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Czech Republic

Website: http://cm.osu.cz

The journal is reviewed in Zentralblatt für Mathematik and Mathematical Reviews.

Copyright c© 2012 The University of Ostrava

ISSN 1804-1388



Communications in Mathematics 20 (2012) 1–2
Copyright c© 2012 The University of Ostrava 1

Editorial

Marcella Palese

It is a pleasure to introduce this issue of Communications in Mathematics dedi-
cated to research papers treating various geometric aspects and structures involved
in the Calculus of Variations. Most of them were presented in a meeting which
obtained the official status of a Satellite Thematic Session of the 6th European
Congress of Mathematics held in Krakow, July 2012. The Satellite Thematic Ses-
sion on Geometric Methods in Calculus of Variations was held on the 6th of July
at the AGH University of Science and Technology in Krakow, in parallel with the
scientific activities of the Congress. Topics covered global analysis, analysis on
manifolds, differential geometry, mechanics of particles and systems and general
relativity and gravitation.

In the contribution by Fatibene, Francaviglia and Garruto it is shown that,
considering the range 3 ≤ m ≤ 20, there exist reductive splittings of the spin group
only in dimension m = 4 (and in this case in any signature), a result which is
relevant for applications in loop quantum gravity. In fact, since reductive splittings
allow to gobally define the standard Barbero-Immirzi connection, in dimension
other than 4, for ensuring globality additional structures should be required.

The paper by Francaviglia, myself and Winterroth introduces the concept of
conserved current variationally associated with locally variational invariant field
equations. It is shown that the invariance of the variation of the corresponding local
presentation is a sufficient condition for the current beeing variationally equivalent
to a global one. The case of a Chern-Simons theory is worked out and a global
current is variationally associated with a Chern-Simons local Lagrangian.

Havelková considers dynamical properties of singular Lagrangian systems by
studing symmetries and conservation laws for a specific singular Lagrangian system
of interest in physics. It is investigated whether to every point symmetry of a Euler-
Lagrange form there exists a Lagrangian such that the symmetry is also a point
symmetry of the Lagrangian itself. For the system under consideration the answer
is affirmative and the corresponding Lagrangians are all of order one.

Muzsnay and Nagy characterized the 3-dimensional Heisenberg group with left
invariant cubic metric as an example of Finsler manifold having infinite dimensional
curvature algebra and holonomy group. The aim of their paper is to describe
the algebraic structure of this curvature algebra; they prove that it is an infinite
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dimensional graded Lie subalgebra of the generalized Witt algebra of homogeneous
vector fields generated by three elements.

The paper by Rossi and Musilová treats an important aspect of the inverse
problem of the calculus of variations in a nonholonomic setting. The concept of
constraint variationality is introduced in the context of first order mechanical sys-
tems with general nonholonomic constraints and it is shown that such a concept
is equivalent with the existence of a closed representative in the class of 2-forms
determining the nonholonomic system. Together with constraint Helmholtz condi-
tions this result completes the basic geometric properties of constraint variational
systems.

Saunders deals with the projective Finsler metrizability problem, precisely with
the question whether a projective-equivalence class of sprays is the geodesic class
of a (locally or globally defined) Finsler function; this paper reviews an interesting
approach to the problem using an analogue of the multiplier approach to the inverse
problem in Lagrangian mechanics. Conditions are determined for the existence of
a global pseudo-Finsler function with Euler-Lagrange equations satisfied by the
geodesics of the sprays.

Our meeting enjoyed a pleasant, friendly and stimulating atmosphere promoting
interactions between various aspects and topics in the Calculus of Variations. My
thanks to all who contributed to this intent and, particularly, to Prof. Olga Rossi
for her fundamental help in the organization and the successful outcome of this
event.

Torino, 18th November 2012

Marcella Palese
Guest Editor

Editor’s address:
Department of Mathematics, University of Torino, via C. Alberto 10, I-10123 Torino,

Italy

E-mail: marcella.palese a©unito.it
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Do Barbero-Immirzi connections exist in different
dimensions and signatures?

L. Fatibene, M. Francaviglia, S. Garruto

Abstract. We shall show that no reductive splitting of the spin group exists
in dimension 3 ≤ m ≤ 20 other than in dimension m = 4. In dimension 4
there are reductive splittings in any signature. Euclidean and Lorentzian
signatures are reviewed in particular and signature (2, 2) is investigated
explicitly in detail.

Reductive splittings allow to define a global SU(2)-connection over space-
time which encodes in an weird way the holonomy of the standard spin
connection. The standard Barbero-Immirzi (BI) connection used in LQG is
then obtained by restriction to a spacelike slice. This mechanism provides
a good control on globality and covariance of BI connection showing that
in dimension other than 4 one needs to provide some other mechanism to
define the analogous of BI connection and control its globality.

1 Introduction
Barbero-Immirzi (BI) connection is used in LQG to describe gravitational field on
a spacelike slice of spacetime; see [1], [2]. In standard literature it is obtained by
a canonical transformation on the phase space of the spatial Hamiltonian system
describing classical GR; see [3].

The discussion about the possibility of defining a BI counterpart at the level
of spacetime has been longly discussed in literature (see [4], [5]). The discussion
mainly focused on the possibility of obtaining the BI space connection by restricting
a suitable BI spin connection defined globally over spacetime as a spacetime object.

We recently showed that the standard spatial BI connection can be in fact ob-
tained by restriction on space of a spacetime SU(2)-connection (see [6]) in spite
of controversial opinions about such a possibility. Such a SU(2)-connection is not
though simply related to the spacetime spin connection; it is obtained by a mech-
anism called reduction and its global properties can be controlled in view of an
algebraic group-theoretical structure called a reductive group splitting (see [7]).

2010 MSC: 53C07
Key words: Barbero-Immirzi connection, Global connections, Loop Quantum Gravity
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When one defines connections by restriction then constraints on the holonomy
group of the restricted connection apply (see [8], [9]) showing that standard spatial
BI connection cannot be obtained directly by restriction from the spacetime spin
connection. However, such holonomic constraints disappear when the connection is
defined by reduction; as a matter of fact any Spin(η)-connection can be reduced to a
SU(2)-connection. Unfortunately, reduction produces an encoding of the holonomy
of the original spin connection into the holonomy of the reduced connection; such
an encoding is far from being trivial and it needs to be further investigated.

The standard BI connection defined in LQG exists because of a number of
coincidences; first of all there exist group embeddings ι : SU(2) → Spin(4) and
ι : SU(2) → Spin(3, 1) which are reductive. Second, in dimension 4 a number of
topological coincidences guarantee that any spin bundle over spacetime can be
reduced to a SU(2)-bundle under the mild hypotheses which are equivalent to the
existence of global Lorentzian metrics and global spin structures (see [10], [11], [7]).
Finally, the dynamics can be written in terms of the BI connection by adding to
the Hilbert action a term which is vanishing on-shell and not compromizing the
classical sector; the modified action is called the Holst action ([12], [13], [14]) and
it provides a dynamically equivalent formulation of standard GR.

Of course, standard BI approach is not the only way to work out LQG. Different
frameworks have been proposed (see [15] and [16] just to mention some of them).
Nor one can exclude other frameworks to control global properties of BI connection
(see [17]). Still we have to stress that, to the best of our knowledge, the one based
on reductions is the only general framework known (with the exception of some ad
hoc method) to control global properties of standard BI connection at the full level
of spacetime.

In this paper we shall consider possible extensions of BI construction by reduc-
tion to different signatures and dimensions. We shall show that the construction
basically works only in dimension m = 4 in all signatures (at least for dimension
3 ≤ m ≤ 20).

In Section 2 we shall briefly review the reduction framework. In Section 3 we
shall briefly extend the framework to general dimensions. In Section 4 we shall
report some result about non-existence of reductive splitting with groups relevant
in dimension m for m ≤ 20. In Section 5 we shall check directly reductive splittings
in all signatures in dimension 4. The Euclidean and Lorentzian signature are well
known. Relatively new is the case of Kleinian signature η = (2, 2). BI connection
has been proposed and used in signature (2, 2) (see [18]); however, to the best of
our knowledge the global properties of BI connections for signature (2,2) and its
relation to a reductive splitting is new.

2 Reductive splittings

In this Section we shall briefly consider the algebraic structure that enable us to
reduce the connections. Let us consider a principal bundle P with group G and a
subgroup i : H → G. Let us then assume and fix any H-reduction (Q, ι) of P given



Do Barbero-Immirzi connections exist in different dimensions and signatures? 5

by
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(1)

The existence of such a reduction usually imposes topological conditions on space-
time. In the standard situation of G = Spin(3, 1) and H = SU(2) the bundle
reduction is automatically ensured by standard physical requirements (essentially
by existence of global spinors).

The group embedding i : H → G induces an algebra embedding Tei : h → g.
Let us define the vector space V = g/h so to have the short sequence of vector
spaces

0 h g V 0............................................................... ............ ........................................................................................ ............
Tei

........................................................................................ ............
p

............................................................... ............

.................................................................
.............
...............
............

Φ

(2)

where Φ: V → g is a sequence splitting (i.e. p ◦ Φ = idV ) which always exists for
sequences of vector spaces. Accordingly, one has g ' h⊕ Φ(V ).

We say that H is reductive in G if there is an action λ : H × V → V such that
ad(h)(Φ(v)) ≡ Φ ◦ λ(h, v) where ad(h) : g→ g is the restriction to the subgroup H
of the adjoint action of G onto its algebra g; see [10], [19], [20]. In other words, the
subspace Φ(V ) ⊂ g is invariant with respect to the adjoint action of H ⊂ G on the
algebra g.

Let us stress that the vector subspace Φ(V ) ⊂ g is not required to be (and often
it is not) a subalgebra; one just needs the group embedding i : H → G. A bundle
H-reduction ι : Q → P with respect to a subgroup H reductive in G is enough to
allow that each G-connection ω on P induces an H-connection on Q, which will be
called the reduced connection (see [6] and [7]).

3 Connections in Dimension m > 2
To fix notation let us consider here spacetimes with dimension m ≡ n+ 1 > 2 and
signature η = (n, 1); the relevant spin groups are Spin(n) for space and Spin(n, 1)
for spacetime. Accordingly, we are using signature diag(−1, 1, 1, . . . , 1) on M so
that the first coordinate x0 corresponds to time.

Here both the groups are thought as embedded within their relevant Clifford
algebra; see [21]. The even Clifford algebras (where the groups’ Lie algebras
are embedded) are spanned by even products of Dirac matrices, here denoted by
I, Eαβ , Eαβγδ, . . . with α, β, · · · = 0..n. The Clifford algebras are suitably embed-
ded one into the other by

i0 : C(n)→ C(n, 1) : Ei1...i2l 7→ Ei1...i2l (3)

with i1, i2 · · · = 1..n. In other words, the lower dimensional Clifford algebra C(n)
is realized within the higher dimensional one C(n, 1) by means of even products
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of Dirac matrices, except E0. Such an algebra embedding restricts to a group
embedding

i : Spin(n)→ Spin(n, 1) (4)

The corresponding covering maps allow to define the embedding of j : SO(n)→
SO(n, 1) which corresponds to rotations that fix the first axis, i.e.

j : SO(n)→ SO(n, 1) : λ 7→
(

1 0
0 λ

)
(5)

We have to show that the embedding (4) is reductive. Let us consider the
sequence

0 spin(n) spin(n, 1) V 0........................................... ............ ..................................................................................... ............
Tei ................................................................................ ............

p
...................................... ............

...........................................................................................
.......
............
............

Φ

(6)

The complement vector space V is spanned by E0i and we fix the splitting by
setting

Φ: V → spin(n, 1) : E0i 7→ E0i +
1

2
βi
jkEjk (7)

One can write down the condition for which such a splitting is reductive, i.e.

λliβl
jk = βi

lmλjlλ
k
m (8)

which must hold true for any λ ∈ SO(n). Then one can consider a 1-parameter
subgroup λ(t) based at the identity (i.e. λ(0) = I) and the corresponding Lie algebra
element λ̇ = λ̇(0); the infinitesimal form of (8) is then

λ̇liβl
jk = βi

lkλ̇jl + βi
jmλ̇km (9)

which must hold for any λ̇ ∈ so(n) ' spin(n), i.e. for any skew–symmetric matrix.
Then one should try to look for solutions of condition (9) that correspond to

reductive splittings, besides the trivial case βi
jk = 0 which corresponds to no

Immirzi parameter. Before searching for explicit solutions for 2 ≤ n ≤ 19 (i.e.
spacetime dimension 3 ≤ m ≤ 20) let us consider few simple examples.

For n = 2, Latin indices range in i, j, · · · = 1, 2. The condition (9) specifies to{
β1

12 = β2
12

β2
12 = −β1

12
(10)

Hence one has β1
12 = β2

12 = 0, so that there is no reductive splitting other then
βi
jk = 0.

For n = 3 (i.e. m = 4), Latin indices range in i, j, · · · = 1, 2, 3. The condition
(9) has the only solution is βi

jk = βεi
jk which spans reductive splittings (see [6]

and [7]). The constant parameter β is related to the standard Immirzi parameter.
One can immediately generalize that constructions in two classes of embeddings.

In both cases let us fix on M signature η = (r, s) (with r+s = m). In the first case
we take signature ηab = diag(−1, . . . ,−1︸ ︷︷ ︸

s times

, 1, . . . , 1︸ ︷︷ ︸
r times

) and consider the embedding

i : Spin(r, s− 1)→ Spin(r, s) (11)
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Accordingly, one is left with a signature η̂ = (r, s − 1) = (k, l) on the “spatial”
leaf of dimension n = m − 1 = k + l. The standard canonical form of signature
η̂ = (k, l) is fixed to be η̂ij = diag(−1, . . . ,−1︸ ︷︷ ︸

l=s−1 times

, 1, . . . , 1︸ ︷︷ ︸
k=r times

). For notation convenience,

in the second case we take signature ηab = diag(1, . . . , 1︸ ︷︷ ︸
r times

,−1, . . . ,−1︸ ︷︷ ︸
s times

) and consider

the embedding
i : Spin(r − 1, s)→ Spin(r, s) (12)

Accordingly, one is left with a signature η̂ = (r − 1, s) = (k, l) on the “spatial”
leaf of dimension n = m − 1 = k + l. The standard canonical form of signature
η̂ = (k, l) is fixed to be η̂ij = diag( 1, . . . , 1︸ ︷︷ ︸

k=r−1 times

,−1, . . . ,−1︸ ︷︷ ︸
l=s times

).

In both cases we select the first axis as a fixed rotational axis and denote by
ηij the standard canonical form of signature η̂ = (k, l).

4 Non-existence of reductive splittings in dimension different
from m = 4

In order to verify whether a reductive splitting occurs in an arbitrary dimension
we must solve equations (9), or better said the system obtained from (9) fixing and
arbitrary λ̇ ∈ spin(n). Since the number of equations increases with the dimension
of the space, it is difficult to find solutions by direct calculations. However, one can
use Maple tensor package (see [22]) to easily compute the solution of linear system
(9) for any arbitrary (but fixed) dimension and signature.

First of all, one should look for the general expression of the generators λ̇li of
the Lie algebra spin(k, l) ' so(k, l). Let us fix the standard bilinear form η̂ij =
diag(1, . . . , 1︸ ︷︷ ︸

k times

,−1, . . . ,−1︸ ︷︷ ︸
l times

) of signature η̂ = (k, l); then the corresponding orthogonal

group SO(η̂) is the set of matrices defined by the relation:

λikη̂ijλ
j
l = η̂kl (13)

The relation above can be read in the algebra as:

λ̇ikη̂ij + η̂kiλ̇
i
j = 0 (14)

It is easy to see that conditions (14) tell us that λ̇li is a block matrix:

λ̇ =

(
A1 B
tB A2

)
(15)

where A1 and A2 are skew-symmetric matrices, of dimension k × k and l × l re-
spectively, while B is an arbitrary k× l matrix. One can set generators of so(η̂) to
be matrices with all zero entries but two where ±1 is set according to (15).

Then equation (9) can be expanded along this basis of so(η) obtaining a system

of n3

4 (n − 1)2 equations. The unknowns βk
ij are n2

2 (n − 1). For any n > 2 one
has more equations than unknowns and has to compute the rank of the system to
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discuss solutions. Of course computing the rank of the system obtained from (9)
is rather difficult in general thus we shall analyze each case separately.

Of course, since the system is homogeneous, it cannot be inconsistent but it must
have at least the trivial solution. We aim to discuss whether, in some dimension,
there are solutions other than the trivial one.

As we have seen above, in a fixed dimension m and signature η = (r, s) there
are two ways of defining group embeddings, one fixing a time axis and one fixing a
space axis. So we have to check both of them.

We have obtained a computer-aided solution for the system in all spacetime
dimensions from m = 3 up to m = 20 ; in each dimension we considered any
signature of spacetime η = (r, s) with 0 ≤ r ≤ m and s = m − r; in each such
dimension and signature we consider both cases, i.e. fixing a time axis or a space
axis.

[Of course, if r = 0 one can only fix a time axis. Analogously, if r = m (and
s = 0) one can only fix a space case.]

In all these cases (except for case m = 4 which will be analyzed in the next
section) none of the group splitting considered is reductive, besides the trivial case
βk
ij = 0. Regardless the existence of bundle reductions, in these cases there is no

canonical way of defining BI connections and one has to find out different mech-
anism (e.g. resorting to embeddings involving different groups) to control global
properties and covariance of BI connections (possibly changing the groups involved)
and to proceed to quantize á la loop.

5 Reductive splittings in dimension m = 4
Among the considered dimensions (3 ≤ m ≤ 20), we found that only in m = 4 there
are non-trivial reductive splittings. In dimension m = 4 one has five signatures,
three of them with 2 embeddings to be analyzed and two with one embedding only,
for a total of 8 embeddings to be considered. In all these cases, it turns out to be
that the splitting coefficients βl

jk are proportional to the Levi-Civita symbol:

βl
jk = βε.jkl := βη̂lmε

mjk (γ ∈ R) (16)

each using the relevant standard form η̂lm according to the notation explained
above.

