinear connection NED, where

δ

δta
=

∂

∂ta
−N

1

(f)
(r)a

∂

∂pfr
,

δ

δxi
=

∂

∂xi
−N

2

(f)
(r)i

∂

∂pfr
,

δpai = dpai +N
1

(a)
(i)fdt

f +N
2

(a)
(i)rdx

r .
(5)

Working with these adapted bases, by direct computations, we can determine
the adapted components of the generalized Cartan canonical connection of the
space EDMHn

m, together with its local d-torsions and d-curvatures (for details, see
the general formulas from [21]).
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Theorem 2. (1) The generalized Cartan canonical linear connection of the au-
tonomous multi-time Hamilton space of electrodynamics EDMHn

m is given
by

CΓ(N) =
(
χabc, A

i
jc, H

i
jk, C

i(k)
j(c)

)
,

where its adapted components are

Hc
ab = χcab , Aijc = 0 , Hi

jk = γijk , C
i(k)
j(c) = 0 . (6)

(2) The torsion T of the generalized Cartan canonical linear connection of the
space EDMHn

m is determined by three effective adapted components:

R
(f)
(r)ab = χfgabp

g
r ,

R
(f)
(r)aj = −2e

m
γsrjA

(f)
(s);a +

e

m

∂A(f)
(r)

∂xj
+
∂A

(f)
(j)

∂xr


;a

,

R
(f)
(r)ij = Rs

rij

[
2e

m
A

(f)
(s) − p

f
s

]
− e

m

∂A(f)
(i)

∂xj
−
∂A

(f)
(j)

∂xi


:r

,

(7)

where χcdab(t) (respectively Rk
rij(x)) are the classical local curvature tensors of

the Riemannian metric hab(t) (respectively semi-Riemannian metric ϕij(x)),
and “;a” and “:k” represent the following generalized Levi-Civita covariant
derivatives:

• the T -generalized Levi-Civita covariant derivative:

T
bi(d)(r)...
cj(l)(f)...;a

def
=
∂T

bi(d)(r)...
cj(l)(f)...

∂ta
+ T

gi(d)(r)...
cj(l)(f)... χ

b
ga + T

bi(g)(r)...
cj(l)(f)...χ

d
ga

+ · · · − T bi(d)(r)...
gj(l)(f)...χ

g
ca − T

bi(d)(r)...
cj(l)(g)... χ

g
fa − · · · ,

• the M -generalized Levi-Civita covariant derivative:

T
bi(d)(r)...
cj(l)(f)···:k

def
=
∂T

bi(d)(r)...
cj(l)(f)...

∂xk
+ T

bs(d)(r)...
cj(l)(f)... γ

i
sk + T

bi(d)(s)...
cj(l)(f)... γ

r
sk

+ · · · − T bi(d)(r)...
cs(l)(f)... γ

s
jk − T

bi(d)(r)...
cj(s)(f)...γ

s
lk − · · · .

(3) The curvature R of the Cartan canonical connection of the space EDMHn
m

is determined by the following four effective adapted components:

Hd
abc = χdabc , Rlijk = Rl

ijk

and
−R(d)(i)

(l)(a)bc = δilχ
d
abc , −R(d)(l)

(i)(a)jk = −δdaRl
ijk .
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3 Electromagnetic-like model on the multi-time Hamilton space
of electrodynamics EDMHn

m

In order to describe our geometrical electromagnetic-like theory (depending on
polymomenta) on the multi-time Hamilton space of electrodynamics EDMHn

m, we
underline that, by a simple direct calculation, we obtain (see [21]).

Proposition 1. The metrical deflection d-tensors of the space EDMHn
m are ex-

pressed by the formulas:

∆
(i)
(a)b =

[
h∗afϕ

irpfr

]
/b

= 0 , ϑ
(i)(j)
(a)(b) = [h∗afϕ

irpfr ]
∣∣(j)
(b)

=
1

4mc
habϕ

ij ,

∆
(i)
(a)j = [h∗afϕ

irpfr ]|j =
e

4m2c
hafϕ

ir
[
A

(f)
(r):j +A

(f)
(j):r

]
,

(8)

where “ /b”, “ |j” and “
∣∣(b)
(j)

” are the local covariant derivatives induced by the

generalized Cartan canonical connection CΓ (N) (see [20] and [21]).

Moreover, taking into account some general formulas from [21], we introduce

Definition 2. The distinguished 2-form on J1∗ (T ,M), locally defined by

F = F
(i)
(a)jδp

a
i ∧ dxj + f

(i)(j)
(a)(b)δp

a
i ∧ δpbj , (9)

where

F
(i)
(a)j =

1

2

[
∆

(i)
(a)j −∆

(j)
(a)i

]
=

e

8m2c
· A
{i,j}

{
hafϕ

ir
[
A

(f)
(r):j +A

(f)
(j):r

]}
,

f
(i)(j)
(a)(b) =

1

2

[
ϑ

(i)(j)
(a)(b) − ϑ

(j)(i)
(a)(b)

]
= 0 ,

(10)

is called the polymomentum electromagnetic field attached to the multi-time Hamil-
ton space of electrodynamics EDMHn

m.

