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Štefan Porubský, Academy of Sciences of the Czech Republic, Prague

Geoff Prince, La Trobe University, Melbourne

Thomas Vetterlein, Johannes Kepler University Linz

Technical Editors
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Editorial

László Kozma

I am pleased to introduce this issue of Communications in Mathematics which
is devoted to research and survey papers on topics in differential geometry and
variational calculus. As well as two regular papers it contains some contributions
from workshops on differential geometry held in Ostrava in May and October 2011.

The cooperation of the Czech and the Hungarian research groups in differential
geometry has a long tradition. This year we held the 7th Bilateral Joint Workshop
on Differential Geometry, previously were held in Opava, Ostrava, Olomouc in the
Czech Republic and Debrecen, Śıkfőkút in Hungary. The core interest of the two
groups is common: geometrization of differential equations and variational calculus
on manifolds. While the Czech team reached remarkable results on the variational
aspects, the Hungarian group is strong in Finsler geometry. So the aspects fruitfully
complete each other.

This issue contains the written version of the minicourse of David Saunders,
five research papers and a survey paper, and a book review. Almost all were read
at the latest workshops.

• Saunders’ work presents the material of the minicourse which introduces a
version of the geometrical background of the problem where the extremals
are submanifolds, but where the action function still depends upon no more
than the first derivatives of the submanifold.

• The paper of Fatibene, Francaviglia and Mercadante shows that when in a
higher order variational principle one fixes fields at the boundary leaving the
field derivatives unconstrained, then the variational principle is not invariant
with respect to the addition of the boundary terms to the action.

• In their paper Muzsnay and Nagy aim at finding the largest Lie algebra of
vector fields on the indicatrix such that all its elements are tangent to the
holonomy group of a Finsler manifold.

• Szilasi and Tóth apply the apparatus of the calculus along the tangent bundle
projection, and give a series of characterizations of affine and conformal vector
fields on Finsler manifolds.
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• Havelková studies the dynamics of singular Lagrangian systems described
by implicit differential equations from a geometrical point of view using the
approach of exterior differential systems.

• In the field of variational principles, Tulczyjew’s new notes are based on
the definition of equilibrium related to the response of a system to virtual
displacements rather than the minima of the internal energy.

I am sure that these works will stimulate further studies in their respective
subjects, and that international collaboration and joint meetings such as ours will
accelerate scientific advance in fields of common interest.

László Kozma
Guest Editor

Editor’s address:
Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O.B. 12, Hungary

E-mail: kozma a©math.klte.hu
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Homogeneous variational problems: a minicourse

David J. Saunders

Abstract. A Finsler geometry may be understood as a homogeneous varia-
tional problem, where the Finsler function is the Lagrangian. The extremals
in Finsler geometry are curves, but in more general variational problems we
might consider extremal submanifolds of dimension m. In this minicourse
we discuss these problems from a geometric point of view.

1 Introduction

This paper is a written-up version of the major part of a minicourse given at
the sixth Bilateral Workshop on Differential Geometry and its Applications, held
in Ostrava in May 2011. Much of the discussion at these workshops is on Finsler
geometry, where the interest is in variational problems defined on tangent manifolds
by a ‘Finsler function’, a smooth function defined on the slit tangent manifold
(excluding the zero section) and satisfying certain homogeneity and nondegeneracy
properties. The extremals of such problems are geometric curves in the original
(base) manifold, without any particular parametrization but with an orientation.

For this particular workshop it was felt that it might be worthwhile to describe
slightly more general problems, looking at variational problems where the extremals
were submanifolds of dimension m, but where the action function still depended
upon no more than the first derivatives of the submanifold [2], [4]; for example,
minimal surface problems would be included in this description. This minicourse
introduces a version of the geometric background needed to express such problems,
in terms of velocity manifolds. There is an alternative approach to such problems
involving manifolds of contact elements (quotients of velocity manifolds); we refer
to this only briefly, when we consider the action of the jet group.

Although we consider only first order variational problems, we nevertheless need
to use second order velocities: for instance, the Euler-Lagrange equations for first
order variational problems are second-order differential equations. We do this in

2010 MSC: 35A15, 58A10, 58A20
Key words: calculus of variations, parametric problems
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a slightly unusual way, looking at a particular submanifold of the double veloc-
ity manifold. Having done this, we look at some geometrical and cohomological
constructions, before obtaining a version of the first variation formula for varia-
tional problems with fixed boundary conditions. The final part of the minicourse,
which considered various concepts of regularity, has been omitted from this paper
for reasons of space; the concepts described may be found in a recent paper [1].
We give only a few other references: [3] provides extensive background material on
various types of jet manifold and the actions of the jet groups; [5] introduces in
a more general context the type of cohomological approach we use these types of
variational problem; and [6], with a philosophy similar to that of the present paper,
compares these problems with those defined on jets of sections of fibrations.

I should like to thank the organisers of the Workshop for inviting me to give this
course. I acknowledge the support of grant no. 201/09/0981 for Global Analysis
and its Applications from the Czech Science Foundation; grant no. MEB 041005 for
Finsler structures and the Calculus of Variations; and also the joint IRSES project
GEOMECH (EU FP7, nr 246981).

2 Velocities
In this section we see how to construct manifolds of first order and second order
velocities, and also how certain groups, the jet groups, act on these manifolds.

2.1 First order velocities

Let E be a connected, paracompact, Hausdorff manifold of class C∞ and of finite
dimension n; let O ⊂ Rm (with m < n) be open and connected, with 0 ∈ O. A
map γ : O → E will be called an m-curve in E. The 1-jet j1

0γ of γ at zero will
be called a velocity (or m-velocity), and the set TmE = {j1

0γ} of velocities of all
m-curves in E will be called the velocity (or m-velocity) manifold of E. We map
TmE to E by

τmE : TmE → E , τmE(j1
0γ) = γ(0) .

We shall show that TmE really is a manifold (and is connected, paracompact
and Hausdorff, and indeed is a vector bundle over E) by identifying it with the
Whitney sum over E of m copies of the tangent manifold TE.

Lemma 1. There is a canonical identification TmE ∼=
⊕m

TE.

Proof. Let ik : R → Rm be the inclusion ik(s) = (0, . . . , 0, s, 0, . . . , 0). Then each
γ ◦ ik is a curve in E, and the map

j1
0γ 7→

(
j1
0(γ ◦ i1), . . . , j1

0(γ ◦ im)
)

is a bijection TmE →
⊕m

TE preserving the fibration over E. �

Corollary 1. Let {dti} be the canonical basis of Rm∗; then

TmE → TE ⊗ Rm∗ , (ξ1, . . . , ξm) 7→ ξi ⊗ dti

is a vector bundle isomorphism. �
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If (U ;ua) is a chart on E then (U1;ua, uai ) is a chart on TmE, where

U1 = τ−1
mE(U) , uai (j1

0γ) = Diγ
a(0) = Di(u

a ◦ γ)(0) .

If j1
0γ = (ξ1, . . . , ξm) then it is clear that uai (j1

0γ) = u̇a(ξi). The rule for changing
coordinates on TmE is therefore

vbi (j
1
0γ) =

∂vb

∂ua

∣∣∣∣
γ(0)

uai (j1
0γ) .

We can see from this that the superscript a labeling the coordinate function uai
depends on the original choice of chart ua on E, whereas the subscript i is inde-
pendent of this choice and so is the index of a component of the velocity (namely,
the tangent vector ξi). We call indices of this latter type counting indices rather
than coordinate indices.

We shall be particularly interested in the subsets of TmE containing those

velocities j1
0γ where the m-curve γ has certain properties. Write

o

TmE for the
subset

{j1
0γ ∈ TmE : γ is an immersion near zero} ;

if j1
0γ = (ξ1, . . . , ξm) and j1

0γ ∈
o

TmE then {ξ1, . . . , ξm} will be linearly independent.

An element of
o

TmE ⊂ TmE will be called a regular velocity.

Proposition 1. The regular velocities form an open-dense submanifold.

Proof. To show that
o

TmE is open in TmE, define the map ∧ : TmE →
∧m

TE by
(ξ1, . . . , ξm) 7→ ξ1 ∧ · · · ∧ ξm. Then

• The map ∧ is fibred over the identity on E and is continuous (it is polynomial
in the fibre coordinates uai );

• j1
0γ ∈

o

TmE exactly when ∧(j1
0γ) 6= 0;

• the zero section of
∧m

TE is closed.

To show that
o

TmE is dense in TmE, define the map f : U1 → R by f(j1
0γ) =

det
(
uji (j

1
0γ)
)
, where (uji ) is the m × m submatrix containing the first m rows of

the n×m matrix uai . If j1
0γ ∈ O ⊂ U1 where O is open and O ∩

o

TmE = ∅ then f
vanishes on O. But

∂mf

∂u1
1 ∂u

2
2 · · · ∂umm

∣∣∣∣
j10γ

= 1 . �

2.2 Second order velocities

We define a second-order m-velocity in the same way as a 2-jet at zero of an
m-curve, and write

T 2
mE = {j2

0γ} ,
o

T 2
mE = {j2

0γ : γ is an immersion near zero} .
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We also let τ2
mE : T 2

mE → E, τ2,1
mE : T 2

mE → TmE be the projections

τ2
mE(j2

0γ) = γ(0) , τ2,1
mE(j2

0γ) = j1
0γ .

We take charts on T 2
mE to be (U2;ua, uai , u

a
ij) where U2 = (τ2

mE)−1(U) and

uai (j2
0γ) = Diγ

a(0) , uaij(j
2
0γ) = DiDjγ

a(0)

so that uaij = uaji (this constraint will cause complications in certain coordinate

formulæ). These charts form an atlas such that T 2
mE becomes a manifold with

the standard properties. We shall not demonstrate this directly; we shall show
instead that it may be identified with a closed submanifold of a larger manifold,
the manifold of double velocities.