Once βl
jk are calculated we can directly verify from the definition that splittings

in dimension four are all reductive.
First of all we shall define some useful notation: let us set τi = 1

2εi
j
·
k
· Ejk and

σi = E0i. Since we shall have to compute products of τi it is convenient to write
them in a closed form. One can verify that:

τiτj = −η00ηηijI− εijk· τk (17)

where, by an abuse of language, we denote by η the determinant of ηab.
Furthermore we can write the splitting ek = (−α3E + β̂)τk, where β̂ = βη̂

is a constant simply related to β and we set α :=
√
η (possibly imaginary) and

E := αE0123. Let us remark also that if S ∈ Spin(k, l), than it can be written as a
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linear combination of Spin(k, l) generators, namely

S = a0I + aiτi (18)

with inverse:

S−1 = a0I− aiτi (19)

under the constraint:

(a0)2 + η00η |~a|2 = 1 (20)

which is the condition that defines spin group in C+(η).
With this notation we are ready to verify the splitting by applying directly the

definition. We have then to compute the adjoint action, restricted to Spin(k, l), on
the bases ek of Φ(V ) ⊂ spin(r, s). One has:

SekS
−1 = (a0I + aiτi)(αηE + β̂)τk(a0I− ajτj) =

= (αηE + β̂)(a0I + aiτi)(a
0τk − ajτkτj) =

= (αηE + β̂)(a0I + aiτi)
(
a0τk − aj(−η00ηη̂kjI− εkjl·τl)

)
=

= (αηE + β̂)
(
(a0)2τk + η00ηa

.
ka

0I + a0ajεkj
l
·τl+

+ a0aiτiτk + aia.kη00ητi + aiajεkj
l
·τiτl

)
=

= (αηE + β̂)((a0)2τk + η00ηa
.
ka

0I + a0ajεkj
l
·τl+

+ a0a.k(−η00ηI)− a0aiεik
l
·τl + aia.kη00ητi+

+ aiajεkji(−η00η)− aiajεkjl·εilm· τm) =

= (αηE + β̂)
(
(a0)2τk − 2a0ajεjk

l
·τl+

+ ama.kη00ητm − aiajεkjl·εilm· τm
)

(21)

By using the contraction formula εkjlε
·
i
ml = η̂kiη̂

m
j − η̂mk η̂ji we can re-write

SekS
−1 as:

SekS
−1 = lmk em (22)

where

lmk =
(
(a0)2 − ηη00|~a|2

)
δmk + 2ηη00a

ma.k − 2a0aiεik
m
. (23)

If one uses (20) it is easy to see that (23) is an orthogonal transformation for η̂ab,
namely, lmi η̂mnl

m
j = η̂ij . In this way we have been able to show that in dimension

m = 4 the splittings are reductive in all signatures.

6 Conclusions and Perspectives
We showed that for any dimension 3 ≤ m = r + s ≤ 20 all the embeddings

i : Spin(r − 1, s)→ Spin(r, s)

i : Spin(r, s− 1)→ Spin(r, s)
(24)

are not reductive except when m = 4.
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Inm = 4 they are all reductive for any choice of the signature, i.e. for 0 ≤ r ≤ m.
In Euclidean signature the reductive splitting i : Spin(3)→ Spin(4) reproduces the
standard BI connection used in the Euclidean sector. In Lorentzian signature the
reductive splitting i : Spin(3) → Spin(3, 1) reproduces the standard BI connection
used in the Lorentzian sector.

The other signatures in dimension m = 4 allow us to define a BI SU(2)-
connection on spacetime which produces the BI in Hamiltonian formalism by re-
striction. By this mechanism the global properties of the BI are under control
and the holonomy encoding of the spin connection into the holonomy of the BI
connection is manifest, though it surely deserves further investigations.

In dimension other than 4 this mechanism cannot be used in order to guarantee
the existence of global BI connections (or fields which behaves as connections under
gauge transformations enforcing covariance of holonomic variables) and one needs
to rely on some other construction to quantize gravity as in LQG, possibly relying
on some other group as suggested e.g. in [17].
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Locally variational invariant field equations and global

currents: Chern-Simons theories

M. Francaviglia, M. Palese, E. Winterroth

Abstract. We introduce the concept of conserved current variationally as-
sociated with locally variational invariant field equations. The invariance of
the variation of the corresponding local presentation is a sufficient condition
for the current beeing variationally equivalent to a global one. The case of
a Chern-Simons theory is worked out and a global current is variationally
associated with a Chern-Simons local Lagrangian.

1 Introduction
We are interested in the study of the relation between symmetries (i.e. invariance
properties) of field equations and corresponding conservation laws. More precisely,
the topic of this paper is the investigation of some aspects concerning the inter-
play between symmetries, conservation laws and variational principles. We shall
consider Noether conservation laws associated with the invariance of global Euler-
-Lagrange morphisms generated by local variational problems of a given type.

We shall characterize symmetries of field equations having ‘variational’ meaning.
In order to understand the structure of a phenomenon described by field equations,
one should be interested in conservation laws more precisely characterized than
those directly associated with invariance properties of field equations. Thus, we
will look for conservation laws coming from invariance properties of a (possibly
local) variational problem in its whole (rather than a field equation solely) to find
a way of associating global conservation laws with a local Lagrangian field theory
generating global Euler-Lagrange equations.

From a physical point of view, field equations appear to be a fundamental ob-
ject, since they describe the changing of the field in base space. Somehow, we
are well disposed to give importance to symmetries of equations, because they are
transformations of the space leaving invariant the description of such a change

2010 MSC: 55N30, 55R10, 58A12, 58A20, 58E30, 70S10
Key words: Local variational problem, global current, Chern-Simons theory
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provided by means of field equations. On the other hand the possibility of formu-
lating a variational principle (i.e. a principle of stationary action) – from which
both changing of fields and associated conservation laws (i.e. quantities not chang-
ing in the base space) could be obtained – has been one of the most important
achievements in the history of mathematical and physical sciences in modern age.
It allows, in fact, to keep account of both what (and how) changes and what (and
how) is conserved. In the variational calculus perspective, we could say that Euler-
-Lagrange field equations are ‘adjoint’ to stationary principles up to conservation
laws.

In line with Lepage’s cornerstone papers [23], which pointed out the fact that
the Euler-Lagrange operator is a quotient morphism of the exterior differential,
we shall consider a geometric formulation of the calculus of variations on fibered
manifolds for which the Euler-Lagrange operator is a morphism of a finite order
exact sequence of sheaves according to [20]. The module in degree (n + 1), con-
tains so-called (variational) dynamical forms; a given equation is globally an Euler-
-Lagrange equation if its dynamical form is closed in the complex of global sections
(Helmholtz conditions) and its cohomolgy class is trivial. Dynamical forms which
are only locally variational, i.e. closed in the complex and defining a non trivial
cohomology class, admit a system of local Lagrangians, one for each open set in a
suitable covering, which satisfy certain relations among them.

In her celebrated paper Invariante Variationsprobleme [25], Emmy Noether
clearly pointed out how, considering invariance of variational problems, a major
refinement in the description of associated conserved quantities is achieved. A for-
mulation in modern language of Noether’s results would say that symmetry proper-
ties of the Euler-Lagrange expressions introduce a cohomology class which adds up
to Noether currents; it is important to stress that they are related with invariance
properties of the first variation. Global projectable vector fields on prolongations of
fibered manifold which are symmetries of dynamical forms, in particular of locally
variational dynamical forms, and corresponding formulations of Noether theorem II
can be considered in order to determine obstructions to the globality of associated
conserved quantities [16]. The concept of global (and local) variationally trivial
Lagrangians and in general of variationally trivial currents (i.e. (n− 1)-forms) will
be taken in consideration and for simplicity, in the sequel, a locally variational
form will be any closed p-form in the variational sequence; inverse problems at any
degree of variational forms will be considered.

In the present paper, we introduce the concept of conserved current variationally
associated with locally variational invariant field equations. The invariance of the
variation of the corresponding local presentation is a sufficient condition for the
current beeing variationally equivalent to a global one. The case of a Chern-Simons
gauge theory is worked out and a global current is variationally associated with a
Chern-Simons local Lagrangian.

Chern-Simons theories exhibit in fact many interesting and important proper-
ties: they are based on secondary characteristic classes and can be associated with
new topological invariants for knots and three-manifolds; they appeared in physics
as natural mass terms for gauge theories and for gravity in dimension three, and
after quantization they lead to a quantized coupling constant as well as a mass
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[10]. In particular, Chern-Simons gauge theory is also an example of a topologi-
cal field theory [32]. Furthermore, as it was remarked in [2], obstructions to the
construction of natural Lagrangians are in a one-to-one correspondence with the
conformally invariant characteristic forms discovered by Chern and Simons in [9].
Finally, the Chern-Simons term is related to the anomaly cancellation problem in
2-dimensional conformal field theories [7].

2 Locally variational invariant field equations and variationally
equivalent problems

We shall consider the variational sequence [20] defined on a fibered manifold π : Y →
X, with dimX = n and dimY = n + m. For r ≥ 0 we have the r-jet space JrY
of jet prolongations of sections of the fibered manifold π. We have also the natural
fiberings πrs : JrY → JsY , r ≥ s, and πr : JrY → X; among these the fiberings
πrr−1 are affine bundles which induce the natural fibered splitting

JrY ×Jr−1Y T ∗Jr−1Y ' JrY ×Jr−1Y (T ∗X ⊕ V ∗Jr−1Y ) ,

which, in turn, induces also a decomposition of the exterior differential on Y in the
horizontal and vertical differential, (πr+1

r )∗◦ d = dH + dV . By (jrΞ, ξ) we denote
the jet prolongation of a projectable vector field (Ξ, ξ) on Y , and by jrΞH and
jrΞV the horizontal and the vertical part of jrΞ, respectively.

We have the sheaf splitting Hp(s+1,s) =
⊕p

t=0 C
p−t
(s+1,s) ∧H

t
s+1 where Hp(s,q) and

Hps (q ≤ s) are sheaves of horizontal forms, and Cp(s,q) ⊂ H
p
(s,q) are subsheaves of

contact forms [20]. Let us denote by h the projection onto the nontrivial summand
with the higest value of t and by d kerh the sheaf generated by the corresponding
presheaf and set then Θ∗r ≡ kerh + d kerh; the quotient sequence

0→ IRY → . . .
En−1−−−→ Λnr /Θ

n
r
En−−→ Λn+1

r /Θn+1
r

En+1−−−→ Λn+2
r /Θn+2

r

En+2−−−→ . . .
d−→ 0

defines the r–th order variational sequence associated with the fibered manifold
Y → X; here Λps is the standard sheaf of p–forms on JsY . The quotient sheaves
(the sections of which are classes of forms modulo contact forms) in the variational
sequence can be represented as sheaves Vkr of k-forms on jet spaces of higher order.
In particular, currents are classes ν ∈ (Vn−1

r )Y ; Lagrangians are classes λ ∈ (Vnr )Y ,
while En(λ) is called a Euler-Lagrange form (being En the Euler-Lagrange mor-
phism); dynamical forms are classes η ∈ (Vn+1

r )Y and En+1(η) is a Helmohltz form
(being En+1 the corresponding Helmholtz morphism).

Since the variational sequence is a soft resolution of the constant sheaf IRY

over Y , the cohomology of the complex of global sections, denoted by H∗V S(Y ),
is naturally isomorphic to both the Čech cohomology of Y with coefficients in the
constant sheaf IR and the de Rham cohomology Hk

dRY [20].
Let Kp

r ≡ Ker Ep. We have the short exact sequence of sheaves

0→Kp
r
i−→ Vpr

Ep−→ Ep(Vpr )→ 0 .

For any global section β ∈ (Vp+1
r )Y we have β ∈ (Ep(Vpr ))Y if and only if

Ep+1(β) = 0, which are conditions of local variationality. A global inverse prob-
lem is to find necessary and sufficient conditions for such a locally variational β
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to be globally variational. In particular En(Vnr ) is the sheave of Euler-Lagrange
morphisms and η ∈ (En(Vnr ))Y if and only if En+1(η) = 0, which are Helmholtz
conditions.

The above exact sequence gives rise to the long exact sequence in Čech coho-
mology

0→ (Kp
r)Y → (Vpr )Y → (Ep(Vpr ))Y

δp−→ H1(Y ,Kp
r)→ 0 ,

where the connecting homomorphism δp = i−1 ◦ d ◦ E−1
p is the mapping of coho-

mologies in the corresponding diagram of cochain complexes. In particular, every
η ∈ (En(Vnr ))Y (i.e. locally variational) defines a cohomology class δ(η) ≡ δn(η) ∈
H1(Y ,Kn

r ). Furthermore, every µ ∈ (dH(Vn−1
r ))Y (i.e. locally variationally triv-

ial) defines a cohomology class δ′(µ) ≡ δn−1(µ) ∈ H1(Y ,Kn−1
r ).

Note that η is globally variational if and only if δ(η) = 0. In the following
we will be interested in the non trivial case δ(η) 6= 0 whereby η = En(λ) can be
solved only locally, i.e. for any countable good covering of Y there exists a local
Lagrangian λi over each subset Ui ⊂ Y such that ηi = En(λi).

A local variational problem is a system of local sections λi of (Vnr )Ui such that
En((λi − λj)|Ui∩Uj ) = 0. Note that dλ = 0 implies dηλ = 0, while dηλ = 0 only

implies ηdλ = 0 i.e. dλ ∈ C1(U,Kn
r ) in Čech cohomology [5]. We call ({U i}i∈Z, λi)

a presentation of the local variational problem. Two local variational problems of
degree p are equivalent if and only if they give rise to the same variational class of
forms as the image of the corresponding morphism Ep in the variational sequence.
This means that the coboundary is variationally trivial.

The concept of a variational Lie derivative operator LjrΞ which is a local dif-
ferential operator enables us to define symmetries of classes of forms of any degree
in the variational sequence and the corresponding conservation theorems [19]. We
notice that the variational Lie derivative acts on cohomology classes: closed vari-
ational forms defining nontrivial cohomology classes are trasformed in variational
forms with trivial cohomology classes [29], [30]. Note, however, that an infinites-
imal symmetry of a local presentation is not necessarily a symmetry of another
local presentation [16].

In particular, if we have a 0-cocycle of currents νi (dνi 6= 0) such that µ = dHνi
and dµν = 0, then by using the representation of the Lie derivative of classes of
variational forms of degree p ≤ n−1 given in [19], we have µLΞνi = dH(ΞH dHνi+
ΞV dV νi); Since we also have

LΞµν = µLΞνi = dH(ΞH µν + ΞV pdV µν ) ,

from the definition of an equivalent variational problem, we can state that the local
problem defined by LΞνi is variationally equivalent to the global problem defined
by ΞH µν + ΞV pdV µν .

Moreover, if we have a 0-cocycle of Lagrangians (case p = n+1) or of variational
forms of higher degree (in case p = n+ 2 we have a 0-cocycle of dynamical forms)
λi (dλi 6= 0) such that η = Ep(λi), then by linearity ηLΞλi = En(ΞV ηλ); again,
as a consequence of the fact that ηLΞλi = En(ΞV ηλ), we have that the local
problem defined by the local presentation LΞλi is variationally equivalent to the
global problem defined by ΞV ηλ.
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Resorting to the naturality of the variational Lie derivative we stated the fol-
lowing important result for the calculus of variations [29], [30], [18].

Lemma 1. Let µ ∈ Vpr , with p ≤ n, be a locally variationally trivial p-form, i.e.
such that Ep(µ) = 0 and let δp(µν) 6= 0. We have δp(LΞµν) = 0. Analogously, let
η ∈ Vpr , with p ≥ n + 1, be a locally variational p-form, i.e. such that Ep(η) = 0
and let δp(ηλ) 6= 0. We have δp(LΞηλ) = 0.

Geometric definitions of conserved quantities in field theories have been pro-
posed within formulations based on symmetries of Euler-Lagrange operator rather
than of the Lagrangian, see e.g. [31], [15], and strictly related with such an ap-
proach are also papers proposing the concept of relative conservation laws; see e.g.
[12]. Accordingly, let us now consider the case of invariance of field equations, i.e.
the case in which we will assume Ξ to be a generalized symmetry, i.e. a symmetry
of a class of (n+ 1)-forms η in the variational sequence.

Let then ηλ be the global Euler-Lagrange morphism of a local variational prob-
lem. It is a well known fact that Ξ being a generalized symmetry implies that
En(ΞV η) = 0, thus locally ΞV η = dHνi, then there exists a 0-cocycle νi, defined
by µν = ΞV ηλ ≡ dHνi. Notice that dΞV ηλ = 0, but in general δn(ΞV ηλ) 6= 0
[16]. Along critical sections this implies the conservation law dHνi = 0 1.

Noether’s Theorem II implies that locally LΞλi = dHβi, thus we can write
ΞV ηλ + dH(εi − βi) = 0, where εi is the usual canonical Noether current; the
current εi − βi is a local object and it is conserved along the solutions of Euler-
-Lagrange equations (critical sections). We stress that when Ξ is only a symmetry
of a dynamical form and not a symmetry of the Lagrangian, the current νi + εi is
not a conserved current and it is such that dH(νi + εi) is locally equal to dHβi;
see also [31]. We shall call (νi + εi) a strong Noether current. Notice that if Ξ
would be also a symmetry of the cochain of Lagrangians a strong Noether current
would turn out to be a conserved current along any sections, not only along critical
sections. Thus in this specific case we get the following.

Corollary 1. Divergence expressions of the local problem defined by LΞνi coincide
with divergence expressions for the global current ΞH ΞV ηλ+ΞV pdV (ΞV ηλ).

3 Currents variationally associated with locally variational field
equations

We shall study variations of conserved currents in a quite general setting by deter-
mining the condition for the variation of a system of local strong Noether current to
be equivalent to a system of global conserved currents. We now introduce the con-
cept of conserved current variationally associated with locally variational invariant
field equations and show that the invariance of the variation of the correspond-
ing local presentation is a sufficient condition for the current beeing variationally
equivalent to a global one.

Definition 1. We say a conserved current for an invariant field equation to be
variationally associated if the symmetry of the field equation is also a symmetry
for the variation of the local problem generating such a field equation.

1In this particular case νi is more precisely fixed, since dHνi = ΞV η.
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In other words, if λi is a local presentation we look for currents associated to a
variation vector field Ξ satisfying LΞLΞλi = 0.

Suppose that, on the intersection of any two open sets, dλi = dHγij . By
linearity, we have LΞdLΞλi = dLΞLΞλi; thus the condition LΞLΞλi = 0 implies
LΞLΞdλi = 0. By Noether’s Theorem II we must have LΞdλi = dHζij , where ζij
is the sum of the Noether current associated with dλi and a form locally given as
dνi + dHρij . On the other hand LΞdλi = ddHεi, where εi is the Noether current
associated with λi. Of course, we have LΞdλi = LΞdHγij and again by Noether’s
Theorem II LΞλi = dHβi, hence by linearity we get, locally, ddHβi = LΞdHγij ,
where βi = νi + εi + dHωi.