Now, particularizing the generalized Maxwell-like equations of the polymomen-
tum electromagnetic field that govern a general multi-time Hamilton space MHn

m,
we obtain the main result of the polymomentum electromagnetism on the space
EDMHn

m (for more details, see [21]):

Theorem 3. The polymomentum electromagnetic components (10) of the auto-
nomous multi-time Hamilton space of electrodynamics EDMHn

m are governed by
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the following geometrical Maxwell-like equations:

F
(i)
(a)j/b = F

(i)
(a)j;b =

e · haf
8m2c

· A
{i,j}

ϕir
∂A(f)

(r)

∂xj
+
∂A

(f)
(j)

∂xr


;b

−2ϕirγsrjA
(f)
(s);b


∑
{i,j,k}

F
(i)
(a)j|k =

∑
{i,j,k}

F
(i)
(a)j:k =− haf

8mc
·
∑
{i,j,k}

{[
ϕsrRi

rjk−ϕirRs
rjk

]
pfs+

+
e

m
ϕir

2Rs
rjkA

(f)
(s)−

∂A(f)
(j)

∂xk
−
∂A

(f)
(k)

∂xj


:r

∑
{i,j,k}

F
(i)
(a)j

∣∣(k)

(c)
= 0 ,

(11)
where A{i,j} represents an alternate sum,

∑
{i,j,k} represents a cyclic sum, and we

have

F
(i)
(a)j

∣∣(k)

(c)
=
∂F

(i)
(a)j

∂pck
= 0 .

4 Gravitational-like geometrical model on the multi-time Hamil-
ton space of electrodynamics

To expose our geometrical Hamiltonian polymomentum gravitational theory on
the autonomous multi-time Hamilton space of electrodynamics EDMHn

m, we recall
that the fundamental vertical metrical d-tensor

Φ
(i)(j)
(a)(b) = h∗ab(t)ϕ

ij(x)

and the canonical nonlinear connection

NED =
(
N
1

(a)
(i)b, N2

(a)
(i)j

)
of the multi-time Hamilton space EDMHn

m produce a polymomentum gravitational
h∗-potential G on E∗ = J1∗(T ,M), locally expressed by

G = h∗abdt
a ⊗ dtb + ϕijdx

i ⊗ dxj + h∗abϕ
ijδpai ⊗ δpbj . (12)

We postulate that the geometrical Einstein-like equations, which govern the
multi-time gravitational h∗-potential G of the multi-time Hamilton space of elec-
trodynamics EDMHn

m, are the abstract geometrical Einstein equations attached
to the Cartan canonical connection CΓ(N) and to the adapted metric G on E∗,
namely

Ric(CΓ)− Sc(CΓ)

2
G = KT , (13)

where Ric(CΓ) represents the Ricci tensor of the Cartan connection, Sc(CΓ) is
the scalar curvature, K is the Einstein constant and T is an intrinsic d-tensor of
matter, which is called the stress-energy d-tensor of polymomenta.
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In order to describe the local geometrical Einstein-like equations (together with
their generalized conservation laws) in the adapted basis

{XA} =

{
δ

δta
,

δ

δxi
,

∂

∂pai

}
,

let CΓ (N) = (χcab, 0, γ
i
jk, 0) be the generalized Cartan canonical connection of

the space EDMHn
m. Taking into account the expressions of its adapted curvature

d-tensors on the space EDMHn
m, we immediately find (see [21]):

Theorem 4. The Ricci tensor Ric(CΓ) of the autonomous multi-time Hamilton
space of electrodynamics EDMHn

m is characterized by two effective local Ricci
d-tensors:

χab = χfabf , Rij = Rr
ijr .

These are exactly the classical Ricci tensors of the Riemannian temporal metric
hab(t) and the semi-Riemannian spatial metric ϕij(x).

Consequently, using the notations χ = habχab and R = ϕijRij , we get

Theorem 5. The scalar curvature Sc(CΓ) of the generalized Cartan connection CΓ
of the space EDMHn

m has the expression (for details, see [21])

Sc(CΓ) = (4mc) · χ+ R ,

where χ and R are the classical scalar curvatures of the semi-Riemannian metrics
hab(t) and ϕij(x).

Particularizing the generalized Einstein-like equations and the generalized con-
servation laws of an arbitrary multi-time Hamilton space MHn

m, we can establish
the main result of the geometrical polymomentum gravitational theory on the au-
tonomous multi-time Hamilton space of electrodynamics EDMHn

m (for more de-
tails, see [21]):

Theorem 6. (1) The local geometrical Einstein-like equations, that govern the
polymomentum gravitational potential of the space EDMHn

m, have the form

χab −
(4mc) · χ+ R

8mc
hab = KTab

Rij −
(4mc) · χ+ R

2
ϕij = KTij

− (4mc) · χ+ R

8mc
habϕ

ij = KT(i)(j)
(a)(b),

(14)

 0 = Tai, 0 = Tia, 0 = T(i)
(a)b

0 = T (j)
a(b), 0 = T (j)

i(b), 0 = T(i)
(a)j ,

(15)

where TAB , A,B ∈
{
a, i, (i)

(a)

}
, are the adapted components of the polymo-

mentum stress-energy d-tensor of matter T.



144 A. Oană, M. Neagu

(2) The polymomentum conservation laws of the geometrical Einstein-like equa-
tions of the space EDMHn

m are expressed by the formulas

[
(4mc) · χfb −

(4mc) · χ+ R

2
δfb

]
/f

= 0[
Rr
j −

(4mc) · χ+ R

2
δrj

]
|r

= 0,

(16)

where χfb = hfdχdb and Rr
j = ϕrsRsj .
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