2.3 Double velocities

We know that TmE is a manifold, so it has its own velocity manifold

Tm′TmE = {j1
0 γ̃}

where γ̃ is an m′-curve in TmE. This is the (m′,m) double velocity manifold.
Charts on Tm′TmE are therefore(

(U1)1;ua, uai , u
a
;j , u

a
i;j

)
,

where 1 ≤ i ≤ m and 1 ≤ j ≤ m′, corresponding to the charts (U1;ua, uai ) on TmE.
In most applications we have either m′ = m or m′ = 1. We shall be interested in a
particular submanifold of double velocities, known as holonomic double velocities.

2.4 Holonomic double velocities

If γ is an m-curve in E then its prolongation is the m-curve ̄1γ in TmE where

̄1γ(t) = j1
0(γ ◦ tt)

and tt : Rm → Rm is the translation map tt(s) = t + s. Thus j1
0 ̄

1γ ∈ TmTmE.
We use the notation ̄1γ rather than j1γ; the latter would be a map satisfying
j1γ(t) = j1

t γ whose codomain would be a set containing jets at arbitrary points
of Rm rather than just at zero.

Proposition 2. The map

ι : T 2
mE → TmTmE , ι(j2

0γ) = j1
0 ̄

1γ

is an injection. Its image is the submanifold described in coordinates by

uai = ua;i , uai;j = uaj;i .

The image of the chart (U2;ua, uai , u
a
ij) under the injection is the restriction of the

chart
(
(U1)1;ua, uai , u

a
;j , u

a
i;j

)
to the submanifold.
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Proof. Suppose γ1, γ2 are two m-curves in E such that j1
0 ̄

1γ1 = j1
0 ̄

1γ2. Then
for γ1

ua(j2
0γ1) = ua(γ1(0)) = ua(̄1γ1(0)) = ua(j1

0 ̄
1γ1) ;

uai (j2
0γ1) = Di(u

a ◦ γ1)(0) = uai (̄1γ1(0)) = uai (j1
0 ̄

1γ1) ;

uaij(j
2
0γ1) = DiDj(u

a ◦ γ1)(0) = Di(u
a
j ◦ ̄1γ1)(0) = uaj;i(j

1
0 ̄

1γ1)

and similarly for γ2, so that j2
0γ1 = j2

0γ2 and the map is an injection.

For any m-curve γ in E

ua;i(j
1
0 ̄

1γ) = Di(u
a ◦ ̄1γ)(0) = Di(u

a ◦ γ)(0) = uai (̄1γ(0)) = uai (j1
0 ̄

1γ)

and

uaj;i(j
1
0 ̄

1γ) = Di(u
a
j ◦ ̄1γ)(0) = Di(Dj(u

a ◦ γ))(0)

so that uai = ua;i and uai;j = uaj;i when restricted to the image of the injection.

Furthermore, if γ̃ is an m-curve in TmE satisfying

uai (j1
0 γ̃) = ua;i(j

1
0 γ̃) , uai;j(j

1
0 γ̃) = uaj;i(j

1
0 γ̃)

then the m-curve γ in E given in coordinates near τmE(γ̃(0)) by

γa(t) = ua(j1
0 γ̃) + uai (j1

0 γ̃)ti + 1
2u

a
i;j(j

1
0 γ̃)titj

so that j1
0 ̄

1γ = j1
0 γ̃; thus the image of the injection is described locally by the

equations uai = ua;i, u
a
i;j = uaj;i and is therefore a submanifold of TmTmE.

The relationship between the charts (U2;ua, uai , u
a
ij) and

(
(U1)1;ua, uai , u

a
;j , u

a
i;j

)
is immediate. �

The image of T 2
mE in TmTmE is called the submanifold of holonomic double

velocities. There is no canonical projection TmTmE → T 2
mE; we may, however,

consider a tubular neighbourhood ν : N → T 2
mE of T 2

mE in TmTmE, and then the
condition ν ◦ ι = idT 2

mE
(where ι : T 2

mE → TmTmE is the injection) gives rise to
the constraints

∂νa

∂uc
= δac ,

∂νa

∂ucp
+
∂νa

∂uc;p
= 0 ,

∂νa

∂ucp;q
+

∂νa

∂ucq;p
= 0 ,

∂νai
∂uc

= 0 ,
∂νai
∂ucp

+
∂νai
∂uc;p

= δac δ
p
i ,

∂νai
∂ubp;q

+
∂νai
∂ubq;p

= 0 ,

∂νaij
∂uc

= 0 ,
∂νaij
∂ucp

+
∂νaij
∂uc;p

= 0 ,
∂νaij
∂ucp;q

+
∂νaij
∂ucq;p

= δac (δpi δ
q
j + δpj δ

q
i ) .
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for the coordinates of ν, and hence to the conditions

dνa = dua +
∂νa

∂ucp
(ducp − duc;p) + 1

2

∂νa

∂ucp;q
(ducp;q − ducq;p)

dνai = 1
2 (duai + dua;i) + 1

2

(
∂νai
∂ucp
− ∂νai
∂uc;p

)
(ducp − duc;p) + 1

2

∂νai
∂ucp;q

(ducp;q − ducq;p)

dνaij = 1
2 (duai;j + duaj;i) +

∂νaij
∂ucp

(ducp − duc;p) + 1
2

∂νaij
∂ucp;q

(ducp;q − ducq;p) .

We shall use these conditions later on.

2.5 The exchange map

There is another way of describing the submanifold of holonomic velocities.

A map ψ : O′×O → E, where O ⊂ Rm, O′ ⊂ Rm′ are open and connected, and
where 0Rm ∈ O and 0Rm′ ∈ O′, is called a double (m′,m)-curve. For each s ∈ O′

ψs : O → E , ψs(t) = ψ(s, t)

is then an m-curve in E, so that j1
0ψs ∈ TmE. Thus

j1
0(s 7→ j1

0ψs) ∈ Tm′TmE .

Lemma 2. The exchange map e : Tm′TmE → TmTm′E is well-defined by ψ 7→ ψ̂
where ψ̂(t, s) = ψ(s, t) and is a smooth bijection.

Proof. The element of TmTmE defined by ψ satisfies

ua(j1
0(s 7→ j1

0ψs)) = ua(j1
0ψ0) = ψa0 (0) = ψa(0, 0) ,

uai (j1
0(s 7→ j1

0ψs)) = uai (j1
0ψ0) = Di(u

a ◦ ψ0)(0) = D2:iψ
a(0, 0) ,

ua;j(j
1
0(s 7→ j1

0ψs)) = Dj(u
a ◦ (s 7→ j1

0ψs))(0) = Dj(s 7→ ψas )(0) = D1:jψ
a(0, 0) ,

uai;j(j
1
0(s 7→ j1

0ψs)) = Dj(u
a
i ◦ (s 7→ j1

0ψs))(0)

= Dj(s 7→ Diψ
a
s (0))(0) = D1:jD2:iψ

a(0, 0) ,

and carrying out the same calculation for ψ̂ shows that e is a well-defined injection.
It is clearly an involution, and hence is a bijection. The coordinate formulæ

ua ◦ e = ua , uai ◦ e = ua;i , ua;j ◦ e = uaj , uai;j ◦ e = uaj;i

show that it is smooth. �

Proposition 3. The holonomic submanifold of TmTmE is the fixed point set of the
exchange map.

Proof. This is immediate from the coordinate formulæ for e. �
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2.6 Jet groups

If we consider m-curves in Rm rather than in some other manifold, then we have
the possibility of composing two such m-curves. If we insist that the origin must
map to itself then the composition will always exist, although possibly with a
smaller domain then the domains of the two original m-curves. We shall want
the jets of these m-curves to have inverses, so that the curves themselves will
need to be immersions near zero; it is convenient to assume that they are, in fact,
diffeomorphisms onto their images.

So let O ⊂ Rm be open and connected with 0 ∈ O, and let φ : O → φ(O) ⊂ Rm
be a diffeomorphism with φ(0) = 0. The first and second order jet groups are

L1
m = {j1

0φ} , L2
m = {j2

0φ} .

The products for L1
m and L2

m are given by

j1
0φ1 · j1

0φ2 = j1
0(φ1 ◦ φ2) , j2

0φ1 · j2
0φ2 = j2

0(φ1 ◦ φ2) .

Lemma 3. The product rules define group structures on L1
m and L2

m.

Proof. The products are well-defined because the first (or second) derivatives of
a composite depend only upon the first (or second) derivatives of the individual
maps, by the first (or second) order chain rule; sssociativity of the products is
inherited from that of composition. The diffeomorphism idRm satisfies

j1
0(idRm) · j1

0φ = j1
0(idRm ◦ φ) = j1

0φ ;

the map φ̄ : φ(O)→ O given by φ̄ = φ−1 satisfies φ̄(0) = 0, and

j1
0 φ̄ · j1

0φ = j1
0(φ̄ ◦ φ) = j1

0(idO) = j1
0(idRm) .