More precisely, we can immediately see that the condition LΞLΞλi = 0 implies
only ddHνi = 0, i.e. dHνi is global 2. In order to get ddHβi = 0, i.e. the divergence of
the strong Noether current, dHβi, to be global we must require a stronger condition,
which is LΞdλi = 0. This condition, by linearity, means that the Lie derivative
must drag the local problems in such a way that they coincide on the intersections
of two open sets 3. Under this condition we have the conservation law dHLΞ(νi +
εi) = 0, where LΞ(νi + εi), the variation of the strong Noether currents, is a local
representative of a global conserved current.

In fact, Ξ being a generalized symmetry, we have LΞLΞλi = dHLΞ(νi + εi). If
the second variational derivative is vanishing, then we have the conservation law
dHLΞ(νi + εi) = 0, where LΞ(νi + εi) is a local representative of the current given
by

ΞH µν+ε + ΞV pdV µν+ε
≡ ΞH dH(νi + εi) + ΞV pdV (dH(νi+εi)) .

This current is global if dHd(νi+ εi) = 0; a sufficient condition for this to hold true
is LΞdλi = 0.

The conserved current associated with a generalized symmetry, assumed to be
also a symmetry of the variational derivative of the corresponding local inverse
problem, is variationally equivalent to the variation of the strong Noether currents
for the corresponding local system of Lagrangians. Moreover, if the variational Lie
derivative of the local system of Lagrangians is a global object, such a variation is
variationally equivalent to a global conserved current [18]. In this paper, we make
explicit the latter result in the case of Chern-Simons equations.

3.1 Chern-Simons gauge theory

It is well known that Chern-Simons field theories [8], [9] constitute a model for
classical and quantum gravitational fields and that gravity can be considered as
a gauge theory: in all odd dimensions and particularly in dimension three, where
the field equations reproduce exactly the Einstein field equations, a Chern-Simons
Lagrangian can be considered (instead of the Hilbert–Einstein Lagrangian) in which
the gauge potential is a linear combination of a frame and a spin connection; in
particular, 2+1 gravity with a negative cosmological constant can be formulated as

2Notice that the symmetry Ξ, besides beeing a generalized symmetry, is also a symmetry of
the variational problem LΞλi.

3This is also equivalent to d(νi +εi) = dH(ψij−ρij), i.e. the coboundary of the strong Noether
currents is locally exact; for details see [18].
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a Chern-Simons theory (see, e.g. [32], as well as [7] for higher dimensional Chern-
-Simons gravity). Developing a 3-dimensional Chern-Simons theory as a possible
and simpler model to analyse (2 + 1)-dimensional gravity brought in particular
results concerned with thermodynamics of higher dimensional black holes [3], which
in turn produced a renewed interest in Chern-Simons theories and, consequently,
in the problem of gauge symmetries and gauge charges for Chern-Simons theories.

Let us then take in consideration the 3-dimensional Chern-Simons Lagrangian

λCS(A) =
κ

4π
εµνρTr(AµdνAρ +

2

3
AµAνAρ)ds ,

where ds is a 3-dimensional volume density, κ = l
4G (being G the Newton’s constant

and setting c = 1), while Aµ = Aiµ Ji are the coefficients of the connection 1-form
A = Aµ dx

µ taking their values in any Lie algebra g with generators Ji. By fixing
g = sl(2,R) and choosing the generators Jk = 1

2σk, whith σk Pauli matrices, we
have [Ji, Jj ] = ηlkεkij Jl and Tr(JiJj) = 1

2ηij , with η = diag(−1, 1, 1) and ε012 = 1.
Hence, we can explicitly write λCS(A) = κ

16π ε
µνρ(ηijF

i
µνA

j
ρ − 1

3εijkA
i
µA

j
νA

k
ρ)ds,

where F iµν = dµA
i
ν − dνAiµ + εijkA

j
µA

k
ν is the so-called field strength.

Note that, if we consider two independent sl(2, IR) connections A and Ā, on the
intersection of two open sets, the Lagrangian λCS(A, Ā) := dλCS(A) = λCS(A)−
λCS(Ā) is a divergence. We recall for the sake of completeness that it is possible
to perform a change of fiber coordinates, i.e. to define two new dynamical fields,

ei and ωi, setting Ai = ωi + ei

l and Āi = ωi − ei

l , with l a constant, and in terms
of these new variables we can write λCS(A(ω, e), Ā(ω, e)) = κ

4πl

√
g(gµνRµν + 2

l2 ) +

dµ{ k
4πlηijε

µνρeiνω
j
ρ}, with gµν = ηij e

i
µ e

j
ν and Rµν = Rijρν e

j
µ e

ρ
i the Ricci tensor of

the metric g. In this expression, the non invariant term is under the total derivative
and subtracting such a term from λCS(A, Ā) one can get a global covariant Chern-
-Simons Lagrangian λCScov(A(ω, e), Ā(ω, e)) = κ

4π l

√
g(gµνRµν + 2

l2 )ds, which can

be recasted as λCScov(A, Ā) = k
8π ε

µνρ(ηijF̄
i
µν B

j
ρ+ηij∇̄µBiνBjρ+ 1

3εijkB
i
µB

j
ν B

k
ρ )ds,

where ∇̄µ is the covariant derivative with respect to the connection Ā and we set
Biµ = Aiµ − Āiµ. As just explained, the procedure of writing the gauge potential A
as a linear combination of the frame e and the spin connection ω enables one to
split the non invariant divergence dλCS(A) into a global piece plus a non covariant
divergence and to generate a new Lagrangian. The latter is the difference of two
local Lagrangians and it is covariant up to a divergence. It is well known that such
a procedure can be applied to each Chern-Simons Lagrangian in dimension three,
independently on the relevant gauge group of the theory, and it has been exploited
in order to find Noether covariant charges (see e.g. [1], [4] and references therein).
It should be noticed that such charges are associated with invariance properties of
the thus obtained and above mentioned new Lagrangian; the interpretation of the
relation with the conserved quantities associated with the original Euler-Lagrange
equations for the Chern-Simons Lagrangian must be deeper investigated, see the
discussion in [1].

The concept of a conserved current variationally associated with locally varia-
tional invariant Chern-Simons field equations provides a global conserved current
directly related with the Euler-Lagrange equations. Chern-Simons equations of
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motion are manifestly covariant with respect to spacetime diffeomorphism as well
as with respect to gauge transformations, the Chern-Simons Lagrangian instead
is not gauge invariant. Let νi + εi be a 0-cocycle of strong Noether currents for
the Chern-Simons Lagrangian and let βi = νi + εi + dHωi as above. We have the
following important result.

Proposition 1. Let Ξ be a symmetry of the Chern-Simons dynamical form, the
global conserved current

ΞH LΞλCSi + ΞV pdV LΞλCSi
,

is associated with the invariance of the Chern-Simons equations and it is variation-
ally equivalent to the variation of the strong Noether currents νi + εi.

Proof. Let LΞλCSi be a local Lagrangian presentation of the inverse problem asso-
ciated with the Chern-Simons dynamical form, we have LΞλCSi = dHβi and it is
easy to verify that for a Chern-Simons Lagrangian the relation dLΞλCSi = LΞdHγij
holds. Comparing these equations, we have that ddHβi = LΞdHγij , thus, in par-
ticular, ddH(νi + εi) = LΞdHγij . As stated in the section above it is clear that,
if LΞdHγij = 0, then dH(νi + εi) is global. Generators of such a global current
lie in the kernel of the second variational derivative and are symmetries of the
variationally trivial Lagrangian dHγij . �

Example 1. From to the relation LΞA
i
µ = ∇µΞiv, where Ξiv is the component of

the vertical part of Ξ with respect to a principal connection ω on the bundle
of frames, we have LΞλCS(A) = dµ( κ8π ε

µνρηijA
i
νdρΞ

j
v), therefore, writing Ξiv =

ΞiV +(Aiµ−ωiµ)Ξµ, for each ΞV ∈ k the local expression of a global current associated
with the gauge invariance of the Chern-Simons dynamical form is given by[

Ξγdµ(
κ

8π
εµνρηijA

i
νdρ(Ξ

j
V + (Ajτ − ωjτ )Ξτ )) +

(Ξk −AkλΞλ)dµ
( κ

8π
εµγρηkjdρ(Ξ

j
V + (Ajζ − ω

j
ζ)Ξ

ζ)
)]
dsγ .

As a final remark, we mention that local conserved currents can be derived by
using Lepagian equivalent of local systems of Lagrangians [6]. Therefore, a study
of inverse problems within a sequence of Lepage equivalent forms following [21],
[22], [24] is of great interest and will be the object of future investigations.
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Symmetries of a dynamical system represented by

singular Lagrangians

Monika Havelková

Abstract. Dynamical properties of singular Lagrangian systems differ from
those of classical Lagrangians of the form L = T − V . Even less is known
about symmetries and conservation laws of such Lagrangians and of their
corresponding actions. In this article we study symmetries and conservation
laws of a concrete singular Lagrangian system interesting in physics. We
solve the problem of determining all point symmetries of the Lagrangian
and of its Euler-Lagrange form, i.e. of the action.

It is known that every point symmetry of a Lagrangian is a point sym-
metry of its Euler-Lagrange form, and this of course happens also in our
case. We are also interested in the converse statement, namely if to every
point symmetry ξ of the Euler-Lagrange form E there exists a Lagrangian
λ for E such that ξ is a point symmetry of λ. In the case studied the answer
is affirmative, moreover we have found that the corresponding Lagrangians
are all of order one.

1 Introduction
The aim of this paper is to investigate symmetry properties of a singular (degen-
erate) Lagrangian system, when the Euler-Lagrange equations cannot be put a
normal form and rather form a system of implicit second order ordinary differen-
tial equations. While dynamical and symmetry properties of classical Lagrangians
of the form L = T − V (kinetic minus potential energy) have been in the focus of
analytical mechanics and the calculus of variations from the very beginning of the
art, there is still not much known about singular Lagrangian systems.

The problem of investigating singular Lagrangian systems goes back to the
pioneer work of Dirac [4]. Nowadays there are two approaches to this topic, the
first one coming from a generalization of the symplectic geometry [1], [2], [3], [6],

2010 MSC: 70H03, 70H33, 70H45
Key words: singular Lagrangians, Euler-Lagrange form, point symmetry, conservation law,

equivalent Lagrangians
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[7], [8], [9], [10] to mention only a few, and the second (more recent) one based on
the Lepagian theory of Lagrangian systems in jet bundles [12], [13], [14].

The Dirac algorithm is rather heuristic and it is known that applied to a con-
crete Lagrangian system different authors sometimes obtain confusing or even con-
tradictory results. Also the application of the symplectic constraint algorithm in
principle cannot provide complete information on the dynamics of the system and
its symmetries – due to the fact that the image of the constrained dynamics in
the symplectic manifold is not in one-to-one correspondence with the Lagrangian
dynamics.

In this paper we apply the second way to singular systems, based on a model
of a Lagrangian dynamics and the corresponding Hamiltonian dynamics defined in
the same jet bundle [13]. We study a concrete singular Lagrangian interesting in
physics, namely

L = q̇1q̇3 − q2q̇3 + q1q3. (1)

Hamilton equations and symmetries of this Lagrangian were studied e.g. in [15],
[16], [17], with incomplete results. With help of a “direct method” by Krupková
we described the dynamics of this Lagrangian system completely in [3]. Here
we continue in investigating the symmetry properties. Contrary to the preceding
authors looking for symmetries of this Lagrangian [5] our approach to the problem
is to find a complete solution of the symmetry conditions which take the form of a
system of partial differential equations for the components of the invariance vector
field. In this way we get all point symmetries of the Lagrangian (1) by solving the
Noether equation, and all its generalized symmetries (that is point symmetries of
the corresponding action) by solving the Noether–Bessel-Hagen equation.

It is known that every point symmetry of a Lagrangian is a point symmetry of
its Euler-Lagrange form, and this of course happens also in our case. We are also
interested in the converse statement, namely if to every point symmetry ξ of the
Euler-Lagrange form E there exists a Lagrangian λ for E such that ξ is a point
symmetry of λ. In the case studied the answer is affirmative, moreover we have
found that the corresponding Lagrangians are all of order one.

In this context it is worth mention that in the well-known case of the kinetic en-
ergy Lagrangian, surprisingly, the situation is not so simple. The invariance group
of the action – the Galilei group – also has the property that to every symmetry
there is an invariant Lagrangian, however, not in all the cases the Lagrangian is of
the first order. Namely, for Galilei transformations, one has only a second order
Lagrangian providing the same equations of motion as the kinetic energy [14].

2 Symmetries and conservation laws
We consider a fibred manifold π : Y → X, dimX = 1, dimY = m + 1 and its jet
prolongations π1 : J1Y → X, π2 : J2Y → X. In what follows, we denote by ∂ξ the
Lie derivative with respect to a vector field ξ.

Definition 1. Let ξ be a π-projectable vector field on Y . Let λ be Lagrangian on
J1Y . A vector field ξ on Y is called point symmetry of λ, if

∂J1ξλ = 0. (2)
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This equation is called Noether equation.

In fibred coordinates, the Noether equation reads:

L
dξ0

dt
+
∂L

∂t
ξ0 +

∂L

∂qσ
ξσ +

∂L

∂q̇σ
ξ̃σ = 0, (3)

where

ξ̃σ =
dξσ

dt
− q̇σ dξ0

dt
.

In this paper we shall use the Noether equation to solve the following problem:
Given a Lagrangian, find all its point symmetries and the corresponding first

integrals. In this case one has to solve the Noether equation with respect to the
vector field. First integrals are then found on the basis of the Noether Theorem:

Theorem 1. Let λ be a Lagrangian defined on an open subset W ⊂ J1Y , let θλ
be its Cartan form. Let a π-projectable vector field ξ on Y be a point symmetry
of the Lagrangian λ. Let γ be an extremal of λ defined on π1(W ) ⊂ X. Then

iJ1ξθλ ◦ J1γ = const.

Definition 2. A vector field ξ is called point symmetry of the Euler-Lagrange form
Eλ, if

∂J2ξEλ = 0. (4)

This equation is called the Noether–Bessel-Hagen equation.

We shall use the Noether–Bessel-Hagen equation to solve the following problem:
Find (all) infinitesimal transformations of Y which leave given Euler-Lagrange

expressions (a given Euler-Lagrange form) invariant. In this case (4) is considered
as a system of PDE’s for symmetries ξ of the given Euler-Lagrange form. (Solving
this problem one gets all point symmetries of the corresponding action).

2.1 Symmetries of a singular Lagrangian

In what follows we shall be interested in symmetry properties of the following
Lagrangian

L = q̇1q̇3 − q2q̇3 + q1q3.

With help of the Noether equation we shall find point symmetries of the Lag-
rangian (1).

We get:

0 = (q̇1q̇3 − q2q̇3 + q1q3)ξ̇0 + q3ξ1 − q̇3ξ2 + q1ξ3 + q̇3ξ̃1 + (q̇1 − q2)ξ̃3

and then:

0 = (q̇1q̇3 − q2q̇3 + q1q3)
dξ0

dt
+ q3ξ1 − q̇3ξ2 + q1ξ3 + q̇3 ·

(
dξ1

dt
− q̇1 dξ0

dt

)
+ (q̇1 − q2) ·

(
dξ3

dt
− q̇3 dξ0

dt

)
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where ξ0 = ξ0(t) a ξσ = ξσ(t, ξ1, ξ2, ξ3).
More explicitly:

0 = q̇1q̇3 dξ0

dt
− q2q̇3 dξ0

dt
+ q1q3 dξ0

dt
+ q3ξ1 − q̇3ξ2 + q1ξ3 + q̇3 ∂ξ

1

∂t
+ q̇1q̇3 ∂ξ

1

∂q1
+

+ q̇2q̇3 ∂ξ
1

∂q2
+ (q̇3)2 ∂ξ

1

∂q3
− q̇1q̇3 dξ0

dt
+ q̇1 ∂ξ

3

∂t
+ (q̇1)2 ∂ξ

3

∂q1
+ q̇1q̇2 ∂ξ

3

∂q2
+ q̇1q̇3 ∂ξ

3

∂q3

− q̇1q̇3 dξ0

dt
− q2 ∂ξ

3

∂t
− q2q̇1 ∂ξ

3

∂q1
− q2q̇2 ∂ξ

3

∂q2
− q2q̇3 ∂ξ

3

∂q3
+ q2q̇3 dξ0

dt

From this equation we obtain a system of equations for components of ξ as follows:

∂ξ1

∂q1
+
∂ξ3

∂q3
− dξ0

dt
= 0

∂ξ1

∂t
− q2 ∂ξ

3

∂q3
− ξ2 = 0

q1q3 dξ0

dt
+ q3ξ1 + q1ξ3 = 0

where ξ0 = ξ0(t), ξ1 = ξ1(t, q1), ξ2 = ξ2(t, q1, q2, q3), ξ3 = ξ3(q3).

Solving these equations we get:

Theorem 2. Point symmetries of Lagrangian (1) are generated by two vector fields:

∂

∂t
; q1 ∂

∂q1
+ q2 ∂

∂q2
− q3 ∂

∂q3
.

To the time translation generated by ∂
∂t there corresponds the first integral

F1 = (q1q3 − q̇1q̇3) = −H,

where H is the Hamiltonian. To q1 ∂
∂q1 + q2 ∂

∂q2 − q3 ∂
∂q3 there corresponds the

conserved function

F2 = q̇3q1 − (q̇1 + q2) · q3 = p1 · q1 − p3 · q3,

where

p1 = q̇3, p2 = 0, p3 = q̇1 − q2

are momenta.

2.2 Symmetries of the Euler-Lagrange form of L

Now let us determine point symmetries of the action of L, that is solutions of the
Noether–Bessel-Hagen equation. Since

Eσ =
∂L

∂qσ
− d

dt

∂L

∂q̇σ
,
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where σ = 1, 2, 3 we get from L (1) the following Euler-Lagrange expressions:

E1 = q3 − q̈3 E2 = −q̇3 E3 = q1 + q̇2 − q̈1. (5)

Substituting the second jet prolongation of ξ:

J2ξ = ξ0 ∂

∂t
+ ξσ

∂

∂qσ
+ ξ̃i

∂

∂q̇σ
+
˜̃
ξσ

∂

∂q̈σ
,

where

ξ̃σ = ˙ξσ − q̇σ ξ̇0,
˜̃
ξσ = ξ̈σ − 2q̈σ ξ̇0 − q̇σ ξ̈0,

we obtain the Noether–Bessel-Hagen equation in the following form:

Eν
∂ξν

∂qσ
+Eσ ξ̇0 +

∂Eσ
∂t

ξ0 +
∂Eσ
∂qν

ξν +
∂Eσ
∂q̇ν

(ξ̇ν− q̇ν ξ̇0)+
∂Eσ
∂q̈ν

(ξ̈ν−2q̈ν ξ̇0− q̇ν ξ̈0) = 0.

Substituting the Euler-Lagrange expressions (5), we get:

(q3 − q̈3)
∂ξ1

∂q1
− q̇3 ∂ξ

2

∂q1
+ (q1 − q̈1 + q̇2)

∂ξ3

∂q1
+ (q3 − q̈3)

∂ξ0

∂t
+

+ξ3 −
(

d2ξ3

dt2
− 2q̈3 ∂ξ

0

∂t
− q̇3 ∂

2ξ0

∂t2

)
= 0

(q3 − q̈3)
∂ξ1

∂q2
− q̇3 ∂ξ

2

∂q2
+ (q1 − q̈1 + q̇2)

∂ξ3

∂q2
− q̇3 ∂ξ

0

∂t
−
(

dξ3

dt
− q̇3 ∂ξ

0

∂t

)
= 0

(q3 − q̈3)
∂ξ3

∂q1
− q̇3 ∂ξ

2

∂q3
+ (q1 − q̈1 + q̇2)

∂ξ3

∂q3
+ (q1 − q̈1 + q̇2)

∂ξ0

∂t
+ ξ1+

+

(
dξ2

dt
− q̇2 ∂ξ

0

∂t

)
−
(
d2ξ1

dt2
− 2q̈1 ∂ξ

0

∂t
− q̇1 ∂

2ξ0

∂t2

)
= 0

where ξ1 = ξ1(t, q1, q2, q3), ξ2 = ξ2(t, q1, q2, q3), ξ3 = ξ3(t, q1, q2, q3). More explic-
itly,

q3 ∂ξ
1

∂q1
− q̈3 ∂ξ

1

∂q1
− q̇3 ∂ξ

2

∂q1
+ q1 ∂ξ

3

∂q1
− q̈1 ∂ξ

3

∂q1
+ q̇2 ∂ξ

3

∂q1
+ q3 ∂ξ

0

∂t
− q̈3 ∂ξ

0

∂t
−

−∂
2ξ3

∂t2
− 2q̇1 ∂

2ξ3

∂t∂q1
− 2q̇2 ∂

2ξ3

∂t∂q2
− 2q̇3 ∂

2ξ3

∂t∂q3
− ∂2ξ3

∂(q1)2
(q̇1)2 − ∂2ξ3

∂(q2)2
(q̇2)2−

− ∂2ξ3

∂(q3)2
(q̇3)2 − 2

∂2ξ3

∂q1∂q2
q̇1q̇2 − 2

∂2ξ3

∂q1∂q3
q̇1q̇3 − 2

∂2ξ3

∂q2∂q3
q̇2q̇3 + 2q̈3 ∂ξ

0

∂t
+

+ξ3 + q̇3 ∂
2ξ0

∂t2
− ∂ξ3

∂q1
q̈1 − ∂ξ3

∂q2
q̈2 − ∂ξ3

∂q3
q̈3 = 0

q3 ∂ξ
1

∂q2
− q̈3 ∂ξ

1

∂q2
− q̇3 ∂ξ

2

∂q2
+ q1 ∂ξ

3

∂q2
− q̈1 ∂ξ

3

∂q2
+ q̇2 ∂ξ

3

∂q2
− q̇3 ∂ξ

0

∂t
− ∂ξ3

∂t
−

−∂ξ
3

∂q1
q̇1 − ∂ξ3

∂q2
q̇2 − ∂ξ3

∂q3
q̇3 + q̇3 ∂ξ

0

∂t
= 0
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q3 ∂ξ
1

∂q3
− q̈3 ∂ξ

1

∂q3
− q̇3 ∂ξ

2

∂q3
+ q1 ∂ξ

3

∂q3
− q̈1 ∂ξ

3

∂q3
+ q̇2 ∂ξ

3

∂q3
+ q1 ∂ξ

0

∂t
− q̈1 ∂ξ

0

∂t
+

+q̇2 ∂ξ
0

∂t
+
∂ξ2

∂t
+
∂ξ2

∂q1
q̇1 +

∂ξ2

∂q2
q̇2 +

∂ξ2

∂q3
q̇3 − q̇2 ∂ξ

0

∂t
− ∂2ξ1

∂t2
− 2q̇1 ∂

2ξ1

∂t∂q1
−

−2q̇2 ∂
2ξ1

∂t∂q2
+ ξ1 − 2q̇3 ∂

2ξ1

∂t∂q3
− ∂2ξ1

∂(q1)2
(q̇1)2 − ∂2ξ1

∂(q2)2
(q̇2)2−

− ∂2ξ1

∂(q3)2
(q̇3)2 − 2

∂2ξ1

∂q1∂q2
q̇1q̇2 − 2

∂2ξ1

∂q1∂q3
q̇1q̇3 − 2

∂2ξ1

∂q2∂q3
q̇2q̇3 + 2q̈1 ∂ξ

0

∂t
+

+q̇1 ∂
2ξ0

∂t2
− ∂ξ1

∂q1
q̈1 − ∂ξ1

∂q2
q̈2 − ∂ξ1

∂q3
q̈3 = 0

From these equations we get conditions for components of ξ as follows:

ξ1 = k1 · et + k2 · e−t − C2q
1

ξ2 = C3 − C2 · q2 + b(q3)

ξ3 = C2 · q3

ξ0 = C1

Hence, we obtained:

ξ = C1
∂

∂t
+ (k1 · et + k2 · e−t −C2q

1)
∂

∂q1
+
(
C3 −C2 · q2 + b(q3)

) ∂

∂q2
+C2 · q3 ∂

∂q3

where C1, C2, C3, k1, k2 are constants and b(q3) is a function depending only on q3.
This result can be formulated as follows:

Theorem 3. Point symmetries of the Euler-Lagrange form of Lagrangian L (4) are
generated by the following vector fields:

∂

∂t
; q1 ∂

∂q1
+ q2 ∂

∂q2
− q3 ∂

∂q3
; et

∂

∂q1
; e−t

∂

∂q1
; b(q3)

∂

∂q2
, (6)

where b(q3) is an arbitrary function of the variable q3.
The corresponding first integrals are

F1 = −H

for the transformation ∂
∂t ,

F2 = p1q
1 − p3q

3

for the transformation q1 ∂
∂q1 + q2 ∂

∂q2 − q3 ∂
∂q3 ,

F3 = p1 · et

for the transformation et ∂
∂q1 ,

F4 = p1 · e−t

for the transformation e−t ∂
∂q1 and

F5 = 0

for the transformation b(q3) ∂
∂q2 .
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Theorem 2 and 3 demonstrate the known fact that every symmetry of Lag-
rangian λ is a symmetry of its Euler-Lagrange form (or the corresponding action).
In the sequel we shall be interested in the converse problem, namely, if to every
point symmetry of the action (that is of E) there exists a Lagrangian λ for E such
that ξ is a point symmetry of λ.

To this end we shall represent our Lagrangian system in the form of the equiv-
alence class of Lagrangians for E; the equivalence relation is given by

L ∼ L′ iff L′ = L+
df

dt
,

where f is a function.

This means that

L′ = q̇1q̇3 − q2q̇3 + q1q3 +
df

dt
,

where f = f(t, q1, q2, q3).

Substituting L′ to the Noether equation we shall try to determine f for every
symmetry (6)

(a) If ξ = et ∂
∂q1 ⇒ ξ1 = et

we get

q3ξ1 +
∂

∂q1

(
df

dt

)
ξ1 + q̇3

(
ξ̇1 − q̇1ξ̇0

)
+

∂

∂q̇1

(
df

dt

)(
ξ̇1 − q̇1ξ̇0

)
= 0.

From this equation we get equations:

∂2f

(∂q1)2
= 0

∂2f

∂q1∂q2
= 0

∂2f

∂q1∂q3
= −1

∂2f

∂q1∂t
= −q3 − ∂f

∂q1

having the solution

f = a(t, q2, q3)− q1q3 + C1e
−tq1,

where a(t, q2, q3) is arbitrary function of variables t, q2 and q3. C1 is a constant.

(b) If ξ = e−t ∂
∂q1 ⇒ ξ1 = e−t

we get

q3ξ1 +
∂

∂q1

(
df

dt

)
ξ1 + q̇3

(
ξ̇1 − q̇1ξ̇0

)
+

∂

∂q̇1

(
df

dt

)(
ξ̇1 − q̇1ξ̇0

)
= 0.
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From this equation we get equations:

∂2f

(∂q1)2
= 0

∂2f

∂q1∂q2
= 0

∂2f

∂q1∂q3
= 1

∂2f

∂q1∂t
= −q3 +

∂f

∂q1

having the solution
f = a(t, q2, q3) + q1q3 + C2etq1,

where a(t, q2, q3) is arbitrary function of variables t, q2 and q3. C2 is a constant.

(c) If ξ = b(q3) ∂
∂q2 ⇒ ξ2 = b(q3)

we get

−q̇3 · b(q3) +
∂

∂q2

(
df

dt

)
b(q3) = 0

and from this equation we get a equations:

∂2f

∂q2∂q1
= 0

∂2f

(∂q2)
2 = 0

∂2f

∂q2∂q3
= 1

∂2f

∂q2∂t
= 0.

having the solution
f = a(t, q1, q3) + q2q3,

where a(t, q1, q3) is arbitrary function of variables t, q1 and q3.
Summarizing, we obtained the following result:

Theorem 4. For every point symmetry ξ of the Euler-Lagrange form

E = (q3 − q̈3)dq1 ∧ dt− q̇3dq2 ∧ dt+ (q1 + q̇2 − q̈1)dq3 ∧ dt (7)

there exists a first order Lagrangian λ′ such that ξ is a point symmetry of λ′.
Explicitly:

• For ξ = et ∂
∂q1 it holds

f = a(t, q2, q3)− q1q3 + C1e−tq1,

i.e. L′ = q̇1q̇3 − q2q̇3 + q1q3 + d
dt

(
a(t, q2, q3)− q1q3 + C1e−tq1

)
.
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• For ξ = e−t ∂
∂q1 it holds

f = a(t, q2, q3) + q1q3 + C2etq1,

i.e. L′ = q̇1q̇3 − q2q̇3 + q1q3 + d
dt

(
a(t, q2, q3) + q1q3 + C2etq1

)
.

• For ξ = b(q3) ∂
∂q2 it holds

f = a(t, q1, q3) + q2q3,

i.e. L′ = q̇1q̇3 − q2q̇3 + q1q3 + d
dt

(
a(t, q1, q3) + q2q3

)
.

By the above theorem, the set of point symmetries of the class of equivalent first
order Lagrangians for E locally coincides with the set of point symmetries of the
Euler-Lagrange form (7).

Remarkably, in this case, all the invariant Lagrangians are of order one. It is
worth note that in the most often considered case of the Lagrangian L = 1

2mv
2

(free particle of classical mechanics) this is not the case. Namely, one can prove
that [14]:

– to every point symmetry ξ of the Euler-Lagrange form E (Ei = mẍi) there
exists a Lagrangian L for E such that ξ is a point symmetry of L

– such a Lagrangian need not be of order one: in case of Galilei transformations
L is a second order Lagrangian, equivalent with the kinetic energy.
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[11] M. Havelková: A geometric analysis of dynamical systems with singular Lagrangians.
Communications in Mathematics 19 (2011) 169–178.

[12] D. Krupka: Some geometric aspects of variational problems in fibered manifolds. Folia
Fac. Sci. Nat. UJEP Brunensis 14 (1973) 1–65.
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Witt algebra and the curvature of the Heisenberg
group

Zoltán Muzsnay, Péter T. Nagy

Abstract. The aim of this paper is to determine explicitly the algebraic
structure of the curvature algebra of the 3-dimensional Heisenberg group
with left invariant cubic metric. We show, that this curvature algebra is an
infinite dimensional graded Lie subalgebra of the generalized Witt algebra
of homogeneous vector fields generated by three elements.

1 Introduction
The notion of curvature algebra of a Finsler manifold is introduced in a previous
paper [4] of the authors and it is proved that this algebra is tangent to the holon-
omy group. This property used for the proof that the holonomy group of Finsler
manifolds of constant non-zero curvature cannot be a compact Lie group, if the
dimension of the manifold is greater than 2. The 3-dimensional Heisenberg group
with left invariant cubic metric was given as an example of Finsler manifolds having
infinite dimensional curvature algebra and holonomy group. The aim of this paper
is to describe explicitly the algebraic structure of this curvature algebra. We show,
that it is a filtered subalgebra of the generalized Witt algebra of Laurent polyno-
mial vector fields defined on a 3-dimensional vector space, which is generated by
three elements. We determine the generators of the curvature algebra in this Witt
algebra.

2 Preliminaries
Generalized Witt algebras

Let A be an abelian group, F be a field with char(F) = 0 and T a vector space
over F. The group algebra FA of A over F generated by the basis elements tJ ,
J ∈ A, and the multiplication of FA is defined by tJ tK = tJ+K . The unit of FA is
the element 1 = t0.

2010 MSC: 53B40, 53C60, 17B65, 22E65
Key words: Finsler geometry, holonomy, infinite dimensional Lie algebra, Witt algebra
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Let us consider the tensor product

W = FA⊗F T = SpanF
{
tJ ⊗ ∂

∣∣ J ∈ A, ∂ ∈ T}.
The element of W is also denoted as tJ∂ := tJ ⊗ ∂. Now, if a given map (∂, J) 7→
∂(J) : T⊗A→ F is F-linear in the first variable and additive in the second variable,
then the bracket

[tJ∂1, t
K∂2] := tJ+K(∂1(K)∂2 − ∂2(J)∂1), J,K ∈ A, ∂1, ∂2 ∈ T, (1)

defines an infinite dimensional Lie algebra on the tensor product W . The Lie
algebra W with the Lie multiplication (1) is called a generalized Witt algebra over
the vector space T graded by the abelian group A.

Witt algebra Wn(F) over the vector space Fn

If A is the additive group of Zn with n > 0, then the group algebra FA is isomorphic
to the Laurent polynomial algebra F[t±1

1 , . . . , t±1
n ] over F. For an n-tuple J =

(j1, . . . , jn)∈Zn we write tJ = tj11 · · · tjnn . Let T be the linear span T = ⊕ni=1F∂i of
the operators ∂i = ti

∂
∂ti

. If the map (∂, J) 7→ ∂(J) : T ⊗A→ F satisfies ∂i(J) = ji
then the corresponding generalized Witt algebra W =: Wn(F) can be identified
with the Lie algebra DerF(F[t±1

1 , . . . , t±1
n ]) of derivations of the Laurent polynomial

algebra F[t±1
1 , . . . , t±1

n ] over F, consisting of the Laurent polynomial vector fields

w(J ; i) = w(j1, . . . , jn; i) = tj11 · · · tjnn ti
∂

∂ti
,

where (t1, . . . , tn) ∈ Fn are the canonical coordinates in Fn (c. f. [2], [1]). A Lie
algebra isomorphic to the Lie algebra Wn(F) of Laurent polynomial vector fields is
called Witt algebra over the vector space Fn.

Lie subalgebras of Wn(F)

Let ω : Zn−1 → Z be an additive map. We consider the linear subspace Wω of the
Witt algebra Wn(F) generated by the basis consisting of the elements

w̄(κ; i) := w
(
κ, ω(κ); i

)
with κ = (k1, . . . , kn−1) ∈ Zn and i ∈ {1, . . . , n}. The Lie multiplication of Wn(F)
induces a Lie multiplication[

w̄(κ; i), w̄(λ; j)
]

=
[
w
(
κ, ω(κ); i

)
, w
(
λ, ω(λ); j

)]
on Wω which makes it a Lie subalgebra of Wn(F).

Definition 1. If F = R and ω(κ) = −(k1 + · · ·+ kn−1), then we denote the corres-
ponding Lie algebra by W 0

n(R), and W 0
n(R)⊆Wn(R) will be called the Lie algebra

of homogeneous vector fields on the vector space Rn.
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3 Curvature algebra of Finsler manifolds
A Finsler manifold (M,F) is a pair of an n-dimensional manifold M and of a
continuous function F : TM → R is (called Finsler functional) defined on the
tangent bundle of M , smooth on T̂M := TM \{0} and for any x ∈M the restriction
Fx = F|

TxM
of F to the tangent space TxM is a 1-homogeneous continuous function

such that for all y ∈ T̂xM = TMx \{0} the symmetric bilinear form gy : TxM ×
TxM → R defined by

gy : (u, v) 7→ gij(y)uivj =
1

2

∂2F2(y + su+ tv)

∂s ∂t

∣∣∣
t=s=0

(2)

is non-degenerate. (M,F) is called a singular Finsler manifold if the condition (2)
is assumed to be satisfied on an open dense cone in TxM . In the following we will
use the name Finsler manifold also for singular Finsler manifolds.

Geodesics of Finsler manifolds are determined by a system of 2nd order ordinary
differential equation ẍi + 2Gi(x, ẋ) = 0, i = 1, . . . , n in a local coordinate system.
The functions Gi(x, y) are called the spray coefficients belonging to the coordinate
system, which are given by

Gi(x, y) :=
1

4
gij(x, y)

(
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
)
yjyk.

A vector field X(t) is parallel along a curve c(t) if and only if it is a solution of the
differential equation

∇ċX(t) :=
(dXi(t)

dt
+ Γij(c(t), X(t))ċj(t)

) ∂

∂xi
= 0, (3)

where Γij = ∂Gi

∂yj are the parameters of the associated non-linear connection. The
curvature tensor field

R(x,y) =

(
∂Γki
∂xj
−
∂Γkj
∂xi

+ Γmi
∂Γkj
∂ym

− Γmj
∂Γki
∂ym

)
dxi ⊗ dxj ⊗ ∂

∂yk
.

characterizes the integrability of the horizontal distributionHTM⊂TTM , which is
locally generated by the vector fields ∂

∂xi +Γki (x, y) ∂
∂yk

, i = 1, . . . , n. The indicatrix

IxM (M,F) at x ∈M is defined by the hypersurface of TxM :

IxM := {y ∈ TxM ; F(y) = ±1}.