Similar formulæ hold for second-order jets. �

The map L1
m → Rm2

, j1
0φ 7→

(
Djφ

i(0)
)

defines global coordinates on L1
m, and

identifies it with GL(m,R). The map L2
m → Rm2(m+3)/2,

j2
0φ 7→

(
Djφ

i(0), DjDkφ
i(0)

)
defines global coordinates on L2

m. Writing

Aij = Djφ
i(0) , Bijk = DjDkφi(0)

where detAij 6= 0 because φ is a diffeomorphism, the product rule in L1
m is

(AÂ)ij = AihÂ
h
j

and the product rule in L2
m is(

(A,B)(Â, B̂)
)i
j

= AihÂ
h
j ,(

(A,B)(Â, B̂)
)i
jk

= AilB̂
l
jk +BihlÂ

h
j Â

l
k ,
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the latter formula arising from the second order chain rule

DjDk(φφ̂)i(0) = Dj(Dlφ
i ◦ φ̂)Dkφ̂

l)(0)

= Dlφ
i(0)DjDkφ̂

l(0) +DhDlφ
i(0)Dj φ̂

h(0)Dkφ̂
l(0)

using φ(0) = φ̂(0) = 0.

Corollary 2. The groups L1
m and L2

m are Lie groups. �

Lemma 4. The oriented subgroups L1+
m and L2+

m , where φ preserves orientation,
are connected.

Proof. As L1
m may be identified with GL(m,R), the subgroup L1

m where φ preserves
orientation may be identified with GL+(m,R), the subgroup of matrices satisfying
detAij > 0, which is connected.

The map L1
m → L2

m given by j1
0φ 7→ j2

0 φ̂, where φ̂ is the linear map φ̂i(t) = Aijt
j

with (Aij) being the matrix corresponding to j1
0φ, is continuous; the coordinates of

the image are (Aij , 0). The image of the subgroup L1+
m under this map is therefore

connected. But every element of L2+
m may be joined to an element of this image

by a path given in coordinates by

s 7→ (Aij , sB
i
jk) , s ∈ [0, 1] �

2.7 Group actions

The jet groups L1
m and L2

m act on the velocity manifolds TmE and T 2
mE by

(j1
0φ, j

1
0γ) 7→ j1

0(γ ◦ φ) , (j2
0φ, j

2
0γ) 7→ j2

0(γ ◦ φ) .

These are right actions, and in coordinates they are

ua 7→ ua

uai 7→ uahA
h
i

uaij 7→ uahkA
h
i A

k
j + uahB

h
jk

where Aij and Bijk are the global coordinates of j2
0φ.

Lemma 5. The action of L1
m on TmE restricts to

o

TmE, and the restricted action

is free. The action of L2
m on T 2

mE restricts to
o

T 2
mE, and the restricted action is

free.

Proof. The map φ is a diffeomorphism onto its image, so if γ is an immersion near
zero then so is γ ◦ φ.

We use coordinates to show that the restricted actions are free. Suppose first
that j1

0(γ ◦ φ) = j1
0γ, so that

uaj (j1
0γ) = uai (j1

0γ)Aij ;
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as γ is an immersion near zero and uai (j1
0γ) = Diγ

a(0), it follows that the m × n
matrix uai (j1

0γ) must have rank m, so that Aij = δij and hence j1
0φ = j1

0(idRm).

Now suppose that j2
0(γ ◦ φ) = j2

0γ, so that uaj (j2
0γ) = uai (j2

0γ)Aij and now also

uahk(j2
0γ) = uaij(j

2
0γ)AihA

j
k + uai (j2

0γ)Bihk .

As before we see that Aij = δij , so that

uahk(j2
0γ) = uahk(j2

0γ) + uai (j2
0γ)Bihk

and therefore that uai (j2
0γ)Bihk = 0; the rank condition on uai (j2

0γ) now tells us that
Bihk = 0. �

2.8 Infinitesimal actions

Let (aij) be an element of the Lie algebra of L1
m; the identification of the group

with GL(m, r) means that its Lie algebra may be identified with gl(m,R) so that
(aij) is an arbitrary m×m matrix.

Lemma 6. The vector field on TmE corresponding to (aij) is

aiju
a
i

∂

∂uaj
.

Proof. The map σ : (−ε, ε)→ GL(m,R), defined for sufficiently small ε by σ(s) =
(δij + saij), is a curve in GL(m,R) whose tangent vector at the identity is (aij). If

j1
0γ ∈ TmE then the corresponding curve through j1

0γ is given in coordinates by

s 7→
(
ub(j1

0γ), (δij + saij)u
b
i (j

1
0γ)
)
.

The resulting tangent vector ξ ∈ Tj10γTmE satisfies

u̇b(ξ) = 0 , u̇bj(ξ) = aiju
b
i (j

1
0γ)

so that the vector field on TmE defined by the Lie algebra element (aij) is

aiju
b
i

∂

∂ubj
. �

We write dji for the Lie derivative operation of the basis vector field ∆j
i =

uai ∂/∂u
a
j .

2.9 Second order infinitesimal actions

There is a similar result for the action of the Lie algebra of L2
m.

Lemma 7. Let (aij , b
i
jk) be an element of the Lie algebra of L2

m. The corresponding

vector field on T 2
mE is

aiju
a
i

∂

∂uaj
+

1

#(jk)

(
2aiju

a
ik + bijku

a
i

) ∂

∂uajk
.

where #(jk) equals 1 if j = k and equals 2 otherwise.
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Proof. Let γ be the curve in L2
m through the identity j2

0(id) given in coordinates
by

s 7→
(
δij + saij , sb

i
jk

)
.

If j2
0γ ∈ T 2

mE then the corresponding curve through j2
0γ is given in coordinates by

s 7→
(
ua(j2

0γ), uai (j2
0γ)(δij + saij), u

a
hi(j

2
0γ)(δhj + sahj )(δik + saik) + suai (j2

0γ)bijk
)
.

The resulting tangent vector ξ ∈ Tj20γT
2
mE satisfies

u̇a(ξ) = 0

u̇aj (ξ) = aiju
a
i (j2

0γ)

u̇ajk(ξ) = aiku
a
ij(j

2
0γ) + aiju

a
ik(j2

0γ) + bijku
a
i (j2

0γ)

so that the vector field on T 2
mE defined by the Lie algebra element corresponding

to (aij , b
i
jk) is

aiju
a
i

∂

∂uaj
+

1

#(jk)

(
2aiju

a
ik + uijku

a
i

) ∂

∂uajk
. �

We write dji and djki for the Lie derivative operation of the basis vector fields

∆j
i = uai

∂

∂uaj
+

2

#(jk)
uaik

∂

∂uajk
, ∆jk

i =
1

#(jk)
uai

∂

∂uajk
.

Note the use of the symbol #(jk) to compensate for the fact that the coordinate
functions uajk and uakj are equal, so that summing over j and k could result in
double-counting.

3 Geometric structures
The special structure of velocity manifolds manifests itself in the existence of certain
differential operators (‘total derivatives’) and differential forms (‘contact forms’)
which capture certain aspects of the structure. The total derivatives and contact
forms may also be used to identify those maps between velocity manifolds, and
vector fields on velocity manifolds, which have been constructed by a process known
as prolongation. Finally, there is an algebraic method of lifting tangent vectors
from a manifold to its velocity manifold called the vertical lift, and this gives rise
to vertical endomorphisms.

3.1 Total derivatives

The identity map TmE → TmE defines a section of the pull-back bundle

τ∗mETmE → TmE .

Its components di are the total derivatives, vector fields along τmE . At a point j1
0γ,

the identification TmE ∼=
⊕m

TE from Lemma 1 gives the k-th component of j1
0γ

as

dk|j10γ = j1
0(γ ◦ ik) = Tγ(j1

0 ik) = Tγ

(
∂

∂tk

∣∣∣∣
0

)
.
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Note that the subscript k is a counting index, not a coordinate index. In coordi-
nates, if f is a function on E then

dkf |j10γ = dk|j10γ f = Tγ

(
∂

∂tk

∣∣∣∣
0

)
f =

∂(f ◦ γ)

∂tk

∣∣∣∣
0

=
∂f

∂ua

∣∣∣∣
γ(0)

Dkγ
a(0) = uak(j1

0γ)
∂f

∂ua

∣∣∣∣
γ(0)

so that

dk = uak
∂

∂ua
.

It is clear from this coordinate formula that the image of (d1, . . . , dm), a subspace
of Tγ(0)E corresponding to each point j1

0γ ∈ TmE, does not have constant rank on

TmE. But its restriction to
o

TmE, where the m × n matrix uai has maximal rank,
does have constant rank m.

3.2 Second order total derivatives

We take a similar approach to second order total derivatives. The inclusion map
T 2
mE → TmTmE defines a section of the pull-back bundle

τ2,1 ∗
mE TmTmE → T 2

mE ;

its components di are the second order total derivatives, vector fields along τ2,1
mE .

At a point j2
0γ,

dk|j20γ = T (j1γ)

(
∂

∂tk

∣∣∣∣
0

)
;

in coordinates

dk = uak
∂

∂ua
+ uakj

∂

∂uaj
.

Once again the image of (d1, . . . , dm), a subspace of Tj10γT
mE corresponding to

each point j2
0γ ∈ T 2

mE, does not have constant rank on T 2
mE, but its restriction

to
o

T 2
mE does have constant rank m.

3.3 Contact 1-forms

Contact 1-forms on TmE or on T 2
mE are the horizontal 1-forms which annihilate

total derivatives, so that θ is a contact 1-form exactly when

〈θ, dk〉 = 0 .

Here, ‘horizontal’ means horizontal over E for a 1-form on TmE, and it means
horizontal over TmE for a 1-form on T 2

mE, so that it makes sense to evaluate such
forms on total derivatives; indeed, the modules of such horizontal 1-forms are dual
to the modules of vector fields along TmE → E or along T 2

mE → TmE.
In fact we shall consider contact 1-forms, not on the whole of TmE or T 2

mE,

but on the submanifolds of regular velocities
o

TmE and
o

T 2
mE. The reason is that,

as mentioned previously, the image of the map (d1, . . . , dm) has constant rank m
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only on the regular submanifolds; it is, for example, zero on the zero section of
TmE, and so every horizontal cotangent vector on that zero section is annihilated
by all the total derivatives. If we were to include non-regular velocities then there
would be ‘contact’ cotangent vectors which were not the values of any (smooth,
and hence continuous) contact 1-form.