Since the parallel translation τc : Tc(0)M → Tc(1)M is a differentiable map between

T̂c(0)M and T̂c(1)M preserving the value of the Finsler functional, it induces a map

τIc : Ic(0)M −→ Ic(1)M (4)

between the indicatrices. The holonomy group Holx(M) of (M,F) at x ∈ M is
the subgroup of the group of diffeomorphisms Diff(IxM) of the indicatrix IxM
determined by parallel translation of IxM along piece-wise differentiable closed
curves initiated at the point x ∈M .
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Definition 2. A vector field ξ ∈ X(IxM) on the indicatrix IxM is called a curvature
vector field of the Finsler manifold (M,F) at x ∈ M , if there exists X,Y ∈ TxM
such that ξ = rx(X,Y ), where

rx(X,Y )(y) := R(x,y)(X,Y ). (5)

The Lie subalgebra Rx := 〈rx(X,Y ); X,Y ∈ TxM〉 of X(IxM) generated by the
curvature vector fields is called the curvature algebra of the Finsler manifold (M,F)
at the point x ∈M .

The following assertion is proved in [4]:
Theorem The curvature algebra Rx of a Finsler manifold (M,F) is tangent to
the holonomy group Holx(M) for any x ∈M .

4 Heisenberg group with left invariant cubic metric
The Finsler functional F of a Finsler manifold (M,F) is called cubic metric if it has
the form F(x, y)3 = apqr(x)ypyqyr, where apqr(x) are components of a symmet-
ric covariant tensor field. The tensor field aij(x, y) defined by F(x, y)aij(x, y) =
aijr(x)yr is called the basic tensor of (M,F). Let us denote

{ijk, r} =
1

4

(
∂aijr
∂xk

+
∂ajkr
∂xi

+
∂akir
∂xj

− ∂aijk
∂xr

)
.

According to equation (1.6.2.6) in [3], p. 595, the spray coefficients Gi(x, y) satisfy
the system of linear equations

3F(x, y)air(x, y)Gr(x, y) = {jkl, i}yjykyl. (6)

Let us consider the Heisenberg group H3 consisting of 3× 3-matrices

x =

 1 x1 x3

0 1 x2

0 0 1

 , (x1, x2, x3) ∈ R3.

The vector (x1, x2, x3) ∈ R3 is the coordinate representation of the element x ∈ H3.
The unit element of H3 in this coordinate representation is 0 = (0, 0, 0) ∈ R3 and
the group multiplication has the form

(x1, x2, x3) · (x′1, x′2, x′3) = (x1+x′1, x2+x′2, x3+x′3+x1x′2, ).

The Lie algebra h3 = T0H3 of H3 has the matrix representation

y1 ∂

∂x1
+ y2 ∂

∂x2
+ y3 ∂

∂x3
−→

 0 y1 y3

0 0 y2

0 0 0

 .

The left-invariant Berwald-Moór cubic Finsler functional F (c. f. [5], Example 1.1.5,
p. 8) on the Heisenberg group H3 is determined by the function F

0
: h3 → R sat-

isfying F
0
(y)3 := y1y2y3. If y = (y1, y2, y3) is a tangent vector at x ∈ H3, then

F(x, y) := F
0
(x−1y), and hence its coordinate expression is of the form

F(x, y)3 = y1y2
(
y3−x1y2

)
.
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Since F is left-invariant, the associated geometric structures (connection, geodesics,
curvature) are also left-invariant and the curvature algebras at different points are
isomorphic. The coefficients apqr(x) are the following:

a122 = a212 = a221 = −x1

3
, a123 = a231 = a312 = a321 = a213 = a132 =

1

6
,

aijj = ajij = ajji = 0 with i, j ∈ {1, 2, 3} and (i, j) 6= (1, 2).

Hence the right hand side of (6) gives {jkl, 1}yjykyl = {jkl, 3}yjykyl = 0 and

{jkl, 2}yjykyl =
3

4

∂ajk2(x)

∂x1
yjyky1 =

3

2

∂a122(x)

∂x1
y12

y2 = −1

2
y12

y2.

The matrix of the basic tensor field aij(x, y) is

(aij(x, y)) =
1

F(x, y)

 0 −x
1

3 y
2 + 1

6y
3 1

6y
2

−x
1

3 y
2 + 1

6y
3 −x

1

3 y
1 1

6y
1

1
6y

2 1
6y

1 0

 .

This matrix is non-singular on the open dense cone determined by y1y2
(
y3−x1y2

)
6=

0 in TxM . In the following we will investigate on this domain. We obtain from
equations (6)

1

6
y2G1(x, y) +

1

6
y1G2(x, y) = 0.(

−x
1

3
y2 +

1

6
y3

)
G2(x, y) +

1

6
y2G3(x, y) = 0,(

−x
1

3
y2 +

1

6
y3

)
G1(x, y)− x1

3
y1G2(x, y) +

1

6
y1G3(x, y) = −1

6
y12

y2,

The solution yields

G1(x, y) = − y12
y2

2(y3−x1y2)
, G2(x, y) =

y1y22

2(y3−x1y2)
, G3(x, y) =

y1y2y3

2(y3−x1y2)
−y1y2.

The matrix of the parameters Γij of the associated non-linear connection is

(Γij(x, y)) =


− y1y2

y3−x1y2 − y12
y3

2(y3−x1y2)2
y12

y2

2(y3−x1y2)2

y22

2(y3−x1y2)
2y1y2y3−y1y22

x1

2(y3−x1y2)2 − y1y22

2(y3−x1y2)2

y2y3

2(y3−x1y2) − y
2 y1y32

2(y3−x1y2)2 − y1 − x1y1y22

2(y3−x1y2)2

 .

The derivatives of Γij by x2 and x3 vanish, we compute their derivatives by x1:

(
∂Γij
∂x1

(x, y)

)
=


− y1y22

(y3−x1y2)2 − y12
y2y3

(y3−x1y2)3
y12

y22

(y3−x1y2)3

y23

2(y3−x1y2)2

y1y22
(3y3−y2x1)

2(y3−x1y2)3 − y1y23

(y3−x1y2)3

y22
y3

2(y3−x1y2)2
y1y2y32

(y3−x1y2)3 −y
1y22

(y3+x1y2)
2(y3−x1y2)3

 .
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In the following we put x = 0 and we get

(Γij) =


−y

1y2

y3 − y
12

2y3
y12

y2

2y32

y22

2y3
y1y2

y3 −y
1y22

2y32

−y
2

2 −y
1

2 0

 ,

(
∂Γij
∂x1

)
=


−y

1y22

y32 −y
12
y2

y32
y12

y22

y33

y23

2y32
3
2
y1y22

y32 −y
1y23

y33

y22

2y3
y1y2

y3 −y
1y22

y3

2y33

 .

Moreover

(
∂Γi1
∂yj

)
=


−y

2

y3 −y
1

y3
y1y2

y32

0 y2

y3 − y22

2y32

0 − 1
2 0

 ,

(
∂Γi2
∂yj

)
=


−y

1

y3 0 y12

2y32

y2

y3
y1

y3 −y
1y2

y32

− 1
2 0 0


and (

∂Γi3
∂yj

)
=


y1y2

y32
y12

2y32 −y
12
y2

y33

− y22

2y32 −y
1y2

y32
y1y22

y33

0 0 0

 .

We obtain for
∂Γia
∂xb
− ∂Γia

∂ymΓmb , (a, b) = (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2) the fol-
lowing expressions:

(
∂Γi1
∂x2 − ∂Γi1

∂ymΓm2

)
=


y12

y2

y32

− 5
4
y1y22

y32

1
2
y1y2

y3

, (
∂Γi2
∂x1 − ∂Γi2

∂ymΓm1

)
=


− 7

4
y12

y2

y32

3
2
y1y22

y32

1
2
y1y2

y3

,

(
∂Γi1
∂x3 − ∂Γi1

∂ymΓm3

)
=


0

1
2
y1y23

y33

− 1
4
y1y22

y32

, (
∂Γi3
∂x1 − ∂Γi3

∂ymΓm1

)
=


5
4
y12

y22

y33

− 1
2
y1y23

y33

− 1
2
y1y22

y32

,

(
∂Γi2
∂x3 − ∂Γi2

∂ymΓm3

)
=


1
2
y13

y2

y33

0

1
4
y12

y2

y32

, (
∂Γi3
∂x2 − ∂Γi3

∂ymΓm2

)
=


− 1

2
y13

y2

y33

5
4
y12

y22

y33

0

.
Hence we can obtain the following curvature vector fields on the indicatrix I0(M)
at x = 0:

r0(1, 2)=
11

4


y12

y2

y32

−y
1y22

y32

0

, r0(1, 3)=


− 5

4
y12

y22

y33

y1y23

y33

1
4
y1y22

y32

, r0(2, 3)=


y13

y2

y33

− 5
4
y12

y22

y33

1
4
y12

y2

y32

.
where we use the notation r0(i, j) = r0

(
∂
∂xi ,

∂
∂xj

)
. These vector fields r0(i, j), i < j,

i, j = 1, 2, 3 generate the curvature algebra r0 at x = 0.
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Let us consider the vector fields

Ak,m(a1, a2, a3) := a1Y
k+1,mE1 + a2Y

k,m+1E2 + a3Y
k,mE3,

defined on h3 = T0H3, where

(a1, a2, a3) ∈ R3, Ei =
∂

∂yi

∣∣∣
0
, i = 1, 2, 3,

and

Y k,m :=
y1ky2m

y3k+m−1
, k,m ∈ N.

Then the curvature vector fields r0(i, j), i = 1, 2, 3 can be written in the form

r0(1, 2)=
11

4
A1,1(1,−1, 0), r0(1, 3)=

1

4
A1,2(−5, 4, 1), r0(2, 3)=

1

4
A2,1(4,−5, 1).

We have that [
Ak,l(a1, a2, a3), Ap,q(b1, b2, b3)

]
= Ak+p,l+q(c1, c2, c3),

where

c1 = b1
(
(p+ 1)a1 + qa2 − (p+ q)a3

)
− a1

(
(k + 1)b1 + lb2 − (k + l)b3

)
,

c2 = b2
(
pa1 + (q + 1)a2 − (p+ q)a3

)
− a2

(
kb1 + (l + 1)b2 − (k + l)b3

)
,

c3 = b3
(
pa1 + qa2 − (p+ q − 1)a3

)
− a3

(
kb1 + lb2 − (k + l − 1)b3

)
.

With these preparations we are able to completely describe the structure of the
curvature algebra of the Heisenberg group as a Lie subalgebra of the Witt algebra
W3(R). We have the following

Theorem 1. The curvature algebra r0 of the Berwald-Moór left-invariant cubic
metric F on the Heisenberg groupH3 is isomorphic to the Lie subalgebraW〈h1,h2,h3〉
of W 0

3 (R) generated by the elements

h1 = w̄(1, 1; 1)− w̄(1, 1; 2),

h2 = −5w̄(1, 2; 1) + 4w̄(1, 2; 2) + w̄(1, 2; 3),

h3 = 4w̄(2, 1; 1)− 5w̄(2, 1; 2) + w̄(2, 1; 3).

In particular, r0 is infinite dimensional, and we have the following sequence of Lie
algebras:

r0 ∼= W〈h1,h2,h3〉 ⊂ W 0
3 (R) ⊂ W3(R).

where W 0
3 (R) is the Lie algebra of homogeneous vector fields and W3(R) is the

Witt algebra of Laurent polynomial vector fields on the vector space h3
∼= R3.
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On the inverse variational problem in nonholonomic

mechanics

Olga Rossi, Jana Musilová

Abstract. The inverse problem of the calculus of variations in a nonholo-
nomic setting is studied. The concept of constraint variationality is intro-
duced on the basis of a recently discovered nonholonomic variational prin-
ciple. Variational properties of first order mechanical systems with general
nonholonomic constraints are studied. It is shown that constraint varia-
tionality is equivalent with the existence of a closed representative in the
class of 2-forms determining the nonholonomic system. Together with the
recently found constraint Helmholtz conditions this result completes basic
geometric properties of constraint variational systems. A few examples of
constraint variational systems are discussed.

1 Introduction
The covariant local inverse problem of the calculus of variations for second order
ordinary differential equations means to find necessary and sufficient conditions
under which a system of equations

Aσ(t, qν , q̇ν) +Bσρ(t, q
ν , q̇ν)q̈ρ = 0 , 1 ≤ σ ≤ m (1)

for curves R 3 t → (qν(t)) ∈ Rm, is variational “as it stands”, i.e. to determine if
there exists a Lagrangian L(t, qν , q̇ν) such that the functions on the left-hand-sides
are Euler-Lagrange expressions of L:

Aσ +Bσρq̈
ρ =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
, (2)

and, moreover, in the affirmative case to find a formula for computing a Lagrangian.

2010 MSC: 49N45, 70F25, 58E30
Key words: The inverse problem of the calculus of variations, Helmholtz conditions, nonholo-

nomic constraints, the nonholonomic variational principle, constraint Euler-Lagrange equations,
constraint Helmholtz conditions, constraint Lagrangian, constraint ballistic motion, relativistic
particle.
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Solution to this problem is very well known: conditions for variationality are
the celebrated Helmholtz conditions [3], and a corresponding Lagrangian is then
given by the famous Vainberg-Tonti integral formula [15], [16].

In this paper we are interested in a generalization of the inverse problem to
nonholonomic mechanics. Some aspects based on an analogy with certain proper-
ties of unconstrained variational equations have already been studied (see e.g. [1],
[9], [12]). However, only recently a variational principle for nonholonomic systems
has been found [6], which opened a new way to formulate the problem and search
for a solution in a parallel to the unconstrained case. Here we follow this way and
introduce the concept of constraint variationality on the basis of the constraint
variational principle, in a spirit as it is understood for unconstrained equations.

Namely, given a constraint Q by k first order ordinary differential equations

q̇m−k+a = ga(t, qσ, q̇l) , 1 ≤ a ≤ k, (3)

where 1 ≤ σ ≤ m and 1 ≤ l ≤ m − k, the generalized (“nonholonomic”) Euler-
-Lagrange equations represent a system of m− k second order ordinary differential
equations on the constraint submanifold Q ⊂ J1(R×Rm). It is interesting that in
this case one has k + 1 “Lagrange functions” where k is the number of constraint
equations. This rather mysterious property of nonholonomic systems is related to
the fact that the corresponding Lagrangian 1-form has k + 1 generic components,
and is not reduced to a horizontal form (which is determined by a single function)
as happens by circumstance in the unconstrained case.

The nonholonomic inverse problem concerns a system of mixed first order and
second order ordinary differential equations

q̇m−k+a − ga(t, qσ, q̇l) = 0 , 1 ≤ a ≤ k , (4)

Ās(t, q
σ, q̇l) + B̄sr(t, q

σ, q̇l)q̈r = 0 , 1 ≤ s ≤ m− k . (5)

The first order equations give rise to a nonholonomic constraint submanifold Q ⊂
J1(R × Rm) of corank k, while the second order equations then represent the dy-
namics on the constraint submanifold Q. The problem now is to find necessary
and sufficient conditions under which equations (5) “as they stand” become the
constrained Euler-Lagrange equations, and in the affirmative case, to find a corre-
sponding constraint Lagrange 1-form.

It is known that in the unconstrained case variationality is equivalent with
the possibility to extend the Euler-Lagrange form to a closed 2-form. Helmholtz
conditions then become nothing but the closedness conditions, and the Vainberg-
-Tonti formula appears by application of the Poincaré Lemma. The main result we
achieve in this paper means that the solution of the inverse problem in the non-
holonomic setting has the same geometric properties: namely, that the constraint
variationality is equivalent with the property that the corresponding equations can
be represented by a closed form defined on the constraint Q. The closedness con-
ditions are the constraint Helmholtz conditions obtained in our older paper [9].

It is worth mention that given an unconstrained Lagrangian system, the cor-
responding constrained system is constraint variational for any nonholonomic con-
straint. On the other hand, however, a nonholonomic system which is constraint
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variational may arise from a non-variational unconstrained system. Moreover, such
an unconstrained system need not be unique in the sense that the corresponding
unconstrained systems are generically different.

Due to the above properties, the range of applications of constraint variation-
ality conditions is broader than that of Helmholtz conditions for unconstrained
systems. At the end of the paper we illustrate on a few examples some possible ap-
plications of constraint Helmholtz conditions with the stress on rather unexpected
properties of constraint variationality.

2 Unconstrained mechanical systems and variationality
Throughout the paper we consider a fibred manifold π : Y → R, dimY = m + 1,
and the corresponding jet bundles πr : JrY → R where r = 1, 2. We denote by
π1,0 : J1Y → Y , π2,0 : J2Y → Y and π2,1 : J2Y → J1Y the canonical projections.
Recall that a section δ of πr is called holonomic, if it is of the form δ = Jrγ for a
section γ of π.

A form η on JrY is called horizontal, if iξη = 0 for every πr-vertical vector
field ξ, and is called contact, if Jrγ∗η = 0 for every section γ of π. We shall use
the following basis of 1-forms on J1Y and J2Y respectively, adapted to the contact
structure:

(dt, ωσ, dq̇σ), (dt, ωσ, ω̇σ, dq̈σ) ,
where

ωσ = dqσ − q̇σdt, ω̇σ = dq̇σ − q̈σdt.

For every k-form η on J1Y there exists a unique decomposition

π∗2,1η = pk−1η + pkη,

where pk−1η and pkη is the (k−1)-contact component and the k-contact component
of η, respectively, containing in every its term exactly (k−1), respectively k, factors
ωσ and ω̇σ. If pkη = 0 we say that η is (k − 1)contact. Similarly, if pk−1η = 0 we
speak about a k-contact form.

A first order mechanical system is described by a dynamical form E on J2Y
with components affine in the second derivatives; in fibered coordinates,

E = Eσ(t, qν , q̇ν , q̈ν)dqσ ∧ dt , (6)

where
Eσ = Aσ(t, qλ, q̇λ) +Bσν(t, qλ, q̇λ)q̈ν . (7)

A section γ of π is called a path of E if Eσ ◦ J2γ = 0. This condition gives a
system of m second order ordinary differential equations

Aσ

(
t, qλ,

dqλ

dt

)
+Bσν

(
t, qλ,

dqλ

dt

)d2qν

dt2
= 0 , (8)

which have the meaning of the equations of motion.
If E is a dynamical form with components affine in the second derivatives then

in a neighborhood of every point in J1Y there exists a 2-form α such that

π∗2,1α = E + F, (9)
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where F is a 2-contact 2-form. The α is not unique. In fibered coordinates

α = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + Fσνω
σ ∧ ων , (10)

where Fσν(t, qλ, q̇λ) are arbitrary functions, skew-symmetric in the indices.
With help of α equations for paths of E (8) take the form

J1γ∗iξα = 0 for every vertical vector field ξ on J1Y (11)

of equations for holonomic integral sections of a local Pfaffian system on J1Y . It
is to be stressed that the set of solutions of equations (11) does not depend upon a
choice of the 2-form F , and that (for any F ) equations (11) are locally equivalent
with equations of paths of E (8).

We denote the family of all the local 2-forms on J1Y associated with E as above
by [α] and call it the Lepage class of E. Note that forms belonging to the Lepage
class of E satisfy

α1 − α2 is a 2-contact 2-form

(on the intersection of their domains) and

p1α = E.

A dynamical form E is called locally variational if in a neighborhood of ev-
ery point in J2Y there exists a Lagrangian such that E coincides with its Euler-
-Lagrange form. It is known that if such a Lagrangian exists, there exists also an
equivalent local first-order Lagrangian λ = Ldt such that (7) coincide with the
Euler-Lagrange expressions of λ

Eσ ≡ Aσ +Bσν q̈
ν =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
. (12)

Equations for paths of a locally variational form are Euler-Lagrange equations. For
the Lepage class of a locally variational form we have [α] = [dθλ] where θλ is the
Cartan form of λ.

The following theorem shows the importance of the properties of the Lepage
class for variationality of dynamical forms (see [4]).

Theorem 1. A dynamical form E is locally variational if and only if the corre-
sponding Lepage class [α] contains a closed representative. In this case, moreover,
the closed 2-form αE ∈ [α] is unique and global (defined on J1Y ).

The form αE is called Lepage equivalent of E and the corresponding mechanical
system is called Lagrangian system.

A direct calculation of dα for a representative of the class [α] leads to the famous
Helmholtz conditions (necessary and sufficient conditions of variationality).

Theorem 2. A dynamical form E is locally variational if and only if in fibered
coordinates the following conditions hold:
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(Bσν)alt(σν) = 0 ,
(∂Bσν
∂q̇λ

)
alt(νλ)

= 0 ,(
−∂Aσ
∂q̇ν

+
d′Bσν
dt

)
sym(σν)

= 0 ,

(
∂Aσ
∂qν

− 1

2

d′

dt

(∂Aσ
∂q̇ν

))
alt(σν)

= 0 ,
(13)

where sym and alt means symmetrization and skew-symmetrization respectively,
and

d′

dt
=

∂

∂t
+ q̇σ

∂

∂qσ
.

Note that for a locally variational form E be globally variational (i.e. to arise
as an Euler-Lagrange form from a global first-order Lagrangian) it is necessary and
sufficient that the Lepage equivalent αE of E is exact.

3 Constrained mechanical systems
Our approach to the inverse variational problem for nonholonomically constrained
systems is based on the model representing nonholonomic constraints as a sub-
manifold Q in J1Y , naturally endowed with a nonintegrable distribution, and a
constrained system as a dynamical form (an exterior differential system) defined
on the constraint submanifold [4], [5]; here we follow the exposition of the survey
article [7].

In what follows, greek indices σ, ν etc. run over 1, 2, . . . ,m as above, and the
latin indices a, b, i, j (respectively l, s) run over 1, 2, . . . , k = codimQ (respectively
1, 2, . . . ,m− k). Summation over repeated indices is understood.

Let us consider a submanifold Q ⊂ J1Y of codimension k, 1 ≤ k ≤ m−1, fibred
over Y , called a constraint submanifold. We denote by ι : Q→ J1Y the canonical
embedding. Locally, Q is given by k independent equations

fa(t, qσ, q̇σ) = 0 , 1 ≤ a ≤ k , (14)

or, in normal form,

q̇m−k+a = ga(t, qσ, q̇l) , 1 ≤ a ≤ k , (15)

where l = 1, 2, . . . ,m− k.
We shall consider also the first prolongation Q̂ of the constraint Q, that is a

submanifold in J2Y , consisting of all points J2
xγ such that J1

xγ ∈ Q, x ∈ R. Locally
Q̂ is defined by the equations of the constraint and their derivatives:

fa = 0 ,
dfa

dt
= 0 , (16)

respectively, in normal form,

q̇m−k+a = ga, q̈m−k+a =
dga

dt
. (17)

We denote by ι̂ : Q̂→ J2Y the corresponding canonical embedding. The manifold
Q̂ is fibred over Q, Y and R, the fibred projections are simply restrictions of the
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corresponding canonical projections of the underlying fibred manifolds. We write
π̄2 : Q̂ → R, π̄2,1 : Q̂ → Q, π̄2,0 : Q̂ → Y , and π̄1 : Q → R, π̄1,0 : Q → Y . Usually

we shall use on Q adapted coordinates (t, qσ, q̇s), and on Q̂ associated coordinates
(t, qσ, q̇s, q̈s), where 1 ≤ σ ≤ m, 1 ≤ s ≤ m− k.

Similarly as in the unconstrained case, for every q-form η on Q one has a unique
decomposition into a sum of a π̄2-horizontal form and i-contact forms, i = 1, 2, . . . q,
on Q̂ [6]; we write

π̄∗2,1η = h̄η + p̄1η + · · ·+ p̄qη . (18)

In particular, we get an invariant splitting of the exterior derivative d to the hor-
izontal and contact part, π̄∗2,1d = h̄d + p̄1d. The operator h̄d (the constraint total
derivative) has the component

dc

dt
=

∂

∂t
+ q̇s

∂

∂qs
+ ga

∂

∂qm−k+a
+ q̈s

∂

∂q̇s
. (19)

For convenience of notations we also put

d′c
dt

=
∂

∂t
+ q̇s

∂

∂qs
+ ga

∂

∂qm−k+a
. (20)

Over every nonholonomic constraint there naturally arises a bundle, called the
canonical distribution [4] or Chetaev bundle [11], giving a geometric meaning to
virtual displacements in the space of positions and velocities, and to the concept of
reactive (Chetaev) forces. It is a corank k distribution C on the manifold Q, locally
annihilated by the system of k linearly independent 1-forms

ϕa =

(
∂fa

∂q̇σ
◦ ι
)
ω̄σ = ω̄m−k+a − ∂ga

∂q̇s
ω̄s, (21)

where
ω̄σ = ι∗ωσ, (22)

or, equivalently, locally spanned by the following system of 2(m−k)+1 independent
vector fields

∂c

∂t
≡ ∂

∂t
+
(
ga − ∂ga

∂q̇l
q̇l
) ∂

∂qm−k+a
,

∂c

∂qs
≡ ∂

∂qs
+
∂ga

∂q̇s
∂

∂qm−k+a
,

∂

∂q̇s
.

(23)

Vector fields belonging to the canonical distribution are called Chetaev vector fields.
The annihilator of C is denoted by C0.
The ideal in the exterior algebra on Q locally generated by the 1-forms ϕa,

1 ≤ a ≤ k, is called the constraint ideal, and denoted by I(C0). Differential forms
belonging to the constraint ideal are called constraint forms.

Let us recall the following theorem [4]:

Theorem 3. The constraint Q is given by equations affine in the first derivatives if
and only if the canonical distribution C on Q is π̄1,0-projectable (i.e. the projection
of C is a distribution on Y ).
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A nonholonomic constraint Q is called semiholonomic if its canonical distribu-
tion C is completely integrable.

The canonical distribution is naturally lifted to the distribution Ĉ on Q̂, defined
with help of its annihilator by Ĉ0 = π̄∗2,1C0.

Now, let E be a dynamical form on J2Y and [α] its Lepage class as above.
According to [4], a constrained mechanical system associated with [α] is the class

[ᾱ] = ι∗[α] mod I(C0) . (24)

This means that [ᾱ] is defined on the constraint Q and consists of all (possibly
local) 2-forms on Q such that

ᾱ = Ālω
l ∧ dt+ B̄lsω

l ∧ dq̇s + F + ϕ, (25)

where F is a 2-contact and ϕ is a constraint 2-form on Q, and

Āl =
(
Al +Am−k+b

∂gb

∂q̇l
+
(
Bl,m−k+a +Bm−k+b,m−k+a

∂gb

∂q̇l

)d′ga
dt

)
◦ ι,

B̄ls =
(
Bls +Bl,m−k+a

∂ga

∂q̇s
+Bm−k+a,s

∂ga

∂q̇l
+Bm−k+b,m−k+a

∂gb

∂q̇l
∂ga

∂q̇s

)
◦ ι.

(26)

In place of a single dynamical form E = p1α, for the constrained system we get
the class [Ē] on Q̂,

Ē = p̄1ᾱ = ι̂∗E + ϕa ∧ νa (27)

where ϕa are the canonical constraint 1-forms defined above and νa are horizontal
forms. Putting Ēc = (ι̂∗E)|Ĉ we get an element of Λ2(Ĉ), a 2-form along the
canonical distribution, called constrained dynamical form; Ēc is the same for all
Ē ∈ [Ē]. In coordinates

Ēc = (Ās + B̄sr q̈
r)ω̄s ∧ dt . (28)

By a constrained section of π we shall mean a section γ : I → Y , I ⊂ R, such
that J1γ(I) ⊂ Q. Hence, constrained sections satisfy the first order ODE’s of the
constraint (14) resp. (15). In particular, constrained sections are integral sections
of the canonical distribution C.

We have the following theorem [4] providing equations of motion of nonholo-
nomically constrained systems in both intrinsic and coordinate form:

Theorem 4. Let γ : I → Y be a constrained section. The following conditions are
equivalent:

(1) γ is a path of Ēc, i.e. it satisfies

Ēc ◦ J2γ = 0 . (29)

(2) For every π̄1-vertical Chetaev vector field Z on Q

J1γ∗iZ ᾱ = 0 (30)

where ᾱ is any representative of the class [ᾱ].
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(3) Along J2γ,
Ās + B̄sr q̈

r = 0 , 1 ≤ s ≤ m− k . (31)

The above equations are called reduced nonholonomic equations [4]. Remark-
ably, reduced equations do not contain Lagrange multipliers.

4 The nonholonomic variational principle
We shall briefly recall a variational principle proposed in [6], providing reduced
nonholonomic equations as equations for extremals.

Consider a Lagrangian λ on J1Y , let θλ be its Cartan form. Let ι : Q→ J1Y be
a nonholonomic constraint, C the canonical distribution. Denote by S[a,b](π̄1) the
set of sections of π̄1, defined around an interval [a, b] ⊂ R, a < b. By constrained
action we mean the function

S[a,b](π̄1) 3 δ →
∫ b

a

δ∗ι∗θλ ∈ R . (32)

Given a π̄1-projectable vector field Z ∈ C, denote by φ and φ0 the flows of Z and its
projection Z0, respectively. The one-parameter family {δu} of sections of π̄1, where
δu = φu δ φ

−1
0u , is called constrained variation of δ induced by Z. The function

S[a,b](π̄1) 3 δ →

(
d

du

∫
φ0u([a,b])

δ∗u ι
∗θλ

)
u=0

=

∫ b

a

δ∗ L
Z
ι∗θλ ∈ R (33)

is then the first constrained variation of the action function of λ over [a, b], induced
by Z. Restricting the domain of definition S[a,b](π̄1) of the function (33) to the

subset Sh[a,b](π̄1) of holonomic sections of the projection π̄1, i.e. δ = J1γ where

γ ∈ S[a,b](π), one can regard the first constrained variation (33) as a function

S[a,b],Q(π) 3 γ →
∫ b

a

J1γ∗ L
Z
ι∗θλ ∈ R (34)

defined on a subset of sections of the projection π : Y → R. Applying to (34) Car-
tan’s formula for the decomposition of Lie derivative we obtain the nonholonomic
first variation formula∫ b

a

J1γ∗ L
Z
ι∗θλ =

∫ b

a

J1γ∗ iZι
∗dθλ +

∫ b

a

J1γ∗ diZι
∗θλ , (35)

giving us the splitting of the first constrained variation to a “constrained Euler-
-Lagrange term” and a boundary term.

A section γ of π is called a constrained extremal of λ on [a, b] if Im J1γ ⊂ Q,
and if the first constraint variation of the action on the interval [a, b] vanishes for
every “fixed endpoints” variation Z over [a, b]. γ is called a constrained extremal
of λ if it is its constrained extremal on every interval [a, b] ⊂ Dom γ.

Theorem 5. Consider a Lagrangian λ on J1Y and a nonholonomic constraint. Let
γ : I → Y be a constrained section. The following conditions are equivalent:
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(1) γ is a constrained extremal of λ.

(2) For every π̄1-vertical Chetaev vector field Z on Q

J1γ∗iZι
∗dθλ = 0. (36)

(3) Along J2γ,

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s

)
= 0 , 1 ≤ s ≤ m− k , (37)

where L̄ = L ◦ ι and

L̄a =
∂L

∂q̇m−k+a
◦ ι . (38)

The proof uses the same techniques as the proof of the similar assertion in the
unconstrained case. Keeping the above notations, we can see that for a Lagrangian
system the corresponding constrained system is

[ᾱ] = [ι∗dθλ], (39)

the constrained dynamical form is

Ēc
λ =

(∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s

))
ω̄s ∧ dt, (40)

and

Ās =
∂cL̄

∂qs
− d′c
dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− d′c
dt

∂ga

∂q̇s

)
(41)

B̄sr = − ∂2L̄

∂q̇r∂q̇s
+ L̄a

∂2ga

∂q̇r∂q̇s
. (42)

We call equations (36) or (37) constrained Euler-Lagrange equations, Ēc
λ the

constrained Euler-Lagrange form, and its components constrained Euler-Lagrange
expressions.

In what follows, we use the following notations:

εs =
∂c

∂qs
− dc

dt

∂

∂q̇s
, ε′s =

∂c

∂qs
− d′c
dt

∂

∂q̇s
. (43)

Finally, let us recall the fundamental relation between well-known Chetaev
equations (with Lagrange multipliers) [2] and reduced equations (without Lagrange
multipliers) [4], [13]:

Theorem 6. A constrained section γ of π is a solution of constrained Euler-Lagrange
equations (36) or (37) if and only if it is a solution of Chetaev equations

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= λa

∂fa

∂q̇σ
. (44)

It is worth note that for semiholonomic constraints one has εs(g
a) = 0 [5], so

that the constrained Euler-Lagrange equations simplify to

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
= 0 . (45)
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5 The local inverse variational problem for nonholonomic systems
Now we are prepared to generalize the inverse variational problem to nonholonomic
mechanics. In what follows we consider a constraint ι : Q→ J1Y . Given a system
of second order differential equations on Q, (31), the question is if the equations are
constraint variational, i.e. if they come from a constrained variational functional
as equations for constrained extremals. Similarly as in the unconstrained case,
the problem has several different formulations: local and global, direct (covariant)
and contravariant (variational multipliers). We shall deal with the local inverse
problem in covariant form (for equations “as they stand”), so that in what follows,
Y = R× Rm and J1Y = R× Rm × Rm.

More precisely, consider a system of mixed first order and second order ODE’s

q̇m−k+a − ga(t, qσ, q̇l) = 0 , 1 ≤ a ≤ k ,
Ās(t, q

σ, q̇l) + B̄sr(t, q
σ, q̇l)q̈r = 0 , 1 ≤ s ≤ m− k

(46)

for sections γ : I → Y . The equations give rise to a nonholonomic constraint
Q ⊂ J1Y of corank k, with the canonical distribution C, and a constrained system,
represented either by a class of first order 2-forms

ᾱ = Āsω̄
s ∧ dt+ B̄srω̄

s ∧ dq̇r + F + ν (47)

where F is a 2-contact and ν is a constraint form on Q, or, by a constrained
dynamical form

Ēc = (Ās + B̄sr q̈
r)ω̄s ∧ dt (48)

on Q̂.

Definition 1. A constrained dynamical form Ēc on Q will be called constraint
variational if there exist m+ 1 functions L̄, L̄a such that

Ās + B̄sr q̈
r =

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s

)
. (49)

A system of equations (46) is called constraint variational (as it stands) if the
corresponding constrained dynamical form Ēc = (Ās + B̄sr q̈

r)ω̄s ∧ dt is constraint
variational.

Note that if a system of equations (a constrained dynamical form) is constraint
variational, and L̄, L̄a are the corresponding “constraint Lagrange functions” then
the constraint Lagrangian takes the form

λc = L̄ dt+ L̄aϕ
a, (50)

and the action is

S[a,b](π̄1) 3 δ →
∫ b

a

δ∗θλc ∈ R , (51)

where θλc
is the constraint Lepage equivalent of λc (constraint Cartan form) as

introduced in [10]; in coordinates,

θλc
= L̄ dt+

∂L̄

∂q̇s
ω̄s + L̄aϕ

a. (52)
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Immediately from the definition we can see that given an unconstrained La-
grangian system, the corresponding constrained system is constraint variational
for any nonholonomic constraint. Indeed, in this case,

L̄ = L ◦ ι, L̄a =
∂L

∂q̇m−k+a
◦ ι, (53)

and
θλc

= ι∗θλ, (54)

where λ = Ldt is a first order Lagrangian for the given variational dynamical form.

On the other hand, as we shall see below, a nonholonomic system which is
constraint variational may arise from a non-variational unconstrained system on
J1Y . Moreover, such an unconstrained system need not be unique.

We have the following main theorem on constraint variationality of reduced
equations on nonholonomic manifolds:

Theorem 7. Let Ēc be a constrained dynamical form, [ᾱ] the corresponding class
of 2-forms. Ēc is constraint variational if and only if in a neighborhood of every
point in Q the class [ᾱ] has a closed representative.

Proof. If Ēc is constraint variational, we have Lagrange functions L̄, L̄a such that

Ēc =
(
Ās + B̄sr q̈

r
)
ω̄s ∧ dt, (55)

with

Ās = ε′s(L̄)− L̄aε′s(ga), B̄sr = − ∂2L̄

∂q̇s∂q̇r
+ L̄a

∂2ga

∂q̇s∂q̇r
. (56)

Putting

ρ = L̄ dt+
∂L̄

∂q̇s
ω̄s + L̄aϕ

a (57)

we obtain

dρ ∼
(
ε′s(L̄)− L̄a ε′s(ga)

)
ω̄s ∧ dt+

(
L̄a

∂2ga

∂q̇r∂q̇s
− ∂2L̄

∂q̇r∂q̇s

)
ω̄s ∧ dq̇r ∈ [ᾱ] (58)

as desired.
Let us show the converse. Given Ēc = (Ās + B̄sr q̈

r)ω̄s ∧ dt, let

ᾱ = Āsω̄
s ∧ dt+ B̄rsω̄

r ∧ dq̇s + F̄rsω̄
r ∧ ω̄s

+ ϕa ∧ (badt+ basω̄
s + casdq̇

s) + γabϕ
a ∧ ϕb

(59)

where F̄rs = −F̄sr and γab = −γba, be a 2-form belonging to the class [ᾱ] of Ēc,
and assume that it is closed. Then ᾱ = dρ where ρ is a local 1-form on Q, i.e. in
coordinates it reads as follows:

ρ = ρ0dt+ ρ1
sω̄

s + ρ2
aϕ

a + ρ3
sdq̇

s. (60)
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Computing dρ and equating its components with those of (59) we can immediately
see that the term dq̇r ∧ dq̇s is missing in ᾱ. Hence

∂ρ3
s

∂q̇r
=
∂ρ3

r

∂q̇s
, (61)

i.e.