The important property of contact 1-forms is that they always pull back to zero
under prolongations.

Lemma 8. If θ is a contact 1-form on
o

TmE then (̄1γ)∗θ = 0. If it is a contact

1-form on
o

T 2
mE then (̄2γ)∗θ = 0, where the prolonged m-curve ̄2γ is defined by

̄2γ(t) = j2
0(γ ◦ tt).

Proof. If θ is a contact 1-form on
o

TmE then〈
(̄1γ)∗θ

∣∣
t
,
∂

∂tk

∣∣∣∣
t

〉
=

〈
(j1(γ ◦ tt))

∗θ
∣∣
t
,
∂

∂tk

∣∣∣∣
t

〉
=

〈
(j1γ)∗θ

∣∣
0
,
∂

∂tk

∣∣∣∣
0

〉
=

〈
θ|j10γ , Tγ

(
∂

∂tk

∣∣∣∣
0

)〉
= 〈θ|j10γ , dk|j10γ〉 = 0 .

The proof for a contact 1-form on
o

T 2
mE is similar. �

Proposition 4. If θ is a 1-form on
o

TmE satisfying (̄1γ)∗θ = 0 for every prolonged

m-curve ̄1γ in
o

TmE then θ is horizontal over E, and is a contact 1-form. A similar

result holds for contact 1-forms on
o

T 2
mE.

Proof. We show first that θ is horizontal over E, by showing that it is horizontal

at each point j1
0γ ∈

o

TmE. Write θ in coordinates around such a point as

θ = θadu
a + θiadu

a
i ;

then if γ is a representative m-curve for the velocity j1
0γ we have

(̄1γ)∗θ = (θa ◦ ̄1γ)
(
(̄1γ)∗dua

)
+ (θia ◦ ̄1γ)

(
(̄1γ)∗duai

)
.

But

(̄1γ)∗dua
∣∣
0

= d(ua ◦ ̄1γ)
∣∣
0

= dγa|0 =
∂γa

∂tj

∣∣∣∣
0

dtj
∣∣
0

(̄1γ)∗duai
∣∣
0

= d(uai ◦ ̄1γ)
∣∣
0

= d

(
∂γa

∂ti

)∣∣∣∣
0

=
∂γa

∂ti ∂tj

∣∣∣∣
0

dtj
∣∣
0
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so that

0 = (̄1γ)∗θ
∣∣
0

=

(
(θa ◦ ̄1γ)(0)

∂γa

∂tj

∣∣∣∣
0

+ (θia ◦ ̄1γ)(0)
∂γa

∂ti ∂tj

∣∣∣∣
0

)
dtj
∣∣
0

and hence

θa(j1
0γ)

∂γa

∂tj

∣∣∣∣
0

+ θia(j1
0γ)

∂γa

∂ti ∂tj

∣∣∣∣
0

= 0 .

Choosing a different representative m-curve γ̂ of j1
0γ which differs in its second

derivatives from γ (although necessarily having the same first derivatives) allows
us to conclude that θia(j1

0γ) = 0, so that θ is horizontal at j1
0γ and hence is a

horizontal 1-form. We also see from this argument that

θa(j1
0γ)

∂γa

∂tj

∣∣∣∣
0

= 0 .

Finally we observe that

〈θ , dk〉 =

〈
θadu

a , ubk
∂

∂ub

〉
= θau

a
k

so that

〈θ , dk〉|j10γ = θa(j1
0γ)

∂γa

∂tk

∣∣∣∣
0

= 0

for each point j1
0γ ∈ TmE, showing that 〈θ , dk〉 = 0 and hence that θ is a contact

1-form.
The proof for forms on

o

T 2
mE is similar in principle but involves more complicated

calculations. �

The coordinate expressions for contact 1-forms on velocity manifolds are quite
different from those on jet manifolds, and involve determinants: indeed, contact

1-forms on
o

TmE are sums of scalar multiples of (m+ 1)× (m+ 1) determinants

θa1a2···am+1 =

∣∣∣∣∣∣∣∣∣∣∣

ua1
1 ua2

1 · · · u
am+1

1

ua1
2 ua2

2 · · · u
am+1

2
...

...
...

ua1
m ua2

m · · · u
am+1
m

dua1 dua2 · · · duam+1

∣∣∣∣∣∣∣∣∣∣∣
.

To see that such a determinant is indeed a contact 1-form, evaluate it on the total
derivative dk = ubk∂/∂u

b to give

〈θa1a2···am+1 , dk〉 =

∣∣∣∣∣∣∣∣∣∣∣

ua1
1 ua2

1 · · · u
am+1

1

ua1
2 ua2

2 · · · u
am+1

2
...

...
...

ua1
m ua2

m · · · u
am+1
m

ua1

k ua2

k · · · u
am+1

k

∣∣∣∣∣∣∣∣∣∣∣
= 0 .
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To show that these forms span the local contact 1-forms, we show that their values
at each point span the contact cotangent vectors at that point. Let the coordinate

functions on the fibres of T ∗
o

TmE corresponding to the coordinates (ua, uai ) on
o

TmE
be (pa, p

i
a); then horizontal cotangent vectors satisfy the equations pia = 0, and we

have seen that the condition 〈θ , dk〉 = 0 corresponds to a coordinate condition
which may now be written as uakpa = 0.

Now observe that at each point j1
0γ there is at least one set of m coordinates

(ua1
1 , ua2

2 , . . . , uamm ) such that the determinant detuaij does not vanish at j1
0γ; sup-

pose, without loss of generality, that this set is (u1
1, u

2
2, . . . , u

m
m), for we may always

rearrange the order of the base coordinates ua if necessary. It is clear that the
cotangent vectors

θ12···m,m+1
j10γ

, θ12···m,m+2
j10γ

, . . . , θ12···m,n
j10γ

are linearly independent, so that the subspace of the space of contact cotangent
vectors at j1

0γ spanned by them has dimension n−m. But dim τ∗mE(T ∗
j10γ
E) = n and

the m equations uakpa characterising contact 1-forms are linearly independent for
regular velocities, so that the dimension of the space of contact cotangent vectors
at j1

0γ is n−m.

3.4 Contact r-forms

We define contact r-forms using the pull-back condition, so that an r-form ω on
o

TmE is a contact r-form if (̄1γ)∗ω = 0, and an r-form ω on
o

T 2
mE is a contact

r-form if (̄2γ)∗ω = 0. Note that contact r-forms need not be horizontal if r > 1.

We now see another important difference between contact forms on velocity
manifolds and contact forms on jet manifolds. In the latter context, the contact
r-forms are generated by the contact 1-forms and their exterior derivatives; but this

is not the case on velocity manifolds. For example, on
o

T2R3 the contact 1-forms
are generated by the single 1-form

θ =

∣∣∣∣∣∣
u1

1 u2
1 u3

1

u1
2 u2

2 u3
2

du1 du2 du3

∣∣∣∣∣∣ ;

but (u1
1du

2−u2
1du

1)∧du3
2−(u1

2du
2−u2

2du
1)∧du3

1 is a contact 2-form which cannot
be written in terms of θ and dθ.

3.5 Prolongations of maps

Let E1, E2 be manifolds, and let f : E1 → E2 a map. The prolongation of f to
TmE1 is the map

Tmf : TmE1 → TmE2

defined by

Tmf(j1
0γ) = j1

0(f ◦ γ) .
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It is immediate from this definition that Tm(f ◦g) = Tmf ◦Tmg and that Tm(idE) =
idTmE , so that Tm is a covariant functor. In coordinates,

ua ◦ Tmf = fa , uai ◦ Tmf = dif
a .

It is important to note that Tmf might not restrict to a map
o

TmE1 →
o

TmE2,
because f ◦ γ might not be an immersion, even though γ is an immersion.

3.6 Prolongations and the exchange map

As a particular example, the prolongation of the vector bundle projection τmE :
TmE → E to Tm′TmE is

Tm′τmE : Tm′TmE → Tm′E .

Lemma 9. The exchange map e : Tm′TmE → TmTm′E satisfies

Tm′τmE ◦ e = τm(Tm′E) .

Proof. From Lemma 2, e may be expressed in coordinates as

ua ◦ e = ua , uai ◦ e = ua;i , ua;j ◦ e = uaj , uai;j ◦ e = uaj;i .

Thus

ua ◦ τm(Tm′E) = ua , uai ◦ τm(Tm′E) = uai

whereas

ua ◦ Tm′τmE ◦ e = ua ◦ e = ua , uai ◦ Tm′τmE ◦ e = ua;i ◦ e = uai . �

In other words, the exchange map interchanges these two diagrams.

Tm′TmE

TmE

Tm′E

E

-

-
? ?

Tm′τmE

τmE

τm′Eτm′(TmE)

-�e

TmTm′E

TmE

Tm′E

E

-

-
? ?

τm(T
m′E)

τmE

τm′ETmτm′E

3.7 Prolongations of vector fields

A vector field X on E is a map E → TE, and so its prolongation (as a map) is
TmX : TmE → TmTE.

Lemma 10. The composition X1
m = e ◦ TmX, where e : TmTE → TTmE is the

exchange map, is a vector field on TmE
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Proof. From Lemma 9,

τTmE ◦ e ◦ TmX = TmτE ◦ TmX
= Tm(τE ◦X)

= Tm(idE)

= idTmE . �

The vector field X1
m is called the prolongation of X to TmE.

Proposition 5. If ψs is the flow of X then Tmψs is the flow of X1
m.

Proof. We first compute a coordinate formula for the vector field whose flow
is Tmψs.

Choose a point j1
0γ ∈ TmE and let ϕ be the flow of X in a neighbourhood

of γ(0). Let (U, y) be a chart around γ(0) so that, if

X = Xa ∂

∂ua
,

ϕ satisfies
∂ϕa

∂s

∣∣∣∣
(0,·)

= Xa .

Let ϕ̃ denote the map (s, q) 7→ Tmϕs(q), so that

ϕ̃a = ϕa , ϕ̃ai = diϕ
a

where we define (diϕ
a)(s, q) = (diϕ

a
s)(q). Then

∂ϕ̃ai
∂s

∣∣∣∣
(0,·)

=
∂(diϕ

a)

∂s

∣∣∣∣
(0,·)

=
∂

∂s

∣∣∣∣
(0,·)

(
ubi
∂ϕa

∂ub

)
= ubi

∂ϕa

∂ub ∂s

∣∣∣∣
(0,·)

= di

(
∂ϕa

∂s
(0, ·)

)∣∣∣∣
(0,·)

= diX
a ,

so that, in coordinates, the vector field whose flow is Tmψs is

Xa ∂

∂ua
+ (diX

a)
∂

∂uai
.

On the other hand, regarding X as a map E → TE, and writing u̇a as ua1 ,

ua ◦X = ua , ua1 ◦X = Xa

so that

ua ◦ TmX = ua , ua1 ◦ TmX = Xa ,

ua;i ◦ TmX = uai , ua1i ◦ TmX = diX
a ;
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thus

ua ◦ e ◦ TmX = ua , ua;1 ◦ e ◦ TmX = Xa ,

uai ◦ e ◦ TmX = uai , uai1 ◦ e ◦ TmX = diX
a

so that

X1
m = e ◦ TmX = Xa ∂

∂ua
+ (diX

a)
∂

∂uai
. �

Unlike prolongations of maps, prolongations of vector fields do restrict to
o

TmE.

3.8 Second prolongations

By extending the first order approach, maps f : E1 → E2 may be prolonged to
maps T 2

mf : T 2
mE1 → T 2

mE2, and vector fields X on E may be prolonged to vector
fields X2

m on T 2
mE. In coordinates,

ua ◦ T 2
mf = fa , uai ◦ T 2

mf = dif
a , uaij ◦ T 2

mf = didjf
a

and if X = Xa∂/∂ua then

X2
m = Xa ∂

∂ua
+ (diX

a)
∂

∂uai
+

1

#(ij)
(didjX

a)
∂

∂uaij
.

The calculations are similar in principle to those given for the first order case, but

more complicated in detail. Again T 2
mf might not restrict to a map

o

T 2
mE1 →

o

T 2
mE2,

whereas X2
m does restrict to

o

T 2
mE.

3.9 Prolongations, contact forms, and total derivatives

Let f : E1 → E2 be a map. If θ is a contact form on
o

TmE2 and if Tmf restricts to
o

TmE1 then (Tmf)∗θ is a contact form on
o

TmE1, because

(̄1γ)∗(Tmf)∗θ = (Tmf ◦ ̄1γ)∗θ =
(
̄1(f ◦ γ)

)∗
θ = 0 .

If X is a vector field on E and θ is a contact form on
o

TmE then the Lie derivative
LX1

m
θ by the prolongation of X is also a contact form, because the flow of X1

m

is the prolongation of the flow of X. These results, using the characterisation of
a contact form by vanishing pullback, apply to both 1-forms and to r-forms with

r > 1. They also hold for contact forms on
o

T 2
mE.

The corresponding result for total derivatives is more complicated, as these
operators are vector fields along a map rather than on a manifold.

Lemma 11. Prolongations and basis total derivatives commute, so that

di ◦ LX = LX1
m
◦ di , di ◦ LX1

m
= LX2

m
◦ di .
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Proof. We check this using coordinates. In the first order case, if f is a function
on E then

di(LXf) = di

(
Xa ∂f

∂ua

)
= ubi

(
∂Xa

∂ub
∂f

∂ua
+Xa ∂f

∂ub ∂ua

)
whereas

LX1
m

(dif) = LX1
m

(
ubi
∂f

∂ub

)
= (diX

b)
∂f

∂ub
+ ubiX

a ∂f

∂ub ∂ua
.

A similar but slightly more lengthy calculation is used in the second order case. �

3.10 Vertical endomorphisms

We have seen that TmE → E is a vector bundle and so, as with every vector
bundle, it has a canonical vertical lift operator. Denote the vertical lift to (ηi) ∈⊕m

TE ∼= TmE by

Tm|τm(ηi)E → T(ηi)TmE , (ξk) 7→ (ξk)↑(ηi) ;

in coordinates this is

(ξk)↑(ηi) = uaj (ξk)
∂

∂uaj

∣∣∣∣∣
(ηi)

.

For each vector ζ ∈ T(ηi)TmE define the vector Sjζ ∈ T(ηi)TmE by

Sjζ = (0, . . . , 0, T τm(ζ), 0, . . . , 0)↑(ηi)

where the non-zero vector Tτm(ζ) is in the j-th position. It is evident that Sj is a
vector bundle map TTmE → TTmE, or alternatively a type (1, 1) tensor field on
TmE, called a vertical endomorphism. Note that the superscript j is a counting
index, not a coordinate index. In coordinates

Sj = dua ⊗ ∂

∂uaj
.

There is a close relationship between vertical endomorphisms and total derivatives.

Lemma 12. If ω is an r-form on E then

Sjdkω = rδjk(τ∗mEω) .

Proof. Suppose first that θ is a 1-form; we shall give a proof in coordinates, omitting
explicit mention of the pullback map. If θ = θadu

a then

Sjdkθ = Sj
(
(dkθa)dua + θadu

a
k

)
= δjkθadu

a = δjkθ .



Homogeneous variational problems: a minicourse 109

We now use induction on r. Suppose ω is an r-form and that Sjdkω = rδjk(τ∗mEω);
then

Sjdk(θ ∧ ω) = Sj
(
dkθ ∧ τ∗mEω + τ∗mEθ ∧ dkω

)
= Sjdkθ ∧ τ∗mEω + τ∗mEθ ∧ Sjdkω
= δjk(τ∗mEθ ∧ τ∗mEω) + rδjk(τ∗mEθ ∧ τ∗mEω)

= (r + 1)δjk τ
∗
mE(θ ∧ ω)

using the fact that τ∗mEθ and τ∗mEω are horizontal over E. The result now follows
by linearity. �

3.11 Second order vertical endomorphisms

There is also a version of the vertical endomorphism defined on second order ve-
locity manifolds. This cannot be constructed in the same way as the first order
vertical endomorphism, as T 2

mE → TmE is not a vector bundle but is instead
an affine sub-bundle of TmTmE → TmE. We shall establish our construction by
modifying the first-order vertical endomorphism on TmTmE. There is an alterna-
tive method, based on the construction of vertical lifts using double (1,m)-curves,
which may be used in both first and second order cases, but we shall not describe
that here.

So let ν : T 2
mE → TmE be some tubular neighbourhood of T 2

mE in TmTmE,
and let ι : T 2

mE → TmTmE be the inclusion from Proposition 2. As before, let
e : TmTmE → TmTmE be the exchange map.

Proposition 6. Let θ be a 1-form on T 2
mE; then the operation

θ 7→ ι∗
(
Sk (ν∗θ + e∗ν∗θ)

)
,

where Sk is the vertical endomorphism on TmTmE), does not depend on the choice
of tubular neighbourhood map ν and hence defines a vertical endomorphism on
T 2
mE.

Proof. We use coordinates to show that the result is independent of ν. Let θ =
θadu

a + θiadu
a
i + θija du

a
ij ; then

ν∗θ = (ν∗θa)dνa + (ν∗θia)dνai + (ν∗θija )dνaij

= (ν∗θa)

(
dua +

∂νa

∂ucp
(ducp − duc;p) + 1

2

∂νa

∂ucp;q
(ducp;q − ducq;p)

)
+ (ν∗θia)

(
1
2 (duai + dua;i) + 1

2

(
∂νai
∂ucp
− ∂νai
∂uc;p

)
(ducp − duc;p)

+ 1
2

∂νai
∂ucp;q

(ducp;q − ducq;p)
)

+ (ν∗θija )

(
1
2 (duai;j + duaj;i) +

∂νaij
∂ucp

(ducp − duc;p) + 1
2

∂νaij
∂ucp;q

(ducp;q − ducq;p)
)
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using the coordinate formulæ for the tubular neighbourhood map given in Section 2.
Thus

Sk ν∗θ = (ν∗θa)

(
−∂ν

a

∂uck
duc + 1

2

(
∂νa

∂ucp;k
− ∂νa

∂uck;p

)
ducp

)
+ (ν∗θia)

(
δki

1
2du

a − 1
2

(
∂νai
∂uck
− ∂νai
∂uc;k

)
duc

+ 1
2

(
∂νai
∂ucp;k

− ∂νai
∂uck;p

)
ducp

)
+ (ν∗θija )