ρ3
s =

∂h

∂q̇s
+ hs(t, q

σ), (62)

meaning that ρ is of the form

ρ =
(
ρ0 − d′ch

dt
− q̇s d

′
chs
dt

)
dt+

(
ρ1
s −

∂ch

∂qs
− q̇r ∂chr

∂qs

)
ω̄s

+
(
ρ2
a −

∂h

∂qm−k+a
− q̇s ∂hs

∂qm−k+a

)
ϕa + d(h+ hsq̇

s) .

(63)

We conclude that without loss of generality we may assume ᾱ = dρ̄ where

ρ̄ = L̄ dt+ fsω̄
s + L̄aϕ

a. (64)

Comparing now dρ̄ with ᾱ and accounting that

dϕa = −ε′s(ga)ω̄s ∧ dt+
( ∂c

∂qr
∂ga

∂q̇s

)
ω̄s ∧ ω̄r +

∂2ga

∂q̇r∂q̇s
ω̄s ∧ dq̇r

− ∂ga

∂qm−k+b
ϕb ∧ dt−

( ∂

∂qm−k+b

∂ga

∂q̇s

)
ϕb ∧ ω̄s

(65)

we obtain:

fs =
∂L̄

∂q̇s
, (66)

and

Ās =
∂cL̄

∂qs
− d′cfs

dt
− L̄aε′s(ga), B̄rs = −∂fr

∂q̇s
+ L̄a

∂2ga

∂q̇r∂q̇s
(67)

proving that Ēc is constraint variational. Moreover, we find expressions for the
other components of ᾱ by means of L̄ and L̄a as follows:

F̄rs =
1

2

((∂cfs
∂qr

− ∂cfr
∂qs

)
− L̄a

( ∂c

∂qr
∂ga

∂q̇s
− ∂c

∂qs

(∂ga
∂q̇r

))
(68)

and

ba =
∂L̄

∂qm−k+a
− d′cL̄a

dt
− L̄b

∂gb

∂qm−k+a

bas =
∂fs

∂qm−k+a
− ∂cL̄a

∂qs
− L̄b

∂

∂qm−k+a

(∂gb
∂q̇s

)
cas = −∂L̄a

∂q̇s

γab =
1

2

( ∂L̄b
∂qm−k+a

− ∂L̄a
∂qm−k+b

)
(69)

�
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Notice that in the class [ᾱ] we have three distinguished representatives: ᾱ1 = dρ̄
with components as above,

ᾱ2 =
(
ε′s(L̄)− L̄aε′s(ga)

)
ω̄s ∧ dt−

( ∂2L̄

∂q̇r∂q̇s
− L̄a

∂2ga

∂q̇r∂q̇s

)
ω̄r ∧ dq̇s (70)

and

ᾱ3 =
(
ε′s(L̄)− L̄aε′s(ga)

)
ω̄s ∧ dt+

( ∂c

∂qr
∂L̄

∂q̇s
− L̄a

( ∂c

∂qr
∂ga

∂q̇s

))
ω̄r ∧ ω̄s

−
( ∂2L̄

∂q̇r∂q̇s
− L̄a

∂2ga

∂q̇r∂q̇s

)
ω̄r ∧ dq̇s .

(71)

The following theorem provides variationality conditions of reduced equations,
called constraint Helmholtz conditions, first obtained in [9].

Theorem 8. Let Ēc be a constrained dynamical form, [ᾱ] the corresponding class
of 2-forms. Ēc is constraint variational if and only if (locally) there exist functions
ba, cas and γab on Q (i.e. functions of variables (t, qσ, q̇l)) such that γab = −γba,
the γ’s are solutions of the equations(d′cγab

dt
− 2γbc

∂gc

∂qm−k+a
− ∂ba
∂qm−k+b

)
alt(ab)

= 0 , (72)

and the following conditions hold

(B̄ls)alt(ls) = 0(∂B̄ls
∂q̇r

− ∂2ga

∂q̇l∂q̇r
cas

)
alt(sr)

= 0(∂Āl
∂q̇s
− ε′l(ga)cas −

d′cB̄ls
dt
− ∂2ga

∂q̇l∂q̇s
ba

)
sym(ls)

= 0(
−∂cĀl
∂qs

+ ε′l(g
a)bas +

1

2

d′c
dt

(∂Āl
∂q̇s
− ε′l(ga)cas

)
+ ba

∂c

∂qs

(∂ga
∂q̇l

))
alt(ls)

= 0

∂Āl
∂qm−k−a

+ 2γacε
′
l(g

c)− ∂cba
∂ql
− bc

∂2gc

∂q̇l∂qm−k+a
+
d′cbal
dt

+
∂gc

∂qm−k+a
bcl = 0

∂B̄ls
∂qm−k+a

− 2γab
∂2gb

∂q̇l∂q̇s
+
∂bal
∂q̇s
− ∂ccas

∂ql
− ∂2gb

∂q̇l∂qm−k+a
cbs = 0

(73)

where

bas =
∂ba
∂q̇s
− d′ccas

dt
− ∂gb

∂qm−k+a
cbs . (74)

Proof. By the preceding theorem the result comes from the condition dᾱ = 0 where
ᾱ is given by (59). �

Notice that by the above computation we obtain for components of the 2-form
F the following formula

F̄rs =
1

4

((∂Ār
∂q̇s
− ∂Ās
∂q̇r

)
−
(
ε′r(g

a)cas − ε′s(ga)car
))

, (75)
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which is just another expression of (68).
Compared with Helmholtz conditions, the constraint Helmholtz conditions have

a rather surprising form. While the former are identities to be fulfilled by the
components of a dynamical form (i.e. by the functions on the left-hand sides of the
corresponding equations), the latter are rather equations for unknown functions ba,
cas and γab. This means that for a system of equations (46), if the answer to the
question on constraint variationality is affirmative, the corresponding constraint
Lagrangian form need not be unique. This is closely related with the yet unsolved
problem on the structure of constraint null Lagrangians.

6 Examples: Planar motions
In this section we shall study examples of various simple mechanical systems,
namely planar systems subject to one nonholonomic constraint. This means that
we have one reduced equation of motion in this case. In the notation used so far,
m = 2, k = 1, Y = R× R2; coordinates in the plane will be denoted by (x, y).

The unconstrained equations of motion are of the form

∂L

∂x
− d

dt

∂L

∂ẋ
= −F1 ,

∂L

∂y
− d

dt

∂L

∂ẏ
= −F2 , (76)

where the force on the right-hand side generally is not assumed variational. The
functions Bσν are the same for any (variational and non-variational) force, ob-
structions to variationality may enter only through additional terms to Aσ, i.e.
Aσ → Aσ = Aσ + Fσ.

A nonholonomic constraint in J1(R× R2) is given by equation

ẏ = g(t, x, y, ẋ) , (77)

so that

ϕ1 = dy − ∂g

∂ẋ
dx−

(
g − ẋ ∂g

∂ẋ

)
dt , (78)

and the reduced equation of motion takes the form (37) modified by Φ, i.e.

∂cL̄

∂x
− dc

dt

∂L̄

∂ẋ
− L̄1

(∂cg

∂x
− dc

dt

∂g

∂ẋ

)
= −Φ̄, (79)

where

Φ̄ = F̄1 + F̄2
∂g

∂ẋ
, F̄σ = Fσ ◦ ι. (80)

The constraint Helmholtz conditions (73) reduce to the following equations for
functions b1 and c11 (due to skew symmetry, γ11 = 0):

∂Ā1

∂ẋ
− ε′1(g)c11 −

d′cB̄11

dt
− ∂2g

∂ẋ2
b1 = 0

∂Ā1

∂y
− ∂cb1

∂x
− ∂2g

∂ẋ∂y
b1 +

d′cb11

dt
+
∂g

∂y
b11 = 0

∂B̄11

∂y
+
∂b1
∂ẋ
− ∂cc11

∂x
− ∂2g

∂ẋ∂y
c11 = 0

(81)
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where

b11 =
∂b1
∂ẋ
− d′cc11

dt
− ∂g

∂y
c11 . (82)

Recall that conditions (81) are fulfilled for every constrained system arising
from an unconstrained Lagrangian one. Adding the force (F1, F2) to equations of
motion, the reduced equation changes by Φ̄, and the first two conditions (81) by ∂Φ

∂ẋ

and ∂Φ
∂y , respectively. Hence for a Lagrangian system in a force field (F1, F2) the

constraint Helmholtz conditions are fulfilled trivially for every constraint satisfying
the following compatibility condition:

Φ̄ = F̄1 + F̄2
∂g

∂ẋ
= χ(t, x), (83)

where χ(t, x) is an arbitrary function. For such a case equations (81) retain the
same solution (b1, b11, c11) as in the case without additional forces. Moreover,
if χ(t, x) = 0, the “free” Lagrangian system (i.e. with F1 = F2 = 0) and that
(essentially different!) moving in a constraint-compatible force field (F1, F2) 6= 0
have the same reduced motion equation.

6.1 Motion in a homogeneous field

Let us consider the motion of a mass particle m in a homogeneous field, for con-
creteness e.g. in the gravitational field ~G. Such a particle moves in a plane xOy
along a parabolic trajectory (so called parabolic or projectile motion),

x(t) = vt cosα, y(t) = vt sinα− 1

2
Gt2,

where ~v = (v cosα, v sinα) is the initial velocity. The unconstrained system is
variational, with the Lagrangian

λ = Ldt, L =
1

2
mẋ2 +

1

2
mẏ2 −mGy, (84)

the corresponding dynamical form is

Eλ = −mẍ dx ∧ dt−m(ÿ +G)dy ∧ dt. (85)

Consider a constraint (77). Then

B̄11 = −m
(

1 +
(∂g
∂ẋ

)2
)
, Ā1 = −m∂g

∂ẋ

(
G+

d′cg

dt

)
, (86)

so that the reduced equation is of the form

−mẍ
(

1 +
(∂g
∂ẋ

)2
)
−m∂g

∂ẋ

(
G+

d′cg

dt

)
= 0. (87)

Since the unconstrained system is Lagrangian, the arising constrained system
is constraint variational for any nonholonomic constraint. This means, of course,
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that the constraint Helmholtz conditions have a solution (certain functions b1, b11,
c11) for every fixed constraint (77).

Now, let us consider the question on constraint variationality of equation (87)
from the other side: Let us try to find a solution of the inverse problem directly,
by solving the constraint Helmholtz conditions as equations for b1 and c11.

Accounting commutation relations for constraint derivative operators, the con-
straint Helmholtz conditions take the form

−∂
2g

∂ẋ2

(
m

(
G+

d′cg

dt

)
+ b1

)
− ε′1(g)

(
c11 +m

∂g

∂ẋ

)
= 0 , (88)

− ∂2g

∂ẋ∂y

(
m

(
G+

d′cg

dt

)
+ b1

)
−m∂g

∂ẋ

∂

∂y

(
d′cg

dt

)
− ∂cb1
∂x

+
d′cb11

dt
+b11

∂g

∂y
= 0 , (89)

− ∂2g

∂ẋ∂y

(
c11 + 2m

∂g

∂ẋ

)
+
∂b11

∂ẋ
− ∂cc11

∂x
= 0 , (90)

with

b11 =
∂b1
∂ẋ
− d′cc11

dt
− ∂g

∂y
c11 . (91)

Condition (88) can be fulfilled e.g. for functions b1 and c11 of the form

b1 = −m
(
G+

d′cg

dt

)
, (92)

c11 = −m∂g

∂ẋ
. (93)

Then

b11 = −m∂g

∂x
. (94)

It can be verified by a direct calculation that with the above choice of functions b1,
c11 and b11 the remaining two constraint Helmholtz conditions (89) and (90) are
satisfied. In this way we have obtained that the reduced equation (87) is indeed
constraint variational.

We can ask the question if the above solution to the constraint Helmholtz
conditions is in correspondence with the original (unconstrained) system, since, in
principle, the obtained b1, b11, and c11 could correspond to a different unconstrained
Lagrangian system having the same reduced equation of motion. To this end let
us compute the corresponding functions related with the Lagrangian (84); let us
use notations b1(L), c11(L), and b11(L) to distinguish them from the b1, c11, and
b11 above.

We have

L̄ =
1

2
mẋ2 +

1

2
mg2 −mGy , L̄1 = mg , (95)
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hence, by (69)

b1(L) =
∂L̄

∂y
− d′cL̄1

dt
− L̄1

∂g

∂y
= −m

(
G+

d′cg

dt

)
= b1,

b11(L) =
∂2L̄

∂y∂ẋ
− ∂cL̄1

∂x
− L̄1

∂2g

∂y∂ẋ
= −m∂g

∂x
= b11,

c11(L) = −∂L̄1

∂ẋ
= −m∂g

∂ẋ
= c11.

Finally, the constraint Lagrangian and the constraint Cartan form read

λc =
(1

2
m(ẋ2 + g2)−mGy

)
dt+mgϕ1,

ρ̄ = λc +m
(
ẋ+ g

∂g

∂ẋ

)
(dx− ẋ dt) .

(96)

Remark 1. An interesting constraint for the Lagrangian system (84) was consid-
ered in [14], namely

ẏ =
√
v2 − ẋ2. (97)

In this case the reduced equation has the form

− mv2

v2 − ẋ2
ẍ+

mGẋ√
v2 − ẋ2

= 0 =⇒ (98)

ẍ− G

v2
ẋ
√
v2 − ẋ2 = 0

and it can be solved analytically (see [14] for the solution and conservation laws).
The functions b1, c11 and b11 given by (92), (93) and (94).take the form

b1 = −mG, c11 =
mẋ√
v2 − ẋ2

, b11 = 0,

and a constraint Lagrangian is

λc = −mGy dt+m
√
v2 − ẋ2ϕ1.

One can easily verify that, indeed, ε1(L̄) − L̄1ε1(g) is the left-hand-side of the
reduced equation (98).

There are, however, also other solutions b1, b11 and c11 of the constraint Helm-
holtz conditions. One of them is b1 = −mG, b11 = 0, c11 = 0 as can be easily
verified substituting into (81). A corresponding constraint Lagrangian, leading to
the same reduced equation (98), is then

λ′c = L̄′ dt ,

where

L̄′ = −mGy + L0, L0 =
1

2
mv ((v + ẋ) ln (v + ẋ) + (v − ẋ) ln (v − ẋ)) .
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The 1-form
τ = λc

′ − λc = L0dt−m
√
v2 − ẋ2 ϕ1

leads to identically zero left-hand side of the reduced equation and thus it is a null
constraint Lagrangian.

We can see that the constraint Lagrangian L̄′ dt can be extended e.g. to the
Lagrangian

(
L̄′ + L′0

)
dt, defined on J1(R × R2), where L′0 is a polynomial of

at least second degree in the variable ẏ −
√
v2 − ẋ2, for example, one can take

simply L′0 = 1
2m
(
ẏ −
√
v2 − ẋ2

)2
. For such an additional Lagrangian it holds

L′0 ◦ ι = 0 and
∂L′0
∂ẏ ◦ ι = 0. (In general, for a constraint ẏ = g(t, x, y, ẋ) the

same is fulfilled for a polynomial of at least second degree in the variable ẏ − g.)

If L′0 = 1
2m
(
ẏ −
√
v2 − ẋ2

)2
then the corresponding unconstrained equations of

motion of λ̃ = (L̄′ + L′0)dt take the form

− mv2

v2 − ẋ2

(
ẋ2

v2
+

ẏ√
v2 − ẋ2

)
ẍ− mẋ√

v2 − ẋ2
ÿ = 0,

−mG− mẋ√
v2 − ẋ2

ẍ−mÿ = 0

(99)

and apparently they are not equivalent with the motion equations of the La-
grangian (84).

6.2 Damped motion in a homogeneous field

Let us turn to the case when the unconstrained system is not variational.
Consider the same Lagrangian (84) as above, but now suppose that additionally

the motion is damped by Stokes force ~F = −β~v, i.e. (Fσ) = (−βẋ, −βẏ), where
β is a positive constant. (The trajectory of the particle is the well-known ballistic
curve.)

The dynamical form

E = −(mẍ+ βẋ)dx ∧ dt− (mÿ +mG+ βẏ)dy ∧ dt (100)

is not variational. Denote
Aσ = Aσ + Fσ (101)

where Aσ corresponds to the undamped (variational) system above.
Given a nonholonomic constraint (77) we obtain

B̄11 = −m
(

1 +
(∂g
∂ẋ

)2
)

Ā1 = −m∂g

∂ẋ

(
G+

d′cg

dt

)
− β

(
ẋ+ g

∂g

∂ẋ

) (102)

yielding the reduced equation

−mẍ
(

1 +
(∂g
∂ẋ

)2
)
−m∂g

∂ẋ

(
G+

d′cg

dt

)
− β

(
ẋ+ g

∂g

∂ẋ

)
= 0 (103)
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which differs from the preceding (constraint variational) motion equation by an
additional force term

Φ̄ = −β
(
ẋ+ g

∂g

∂ẋ

)
. (104)

We shall be interested under what conditions equation (103) is constraint vari-
ational.

For additional (non-variational) forces F1 and F2 it is necessary to add to con-

straint Helmholtz conditions (89) and (90) additional terms ∂F̄1

∂ẋ and ∂F̄1

∂y , respec-

tively. Condition (88) remains unchanged. Then there is a possibility to fulfill the
constraint Helmholtz conditions by a simple way, namely to find such a constraint
g for which equation (83) is satisfied. Integrating this equation we obtain

g =
√
φ(t, x, y) + ẋχ(t, x)− ẋ2 , (105)

where φ(t, x, y) and χ(t, x) are arbitrary functions of indicated variables. For
every constraint of this type the constraint Helmholtz conditions are the same as
for the undamped case. Let us emphasize that the family of solutions b1, b11 and
c11 of constraint Helmholtz conditions remains unchanged as well. One of these
solutions is thus again given by (92), (93) and (94). A corresponding constraint
Lagrangian is then, accordingly

λc =
(1

2
m(φ+ ẋχ)−mGy)

)
dt+m

√
φ+ ẋχ− ẋ2 ϕ1 .