(
1
2 (δkj du

a
i + δki du

a
j )−

∂νaij
∂uck

duc

+ 1
2

(
∂νaij
∂ucp;k

−
∂νaij
∂uck;p

)
ducp

)

so that

ι∗(Sk ν∗θ) = θa

(
−ι∗

(
∂νa

∂uck

)
duc + 1

2 ι
∗
(
∂νa

∂ucp;k
− ∂νa

∂uck;p

)
ducp

)
+ θia

(
δki

1
2du

a − 1
2 ι
∗
(
∂νai
∂uck
− ∂νai
∂uc;k

)
duc

+ 1
2 ι
∗
(
∂νai
∂ucp;k

− ∂νai
∂uck;p

)
ducp

)
+ θija

(
1
2 (δkj du

a
i + δki du

a
j )− ι∗

(
∂νaij
∂uck

)
duc

+ 1
2 ι
∗
(
∂νaij
∂ucp;k

−
∂νaij
∂uck;p

)
ducp

)
;

and similarly

Sk e∗ν∗θ = (e∗ν∗θa)

(
e∗
(
∂νa

∂uck

)
duc + 1

2e
∗
(
∂νa

∂uck;p

− ∂νa

∂ucp;k

)
ducp

)
+ (e∗ν∗θia)

(
1
2δ
k
i du

a + 1
2e
∗
(
∂νai
∂uck
− ∂νai
∂uc;k

)
duc

+ 1
2e
∗
(
∂νai
∂uck;p

− ∂νai
∂ucp;k

)
ducp

)
+ (e∗ν∗θija )

(
1
2 (δkj du

a
i + δki du

a
j ) + e∗

(
∂νaij
∂uck

)
duc

+ 1
2e
∗
(
∂νaij
∂uck;p

−
∂νaij
∂ucp;k

)
ducp

)
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so that, using ι∗e∗ = ι∗,

ι∗(Sk e∗ν∗θ) = θa

(
ι∗
(
∂νa

∂uck

)
duc + 1

2 ι
∗
(
∂νa

∂uck;p

− ∂νa

∂ucp;k

)
ducp

)
+ θia

(
1
2δ
k
i du

a + 1
2 ι
∗
(
∂νai
∂uck
− ∂νai
∂uc;k

)
duc

+ 1
2 ι
∗
(
∂νai
∂uck;p

− ∂νai
∂ucp;k

)
ducp

)
+ θija

(
1
2 (δkj du

a
i + δki du

a
j ) + ι∗

(
∂νaij
∂uck

)
duc

+ 1
2 ι
∗
(
∂νaij
∂uck;p

−
∂νaij
∂ucp;k

)
ducp

)
.

Thus, adding, we obtain

ι∗(Sk (ν∗θ + e∗ν∗θ)) = θkadu
a + 2θika du

a
i

using θkia = θika . �

In coordinates, therefore, the second order vertical endomorphisms may be
written as tensor fields

Sk = dua ⊗ ∂

∂uak
+

2

#(ik)
duai ⊗

∂

∂uaik
;

the factor 1/#(ik) arises here because the contraction of ∂/∂uaik with ducpq equals
1
2#(ik)δca(δipδ

k
q + δiqδ

k
p ), so that

∂

∂uaik
(θpqc du

c
pq) =

#(ik)

2
δca(δipδ

k
q + δiqδ

k
p )θpqc = #(ik) θika .

The relationship given in Lemma 12 between vertical endomorphisms and total
derivatives may now be extended to a kind of homotopy formula.

Lemma 13. If ω is an r-form on TmE then

Sjdkω − dkSjω = r δjk(τ2,1 ∗
mE ω) .

Proof. Suppose first that θ is a 1-form; we shall give a proof in coordinates, omitting
explicit mention of the pullback map. If θ = θadu

a + θiadu
a
i then

dkθ = (dkθa)dua + θadu
a
k + (dkθ

i
a)duai + θiadu

a
ik

so that
Sjdkθ =

(
δjkθa + (dkθ

j
a)
)
dua + δjkθ

i
adu

a
i + θjadu

a
k .

On the other hand, Sjθ = θjadu
a, so that

dkS
jθ = (dkθ

j
a)dua + θjadu

a
k
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and hence
Sjdkθ − dkSjθ = δjkθadu

a + δjkθ
i
adu

a
i = δjkθ .

We now use induction on r. Suppose ω is an r-form and that Sjdkω − dkSjω =
rδjk(τ2,1 ∗

mE ω); then, as both Sj and dk are derivations of degree zero, their commu-
tator is a derivation of degree zero, and so

(Sjdk − dkSj)(θ ∧ ω) = (Sjdk − dkSj)θ ∧ τ2,1 ∗
mE ω + τ2,1 ∗

mE θ ∧ (Sjdk − dkSj)ω
= rδjk τ

2,1 ∗
mE θ ∧ τ2,1 ∗

mE ω + δjkτ
2,1 ∗
mE θ ∧ τ2,1 ∗

mE ω

= (r + 1)δjkτ
2,1 ∗
mE (θ ∧ ω) .

The result now follows by linearity. �

4 Vector forms
We often use vectors of operators, tensors, forms, and so on. For instance, we
have defined the total derivatives dk and the vertical endomorphisms Sj , where
j and k are counting indices rather than coordinate indices. These operators fit
into a framework of vector forms, to which we can associate a cohomology the-
ory. Although the full cohomology theory requires the use of higher-order velocity
manifolds, we can see some aspects of the theory in the first and second order cases.

4.1 Vector forms

We consider differential forms on E,
o

TmE and
o

T 2
mE taking values in the vector

space Rm∗ and its exterior powers. Write
o

T kmE with k = 0, 1, 2 and put

Ωr,sk =
(

Ωr
o

T kmE
)
⊗ (
∧sRm∗) .

Then a typical element of Ωr,sk is

Ξ = χi1···is ⊗ dti1 ∧ . . . ∧ dtis ∈ Ωr,sk

where the scalar forms χi1···is are skew-symmetric in their indices, and where, as
in Corollary 1, {dti} is the canonical basis of Rm∗. It is clear that Ωr,sk is a module

over the algebra of functions on
o

T kmE.

4.2 Operations on vector forms

Define the operators d and dT on the modules of vector forms by their actions on
decomposable forms,

d : Ωr,sk → Ωr+1,s
k , d(χ⊗ ω) = dχ⊗ ω

dT : Ωr,sk → Ωr,s+1
k+1 , dT(χ⊗ ω) = diχ⊗ (dti ∧ ω) ,

so that

ddT(χ⊗ ω) = d
(
diχ⊗ (dti ∧ ω)

)
= ddiχ⊗ (dti ∧ ω)

= didχ⊗ (dti ∧ ω) = dT(dχ⊗ ω) = dTd(χ⊗ ω)
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and

d2
T(χ⊗ ω) = djdiχ⊗ (dtj ∧ dti ∧ ω) = 0 ,

showing that ddT = dTd and d2
T = 0. We say that dΞ is the differential of the

vector form Ξ, and that dTΞ is its total derivative.
The total derivative of a vector form is a type of Lie derivative, and so we can

also define the corresponding contraction operation. Put

iT : Ωr,sk → Ωr−1,s+1
k+1 , iT(χ⊗ ω) = (di χ)⊗ dti ∧ ω

where di χ denotes the contraction of the ‘vector field along a map’ di with the
scalar form χ, so that

dT = diT + iTd .

4.3 Equivariant vector forms

Let αj10φ :
o

TmE →
o

TmE denote the right action of j1
0φ ∈ L1+

m on
o

TmE by

αj10φ(j1
0γ) = j1

0(γ ◦ φ) ;

also, let Aj10φ : Rm∗ → Rm∗ denote the linear map

Aj10φ(dti) =
(
Djφ

i(0)
)
dtj ,

and extend this by multilinearity to Aj10φ :
∧sRm∗ → ∧sRm∗. The vector form

χi1···is ⊗ (dti1 ∧ · · · ∧ dtis) ∈ Ωr,s1 is said to be equivariant if, for every j1
0φ,

α∗j10φ
(χi1···is)⊗ (dti1 ∧ · · · ∧ dtis) = χi1···is ⊗Aj10φ(dti1 ∧ · · · ∧ dtis) .

Thus an equivariant form, regarded as a map from objects defined on a velocity
manifold to elements of a vector space, commutes with the action of the jet group on
the manifold and the vector space. We use the oriented jet group in our definition,
as our application will be to problems in the calculus of variations where we need
to integrate the forms.

We shall be particularly interested in equivariant elements of Ω0,m
1 , namely

0-forms (functions) taking their values in the one-dimensional vector space
∧mRm∗.

Then

Aj10φ(dt1 ∧ · · · ∧ dtm) = J φ(0)(dt1 ∧ · · · ∧ dtm)

where J φ = det(Djφ
i) is the Jacobian of φ, and so, writing dmt for dt1∧· · ·∧dtm,

an element Λ = Ldmt is equivariant when

(L ◦ αj10φ)dmt = det
(
Djφ

i(0)
)
Ldmt .

Thus, writing an element of TmE ∼=
⊕m

TE as (ξ1, . . . , ξm), Λ is equivariant when
for each matrix A ∈ GL+(m,R),

L(ξiA
i
j) = (detA)L(ξj) .
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As the oriented jet group L1+
m is connected, there is an infinitesimal condition

for equivariance. For a vector form χi1···is ⊗ (dti1 ∧ · · · ∧ dtis) ∈ Ωr,s1 , we require

dji (χi1···is)⊗ (dti1 ∧ · · · ∧ dtis) = χi1···is ⊗ Ltj∂/∂ti(dti1 ∧ · · · ∧ dtis)

In the particular case where s = m we have Ltj∂/∂tidmt = δji d
mt, so the condition

simplifies to
djiχ = δjiχ .

4.4 The bicomplex

It is clear that for −1 ≤ s ≤ m− 2 we can use the operators d and dT to construct
a bicomplex:

? ? ? ?

? ? ? ?

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0

0

0

Ω
0,s

0 Ω1,s
0 Ω2,s

0 Ω3,s
0

Ω
0,s+1

1 Ω1,s+1
1 Ω2,s+1

1 Ω3,s+1
1

Ω
0,s+2

2 Ω1,s+2
2 Ω2,s+2

2 Ω3,s+2
2

d

d

d

d

d

d

d

d

d

dT

dT

dT

dT

dT

dT

dT

dT

where if s = −1 then Ω∗,s∗ = 0. In this bicomplex Ω
0,∗
∗ means ‘modulo constant

functions’, and is used instead of the usual beginning 0→ R→ Ω0 → . . . of the de
Rham sequence.

An important property of the bicomplex is that all columns (apart from the first)
are globally exact, we show this by obtaining a homotopy formula for dT. Strictly
speaking the homotopy formula involves third order forms which are horizontal
over E, because the operator P2 defined in the statement of the theorem involves
applying a total derivative to (scalar) second-order forms which are horizontal
over E; but if dTΞ = 0 then the operator P2 is not involved and the formula is
genuinely second order. We feel, nevertheless, that it is worthwhile giving the more
general statement, on the understanding that the definition of the total derivative
of a second order form, and the consequent generalisation of Lemma 13, follow
exactly the same pattern as before. We also use the operator P2 when studying
equivalents of first-order Lagrangians, although in that context the image of P2 is
always second-order rather than third-order.

Theorem 1. If Ξ ∈ Ωr,s+1
1 with r > 0 then, to within a pullback,

P2dTΞ + dTP1Ξ = Ξ ,

where

P1

(
χi1···is+1

⊗dti1 ∧· · ·∧dtis+1
)

=
1

r(m− s)
Sjχi1···is+1

⊗
(
∂

∂tj
dti1 ∧· · ·∧dtis+1

)
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for first-order r-forms χi1···is+1
, and

P2

(
ηi1···is+2

⊗ dti1 ∧ · · · ∧ dtis+2
)

=

(
1

r(m− s− 1)
Sjηi1···is+2 −

1

r2(m− s)(m− s− 1)
dlS

lSjηi1···is+2

)
⊗

⊗
(
∂

∂tj
dti1 ∧ · · · ∧ dtis+1

)
for second-order r-forms ηi1···is+2

.

Proof. This is a consequence of Lemma 13. Put

P j1 =
1

r(m− s)
Sj

P j2 =
1

r(m− s− 1)
Sj − 1

r2(m− s)(m− s− 1)
dlS

lSj ;

then

P2dTΞ = P2

(
dkχi1···is+1 ⊗ dtk ∧ dti1 ∧ · · · ∧ dtis+1

)
= P j2 dkχi1···is+1

⊗
(
∂

∂tj
dtk ∧ dti1 ∧ · · · ∧ dtis+1

)
= P j2 dkχi1···is+1

⊗ (δkj dt
i1 ∧ · · · ∧ dtis+1)

− P j2 dkχi1···is+1
⊗ dtk ∧

(
∂

∂tj
dti1 ∧ · · · ∧ dtis+1

)
= P k2 dkχi1···is+1

⊗ dti1 ∧ · · · ∧ dtis+1

− (s+ 1)P j2 di1χji2···is+1
⊗ dti1 ∧ dti2 ∧ · · · ∧ dtis+1

whereas

dTP1Ξ = dT

(
P j1χi1···is+1

⊗
(
∂

∂tj
dti1 ∧ · · · ∧ dtis+1

))
= dkP

j
1χi1···is+1

⊗ dtk ∧
(
∂

∂tj
dti1 ∧ · · · ∧ dtis+1

)
= (s+ 1)di1P

j
1χji2···is+1

⊗ dti1 ∧ dti2 ∧ · · · ∧ dtis+1

so that

P2dTΞ + dTP1Ξ = P k2 dkχi1···is+1
⊗ dti1 ∧ · · · ∧ dtis+1

− (s+ 1)P j2 di1χji2···is+1
⊗ dti1 ∧ · · · ∧ dtis+1

+ (s+ 1)di1P
j
1χji2···is+1

⊗ dti1 ∧ · · · ∧ dtis+1 .



116 D.J. Saunders

But, using Lemma 13, the operators acting on χji2···is+1
satisfy

δji1P
k
2 dk =

1

r(m− s− 1)
δji1S

kdk −
1

r2(m− s)(m− s− 1)
δji1dlS

lSkdk

=
1

r(m− s− 1)
δji1(dkS

k +mr)

− 1

r2(m− s)(m− s− 1)
δji1(dldkS

lSk + (m+ 1)rdlS
l)

=
m

m− s− 1
δji1 −

s+ 1

r(m− s)(m− s− 1)
δji1dkS

k ,

using the fact that SlSkχi1···is+1
= 0 because the χi1···is+1

are first-order forms.
Similarly

−(s+ 1)P j2 di1 = − s+ 1

r(m− s− 1)
Sjdi1 +

s+ 1

r2(m− s)(m− s− 1)
dlS

lSjdi1

= − s+ 1

r(m− s− 1)
(di1S

j + rδji1)

+
s+ 1

r2(m− s)(m− s− 1)
(dldi1S

lSj + rdi1S
j + rδji1dlS

l)

= − s+ 1

(m− s− 1)
δji1 −

(s+ 1)

r(m− s)
di1S

j

+
s+ 1

r(m− s)(m− s− 1)
δji1dkS

k

and

(s+ 1)di1P
j
1 =

s+ 1

r(m− s)
di1S

j ,

from which we see that

δji1P
k
2 dk − (s+ 1)P j2 di1 + (s+ 1)di1P

j
1 = δji1

and the result follows. �

4.5 The bottom left corner

The part of the bicomplex which holds the major interest for the calculus of vari-
ations is in the bottom left-hand corner; we shall repeat it, with a pull-back map
shown explicitly where appropriate.

Ω
0,m

1 Ω1,m
1 Ω1,m

2

Ω1,m−1
1

- -
?�

�
��

d τ2,1 ∗
mE

S dT
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Take [Λ] ∈ Ω
0,m

1 , so that, for some function L on
o

TmE, we have for any represen-
tative

Λ = Ldt1 ∧ · · · ∧ dtm = Ldmt .

Here, L will play the role of a (first order) Lagrangian function in the calculus
of variations, and the vector-valued function Λ will have the capability of being

integrated along m-curves in
o

TmE (and, in particular, along prolongations to
o

TmE
of m-curves in E). So, given the equivalence class [Λ], define

Θ1 = SdΛ , E0 = τ2,1 ∗
mE dΛ− dTΘ1 ,

where the choice of representative in the equivalence class is immaterial as we
consider only dΛ in the definition. We may compute Θ1 and E0 in coordinates;
they are

Θ1 = Sj
(
∂L

∂ua
dua +

∂L

∂uai
duai

)
⊗
(
∂

∂tj
(dt1 ∧ · · · ∧ dtm)

)
=

(
∂L

∂uaj
dua
)
⊗
(
∂

∂tj
(dt1 ∧ · · · ∧ dtm)

)
and

E0 =

(
∂L

∂ua
dua +

∂L

∂uai
duai

)
⊗ (dt1 ∧ · · · ∧ dtm)

− dk
(
∂L

∂uaj
dua
)
⊗ dtk ∧

(
∂

∂tj
(dt1 ∧ · · · ∧ dtm)

)
=

(
∂L

∂ua
− dk

(
∂L

∂uak

))
dua ⊗ (dt1 ∧ · · · ∧ dtm) .

5 Variational problems
Our main application of the theory of vector forms, and their associated cohomol-
ogy, will be to problems in the calculus of variations. These will be parametric
problems: that is, problems where the solutions are submanifolds without a given
parametrization (although with a particular orientation). In the one-dimensional
case, as exemplified by Finsler geometry, all the vector forms are essentially scalar
forms, and so this theory only provides further insight in the case where the sub-
manifolds have dimension two or more.

5.1 Homogeneous variational problems

We now study m-dimensional variational problems on E, with fixed boundary con-
ditions. As before, a vector function Λ = Ldmt ∈ Ω0,m

1 will be called a Lagrangian
for a variational problem. It will be called homogeneous if it is equivariant with
respect to the action of the oriented jet group L1+

m . Thus Λ is homogeneous when
the scalar function L satisfies the infinitesimal condition

dijL = δijL
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or, equivalently, the finite condition

L ◦ αj10φ = (detDjφ
i(0))L

for every every j1
0φ ∈ L1+

m .
We now consider submanifolds of E of the form γ(C) where γ : Rm → E is an

immersion and C ⊂ Rm is a connected compact m-dimensional submanifold with
boundary ∂C. The fixed-boundary variational problem defined by Λ is the search
for extremal submanifolds γ(C) ⊂ E satisfying∫

C

((̄1γ)∗LX1
m
L)dmt = 0

for every variation field X on E satisfying X|γ(∂C) = 0.

Theorem 2. If Λ is homogeneous and γ(C) is an extremal submanifold then γ ◦ φ
is also an extremal submanifold, for any orientation-preserving reparametrization
φ whose image contains C.

Proof. We shall show that if Λ is homogeneous then, for any immersion γ,∫
φ−1(C)

(
L ◦ ̄1(γ ◦ φ)

)
dmt =

∫
C

(
L ◦ ̄1γ

)
dmt

so that the integral itself is invariant under reparametrization; hence extremals will
be invariant under reparametrization. As∫

φ−1(C)

(
L ◦ ̄1(γ ◦ φ)

)
dmt =

∫
C

(φ−1)∗
((
L ◦ ̄1(γ ◦ φ)

)
dmt

)
=

∫
C

(
L ◦ ̄1(γ ◦ φ) ◦ φ−1

)
(φ−1)∗dmt ,

it will be sufficient to show that(
L ◦ ̄1(γ ◦ φ) ◦ φ−1

)
(φ−1)∗dmt =

(
L ◦ ̄1γ

)
dmt .