An interesting case occurs for φ = 2Gy, χ = 0. Then L̄ = 0, hence

λc = m
√

2Gy − ẋ2 ϕ1.

So, we can see that there is a possibility to choose a constraint Lagrangian for which
L̄ = 0: this Lagrangian belongs to the constraint ideal. Note that on the other
hand, there is no possibility to get L̄1 = 0, i.e. λc of a form L̄dt. The corresponding
reduced equation reads

2mGẋ√
2Gy − ẋ2

− 2mGy

2Gy − ẋ2
ẍ = 0.

Remark 2. It is worth note that condition Φ̄ = 0 yields the same reduced equation,
hence the same constraint dynamics (which, moreover is constraint variational)
for essentially different unconstrained systems. In our example this concerns a
variational system given by Lagrangian (84) and a non variational one, given by
the same Lagrangian and a non-potential Stokes force. Recall that this happens
subject a constraint

g =
√
φ− ẋ2 . (106)

7 Example: Relativistic particle
A physically highly interesting example of a constrained system subject to a non-
linear nonholomic costraint is a massive particle in the special relativity theory. It
was studied in detail in [8]. It can be modeled with help of an initially variational



60 O. Rossi, J. Musilová

unconstrained system on Y = R × R4 (m = 4, coordinates (s, qσ, q̇σ), 1 ≤ σ ≤ 4)
defined by the following Lagrangian

L = −1

2
m0

√√√√(q̇4)2 −
3∑
l=1

(q̇l)2 + q̇σφσ − ψ, (107)

where φ(qσ) and ψ(qσ) are functions on Y . The corresponding Euler-Lagrange
form reads

Eλ = εl(L) dql ∧ dt+ ε4(L)dq4 ∧ dt, 1 ≤ l ≤ 3 ,

εl(L) = Blsq̈
s +Al = −m0q̈

l + q̇σ
(
∂φσ
∂ql
− ∂φl
∂qσ

)
− ∂ψ

∂ql
,

ε4(L) = B4sq̈
s +A4 = m0q̈

4 + q̇σ
(
∂φσ
∂q4
− ∂φ4

∂qσ

)
− ∂ψ

∂q4
.

The constraint is given by the standard condition for 4-velocity,

(q̇4)2 −
3∑
p=1

(q̇p)2 = 1 =⇒ q̇4 =

√√√√1 +

3∑
p=1

(q̇p)2. (108)

For coefficients of reduced equations we obtain (see (26))

Āl = q̇a
(
∂φa
∂ql
− ∂φl
∂qa

)
− ∂ψ

∂ql
+

(
q̇a
(
∂φa
∂q4
− ∂φ4

∂qa

)
− ∂ψ

∂q4

)
q̇l√

1 +
∑3
p=1(q̇p)2

+

√√√√1 +

3∑
p=1

(q̇p)2

(
∂φ4

∂ql
− ∂φl
∂q4

)
, (109)

B̄ls = −m0

(
δls −

q̇lq̇s

1 +
∑3
p=1(q̇p)2

)
. (110)

Our aim is to find a solution of constraint Helmholtz conditions for the correspond-
ing reduced equations of motion

Āl + B̄lsq̈
s = 0.

The first of conditions (73) is fulfilled because B̄ls are symmetric. As for the
second of conditions (73), it holds

∂B̄ls
∂q̇r

− ∂B̄lr
∂q̇s

= m0
δlr q̇

s − δlsq̇r

1 +
∑3
p=1(q̇p)2

. (111)

On the other hand, we have

c1s
∂2g

∂q̇l∂q̇r
− c1r

∂2g

∂q̇l∂ṡs
=

c1sδ
l
r − c1rδls√

1 +
∑3
p=1(q̇p)2

− c1sq̇
lq̇r − c1r q̇lq̇s

(1 +
∑3
p=1(q̇p)2)3/2

. (112)
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Comparing (111) and (112) we find a solution

c1l =
m0q̇

l√
1 +

∑3
p=1(q̇p)2

, 1 ≤ l ≤ 3. (113)

Substituting c1l into the third condition in (73) and taking into account that ε′l(g) =
0 (g depends on q̇l, 1 ≤ l ≤ 3, only), we obtain, after some calculations,

b1 = q̇l
(
∂φl
∂q4
− ∂φ4

∂ql

)
− ∂ψ

∂q4
. (114)

Finally, using (74), we get

b1l =
∂φl
∂q4
− ∂φ4

∂ql
. (115)

The remaining constraint Helmholtz conditions of (73) are then fulfilled.

It can be easily verified that functions (113), (114) and (115) are the same as
those calculated from Lagrangian (107) using (69).

The constraint Lagrangian is

λc = L̄ ds+ L̄1ϕ
1, ϕ1 = − q̇l√

1 +
∑3
p=1(q̇p)2

ωl + ι∗ω4,

where

L̄ = L ◦ ι = −1

2
m0 + q̇lφl +

√√√√1 +

3∑
p=1

(q̇p)2φ4 − ψ,

L̄1 = −m0

√√√√1 +

3∑
p=1

(q̇p)2 + φ4.

In coordinates (t, ql, vl), adapted to the fibration R× R3 → R, i.e. such that

q̇l = vlq̇4, q̇4 =
1√

1− v2
,

and with the notation (φl) = ~A, φ4 = −V we obtain

L̄ = −1

2
m0 +

1√
1− v2

(~v ~A− V )− ψ , L̄1 = − m0√
1− v2

− V.
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Projective metrizability in Finsler geometry

David Saunders

Abstract. The projective Finsler metrizability problem deals with the ques-
tion whether a projective-equivalence class of sprays is the geodesic class
of a (locally or globally defined) Finsler function. This paper describes an
approach to the problem using an analogue of the multiplier approach to
the inverse problem in Lagrangian mechanics.

1 Introduction
Let M be a manifold of class C∞ which is Hausdorff, second-countable and con-
nected; let τ : T ◦M →M denote its slit tangent bundle; let (xi) be local coordinates
coresponding to some chart on M , and let (xi, yi) be the corresponding fibred co-
ordinates on T ◦M .

A Finsler function [1] is a smooth map F : T ◦M → R which is positive, positively
homogeneous so that F (kv) = kF (v) for v ∈ T ◦M whenever k ∈ R, k > 0, and
strongly convex so that at each point of T ◦M the matrix

gij = 1
2

∂2(F 2)

∂yi ∂yj

is positive definite. Each Finsler function F gives rise to a variational problem
on M of a special kind, where if γ : (a, b) → M is an extremal (in other words, a
geodesic) then so is γ ◦ φ where φ : (a, b)→ (a, b) with φ′(t) > 0.

On the other hand, a spray [5] is a vector field Γ on T ◦M which is second-order,
so that S(Γ) = ∆ where S is the almost tangent structure on T ◦M , and which is
also homogeneous, so that [∆,Γ] = Γ where ∆ is the vector field on T ◦M given by
the restriction of the dilation field on the tangent manifold TM . Locally

Γ = yi
∂

∂xi
− 2Γi

∂

∂yi

2010 MSC: 53C60
Key words: Finsler function, spray, projective equivalence, geodesic path, projective metriz-

ability, Hilbert form
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for some local functions Γi which are positively homogeneous of degree 2. Two
sprays Γ1,Γ2 are said to be projectively related if Γ1−Γ2 = α∆ for some function α.

Every Finsler function F gives rise to a projective class of sprays in the following
way. The Hilbert form of F is the 1-form θF = S(dF ) given locally by

θF =
∂F

∂yi
dxi

and having the property that if γ : (a, b)→M is a geodesic of F then γ′ : (a, b)→
T ◦M is an integral curve of a spray Γ ∈ ker dθF . Furthermore, if γ ◦ φ is a
reparametrized geodesic then (γ ◦ φ)′ is an integral curve of a projectively related
spray Γ− α∆ ∈ ker dθF , and indeed

ker dθF = 〈Γ,∆〉 .

The projective metrizability problem is about the converse question. Given a
projective class {Γ} of sprays on T ◦M , when are these sprays derived from a Finsler
function F on T ◦M , either locally or globally? Here, ‘locally’ means on T ◦U where
v ∈ T ◦M and U is an open neighbourhood of τ(v). There are several approaches
to this problem; we consider only the multiplier approach as an analogue of a
similarly-named approach to the inverse problem in Lagrangian mechanics (see [4]
for a recent survey of this latter problem). We also restrict attention to dimM ≥ 3.

This paper is based on a talk given by the author at the satellite thematic session
‘Geometric Methods in Calculus of Variations’ of the 6th European Congress of
Mathematics in Kraków, July 2012, and reports on joint work with Mike Crampin
and Tom Mestdag [2][3].

2 The comparison with Lagrangian mechanics
Lagrangian mechanics, in the time-independent case, considers a function L on the
tangent manifold TM , and the corresponding local Euler-Lagrange equations

∂L

∂xj
=

d

dt

∂L

∂yj
;

by writing zi = ẏi = ẍi the total derivative d/dt on the right-hand side may be
replaced to give the explicit formulation

∂L

∂xj
= zi

∂2L

∂yi ∂yj
.

If the Hessian matrix hij = ∂L/∂yi ∂yj is regular then this equation may be solved
locally for the second derivatives zi, and there is a unique vector field Γ on TM
satisfying S(Γ) = ∆ and with the property that if γ is a solution of the Euler-
Lagrange equations (an extremal of the variational problem defined by L) then γ′

is an integral curve of Γ.
The inverse problem of Lagrangian mechanics is to start with a vector field Γ

satisfying S(Γ) = ∆, and to determine whether Γ arises from a Lagrangian in this
way. Any such vector field may again be written locally as

Γ = yi
∂

∂xi
− 2Γi

∂

∂yi
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(without, of course, any homogeneity condition on the functions Γi), and any in-
tegral curve of Γ will be the derivative of a curve in M satisfying the second-
order equation zi + 2Γi = 0. Comparing this with the Euler-Lagrange equations
zihij = ∂L/∂xj for a possible Lagrangian L shows the importance of the regularity
of the multiplier matrix hij in the study of this problem.

3 Positivity and strong convexity
The projective metrizability problem for Finsler geometry is, on the face of it, quite
similar to the inverse problem of Lagrangian mechanics. A spray is a vector field
on T ◦M ⊂ TM of the required form, and a Finsler function may be regarded as a
Lagrangian. The difference is that a Finsler function is required to be positively
homogeneous, and so its Hessian matrix can never be regular; indeed

yj
∂2F

∂yi ∂yj
= 0 .

We shall, though, need some kind of regularity, and we can see how to approach
this by writing

hij =
∂2F

∂yi ∂yj
, gij = 1

2

∂2(F 2)

∂yi ∂yj
= hijF +

∂F

∂yi
∂F

∂yj
.

Define hij to be positive quasidefinite if hij(y)vivj ≥ 0, with equality only when
v = λy; say that a function F on T ◦M is a pseudo-Finsler function if it is positively
homogeneous and if its Hessian hij is positive quasidefinite. The following result
is essentially Theorem 1 of [2].

Theorem 1. If F is a pseudo-Finsler function on T ◦M then locally there is a Finsler
function F̃ such that F − F̃ is a total derivative, so that F and F̃ satisfy the same
Euler-Lagrange equations and therefore have the same geodesics. If in addition F
is positive then gij is positive definite, so that F is itself a Finsler function. If F is
absolutely homogeneous, so that F (kv) = |k|F (v) for any k 6= 0 rather than only
for k > 0, then F is necessarily positive, so that again it is a Finsler function.

4 Projective classes of sprays
The projective metrizability problem considers a projective class {Γ} of sprays,
and asks whether there is a corresponding Finsler function F . (Given F , one may
select a distinguished spray from the class by requiring Γ(F ) = 0; this gives rise to
a different inverse problem, starting with a single spray, which we do not consider
here.)

We approach this problem by adapting a technique which has been used to
study the inverse problem in Lagrangian mechanics. Every spray on T ◦M gives
rise to a nonlinear connection on τ with horizontal projector

HΓ = 1
2 (I − LΓS) = dxi ⊗

(
∂

∂xi
− ∂Γj

∂yi
∂

∂yj

)
;

the connection allows us to define the horizontal lift Xh = HΓ(X) of a vector field
X along τ (that is, of a section of the pull-back bundle τ∗TM → T ◦M). We may
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also use the almost tangent structure to define the vertical lift Xv = S(X); in
coordinates, if X = Xi∂/∂xi where Xi are locally defined functions on T ◦M then

Xh = Xi

(
∂

∂xi
− ∂Γj

∂yi
∂

∂yj

)
, Xv = Xi ∂

∂yi
.

We now define the dynamical covariant derivative ∇ and the Jacobi endomor-
phism Φ acting on a vector field X along τ by

[Γ, Xh] = (∇X)h + (ΦX)v , [Γ, Xv] = −Xh + (∇X)v .

With these tools at hand, we can now state a result which is essentially Theorem 2
of [2].

Theorem 2. Suppose given a projective class of sprays. If, in a contractible chart,
a positive quasidefinite matrix of functions hij satisfies the Helmholtz conditions

hji = hij ,
∂hij
∂yk

=
∂hik
∂yj

, hijy
j = 0

and

(∇h)ij = 0 , hijΦ
k
j = hkjΦ

k
i ,

where ∇h and Φkj are the dynamical covariant derivative and Jacobi endomorphism
of any spray in the class, then there is a local pseudo-Finsler function F with Euler-
Lagrange equations satisfied by the geodesics of the sprays.

It follows from Theorem 1 that, when these conditions are satisfied, there is a local
Finsler function with Euler-Lagrange equations satisfied by the geodesics of the
sprays.

5 Global aspects
The result of Theorem 2 has been given in coordinates and is essentially local,
although it is valid for complete fibres (it is ‘y-global’ in the terminology of Finsler
geometry). To consider the existence of a pseudo-Finsler function globally on T ◦M ,
we use the techniques of Čech cohomology.

If {Uλ} is an open cover of M , then we say that {Uλ} is a good cover if all
nonempty finite intersections of the sets Uλ are contractible. It may be shown
that if there is a spray defined on M then M admits a good cover by the domains
of coordinate charts ([2], Appendix B); the proof uses Whitehead’s result on the
existence of geodesically convex sets [6][7].

Let {Uλ} be such a cover. Given a projective class of sprays and a (0,2) tensor
field h along τ whose components in each chart satisfy the conditions of Theorem 2,
there is a pseudo-Finsler function Fλ defined on each Uλ. If Uλ ∩ Uµ is nonempty
then

Fλ − Fµ = yi
∂φλµ
∂xi

for some function φλµ defined on T ◦(Uλ∩Uµ) which is unique to within a constant.
Also, if Uλ ∩ Uµ ∩ Uν is nonempty then

φµν − φλν + φλµ = kλµν
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is constant on the connected set T ◦(Uλ ∩ Uµ ∩ Uν), and if Uκ ∩ Uλ ∩ Uµ ∩ Uν is
nonempty then

kλµν − kκµν + kkλν − kκλµ = 0

on T ◦(Uκ∩Uλ∩Uµ∩Uν). We see from this that the obstruction to the construction
of a global pseudo-Finsler function lies in the second Čech cohomology group of
the cover, and as we have taken a good cover this is isomorphic to the de Rham
cohomology group H2(M). The following result is essentially the second part of
Theorem 3 of [2].

Theorem 3. Suppose given a projective class of sprays. If there is a (0,2) tensor
field h along τ such that

• in each chart of a good atlas the components hij satisfy the Helmholtz con-
ditions and are positive quasidefinite, and

• H2(M) = 0,

then there is a global pseudo-Finsler function F with Euler-Lagrange equations
satisfied by the geodesics of the sprays, and each point of T ◦M has a neighbourhood
on which there is a corresponding local Finsler function.

The example of the spray

Γ = y1 ∂

∂x1
+ y2 ∂

∂x2
+ y3 ∂

∂x3
+
√

(y1)2 + (y2)2 + (y3)2

(
y1 ∂

∂y2
− y2 ∂

∂y1

)
defined on T ◦R3, which is in the projective class of sprays arising from the global
pseudo-Finsler function

F =
√

(y1)2 + (y2)2 + (y3)2 + 1
2 (x2y1 − x1y2) ,

shows that there need not be a global Finsler function giving rise to the projective
class.

6 Multiplier tensors and 2-forms
In a global formulation, the multiplier matrix hij is the coordinate representation
of a symmetric (0,2) tensor field h along the projection T ◦M →M (that is, locally
h = hij dxi ⊗ dxj). This tensor field is closely related to a 2-form on T ◦M which,
given the existence of a Finsler function F , will be the differential dθF of its Hilbert
form. We can therefore translate the conditions on h given above into conditions
on the 2-form; these results are essentially Theorems 5 and 6 of [3].

Theorem 4. Suppose given a spray Γ and a 2-form ω on T ◦M , and let {dxi , φi =
HΓ(dyi)} be a local basis of 1-forms on T ◦M . If

• 〈Γ,∆〉 ⊂ kerω and LΓω = 0,

• ω(V1, V2) = 0 if V1, V2 are vertical, and

• dω(H,V1, V2) = 0 if V1, V2 are vertical and H horizontal
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then in any chart we may write

ω = hijdx
i ∧ φj

where hij satisfies the Helmholtz conditions. It is also the case that a 2-form ω
satisfying the stated conditions must be closed.

It follows that if the matrix hij obtained above is positive quasidefinite on a con-
tractible chart then there will be a local pseudo-Finsler function for Γ.

Theorem 5. Suppose given a projective class of sprays. If there is a 2-form ω
satisfying the conditions of Theorem 4 for any spray in the class, and if the functions
hij are positive quasidefinite, and if furthermore H2(M) = 0, then there is a global
pseudo-Finsler function F with Euler-Lagrange equations satisfied by the geodesics
of the sprays.
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Conference announcements

The 33rd Winter School on Geometry and Physics

January 12–19, 2013, Srńı, Czech Republic.

http://www.math.muni.cz/~srni

28th Journées Arithmétiques

July 1–5, 2013, Grenoble, France

http://www-fourier.ujf-grenoble.fr/ja2013/index-en.html

Differential Geometry and its Applications

August 19–23, 2013, Brno, Czech Republic.

http://inserv.math.muni.cz/dga2013

21st Czech and Slovak International Conference on Number Theory

September 2–6, 2013, Czech Republic.

http://ntc.osu.cz/2013

4th International Conference on Uniform Distribution Theory

July 1–5, 2014, Czech Republic.

http://ntc.osu.cz/UDT2014

International Congress on Mathematical Physics

August 3–8, 2015, Santiago de Chile

http://www.iamp.org/bulletins/Bulletin-Oct12.pdf
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