Now for any s ∈ Rm

dmt|s = (J φ ◦ φ−1)(s) (φ−1)∗dmt
∣∣
s
,

and so it will be sufficient to show that, for each s,(
L ◦ ̄1(γ ◦ φ) ◦ φ−1

)
(s) =

(
L ◦ ̄1γ

)
(s)(J φ ◦ φ−1)(s) .

Note that we do not require the diffeomorphism φ to satisfy the condition φ(0) = 0.
To see how this can be obtained from the homogeneity condition, write the

latter as

L ◦ αj10ϕ = (Jϕ)(0)L
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where ϕ is a diffeomorphism which does satisfy ϕ(0) = 0; then, for any immersion
γ : Rm → E,

(Jϕ)(0)L
(
j1
0(γ ◦ ts)

)
= L

(
αj10ϕ

(
j1
0(γ ◦ ts)

))
= L

(
j1
0(γ ◦ ts ◦ ϕ)

)
.

Now put ϕ = t−s ◦ φ ◦ tφ−1(s), and note that ϕ(0) = 0; also

(γ ◦ ts) ◦ ϕ = γ ◦ φ ◦ tφ−1(s)

and
(Jϕ)(0) = (J φ)(φ−1(s)) ,

so that
(J φ)(φ−1(s))L

(
j1
0(γ ◦ ts)

)
= L

(
j1
0(γ ◦ φ ◦ tφ−1(s))

)
and hence

(J φ)(φ−1(s))L
(
̄1γ(s)

)
= L

(
̄1(γ ◦ φ) ◦ φ−1(s)

)
. �

5.2 Equivalents of Lagrangians

Let Λ ∈ Ω0,m
1 be a homogeneous Lagrangian. Any scalar m-form Θm ∈ Ωm,01 which

is horizontal over E will be called an integral equivalent of Λ if

Λ =

(
(−1)m(m−1)/2

m!

)
imT Θm ;

any vector r-form Θr ∈ Ωr,m−r1 which is horizontal over E will be called an inter-
mediate equivalent if

Λ =
(−1)r(r−1)/2(m− r)!

m!
irTΘr 0 ≤ r ≤ m− 1 .

Lemma 14. If Θr+1 is an equivalent of Λ then

Θr =
(−1)r

m− r
iTΘr+1

is also an equivalent.

Proof. If Θr+1 is an equivalent of Λ then by definition

Λ =
(−1)r(r+1)/2(m− r − 1)!

m!
ir+1
T Θr+1 ,

so that

(−1)r(r−1)/2(m− r)!
m!

irTΘr =
(−1)r(r−1)/2(m− r)!

m!
irT

(
(−1)r

m− r
iTΘr+1

)
= Λ . �

In the case r = m we use the term ‘integral equivalent’ for the following reason.



120 D.J. Saunders

Lemma 15. If γ is an m-curve in E then (̄1γ)∗Λ = (̄1γ)∗Θm, so that∫
C

(̄1γ)∗Λ =

∫
C

(̄1γ)∗Θm .

It follows that Λ = Θ0 and Θm have the same extremals.

Proof. Suppose Θ ∈ Ωr,m−r may be written in coordinates in the particular form

Θ = Θa1···amu
ar+1

kr+1
· · ·uamkmdu

a1 ∧ · · · ∧ duar ⊗ dtkr+1 ∧ · · · ∧ dtkm

where the functions Θa1···am are skew-symmetric in their indices; then

iTΘ = Θa1···amu
ar+1

kr+1
· · ·uamkm

(
ubkr

∂

∂ub
dua1 ∧ · · · ∧ duar

)
⊗

⊗ dtkr ∧ dtkr+1 ∧ · · · ∧ dtkm

=

r∑
p=1

(−1)p−1Θa1···amu
ar+1

kr+1
· · ·uamkm

(
u
ap
kr
dua1 ∧ · · · d̂uap · · · ∧ duar

)
⊗

⊗ dtkr ∧ dtkr+1 ∧ · · · ∧ dtkm

= r(−1)r−1Θa1···amu
ar
kr
u
ar+1

kr+1
· · ·uamkmdu

a1 ∧ · · · ∧ duar−1 ⊗

⊗ dtkr ∧ dtkr+1 ∧ · · · ∧ dtkm .

Thus if Θ ∈ Ωm,0 we see that

imT Θ = m!(−1)m(m−1)/2Θa1···amu
a1

k1
· · ·uamkmdt

k1 ∧ · · · ∧ dtkm

= m!(−1)m(m−1)/2Θa1···am det
(
uaikj
)
dt1 ∧ · · · ∧ dtm

so that

(̄1γ)∗imT Θ = m!(−1)m(m−1)/2
(
Θa1···am ◦ ̄1γ

)
det

(
∂γai

∂tkj

)
dt1 ∧ · · · ∧ dtm .

On the other hand,

(̄1γ)∗Θ =
(
Θa1···am ◦ ̄1γ

)
(̄1γ)∗

(
dua1 ∧ · · · ∧ duam

)
=
(
Θa1···am ◦ ̄1γ

)
det

(
∂γai

∂tkj

)
dt1 ∧ · · · ∧ dtm . �

5.3 Euler forms

Let Θm be an integral equivalent of Λ. Define the scalar (m+1)-form Em ∈ Ωm+1,0
1

by
Em = dΘm

and the vector forms Er ∈ Ωr+1,m−r
2 by

Er = τ2,1 ∗
mE dΘr − (−1)rdTΘr+1 0 ≤ r ≤ m− 1 .

The forms Er are called the Euler forms of Θm.
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Lemma 16. The Euler forms satisfy the recurrence relation

Er =
(−1)r+1

m− r
iTEr+1 0 ≤ r ≤ m− 1 ;

consequently if dΘm = Em = 0 then E = 0.

Proof. This follows from the definition and Lemma 14. We have, omitting the
pull-back maps,

iTEr+1 = iTdΘr+1(−1)r+1iTdTΘr+2

= dTΘr+1 − diTΘr+1 − (−1)rdTiTΘr+2

= dTΘr+1 − (−1)rdΘr + (m− r − 1)dTΘr+1

= (m− r)
(
dTΘr+1 − (−1)rdΘr

)
when r + 1 < m, so that

(−1)r+1

m− r
iTEr+1 = (−1)r+1dTΘr+1 + dΘr = Er .

Similarly,

iTEm = iTdΘm

= dTΘm − diTΘm

= dTΘm − (−1)m−1dΘm−1

so that

(−1)miTEm = (−1)mdTΘm + dΘm−1 = Em−1 . �

The different spaces containing the various equivalents and Euler forms may be
seen in this diagonal part of the bicomplex.

?

?

?

?
-

-

-

-Θm ∈ Ωm,01 Ωm+1,0
1 3 Em

. . .

Θ2 ∈ Ω2,m−2
1

Θ1 ∈

Ω3,m−2
2 3 E2

Λ ∈

Ω1,m−1
1 Ω2,m−1

2 3 E1

Ω
0,m

1 Ω1,m
2 3 E0

d̃

d̃

d̃

dT

dT

dT

dT

d

�
�

�+

�
�

�+

�
�
�+

�
�
�+

�
�
�+

�
�
�+

�
�

�+

��+

Θr =
(−1)r

m− r
iTΘr+1, Θ0 = Λ

Er = d̃Θr − (−1)rdTΘr+1

d̃ = τ2,1 ∗
mE ◦ d
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5.4 Lepagian forms

Let Λ be a homogeneous Lagrangian, and let Θr be an equivalent of Λ (1 ≤ r ≤ m).
We shall say that Θr is Lepagian if the corresponding Euler form E0 ∈ Ω1,m

2 satisfies

SE0 = 0 ,

so that E0 is horizontal over E.

Theorem 3. The vector 1-form

Θ1 = SdΛ

is an integral equivalent of Λ (m = 1) or an intermediate equivalent (m ≥ 2), and
is Lepagian. It is called the Hilbert equivalent of Λ = Ldmt.

Proof. From the definition of S,

SΞ = Sjχ⊗ dm−1tj ,

so that

iTSdΛ = iTS(dL⊗ dmt)
= iT(SjdL⊗ dm−1tj)

= ikS
jdL⊗ dtk ∧ dm−1tj

= ijS
jdL⊗ dmt .

But for any 1-form θ on
o

TmE, if in coordinates θ = θadu
a + θiadu

a
i then

ijS
jθ = ij(θ

j
adu

a) = uaj θ
j
a ,

so that

ijS
jdL = uaj

∂L

∂uaj
= djjL = mL

using the homogeneity of the Lagrangian.
To show that Θ1 is Lepagian, note that

SdTΘ1 = SdTSdΛ

= SdT(SjdL⊗ dm−1tj)

= S
(
diS

jdL⊗ (dti ∧ dm−1tj)
)

= S
(
djS

jdL⊗ dmt
)

= SidjS
jdL⊗ dm−1ti

= (djS
i + δij)S

jdL⊗ dm−1ti

= SidL⊗ dm−1ti

= S(dL⊗ dmt) = SdΛ

using Lemma 13 and the fact that L is defined on
o

TmE so that SiSjdL = 0; thus
SE0 = 0, as required. �
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Theorem 4. If Θ̃1 is another Lepagian vector 1-form equivalent to Λ, with corre-
sponding Euler form Ẽ0, then

Ẽ0 = E0 , Θ̃1 −Θ1 = dTΦ (Φ ∈ Ω1,m−2
0 ) .

Proof. It follows straightforwardly from the Lepagian condition SẼ0 = 0 that
P2Ẽ0 = 0, so that we may use the homotopy condition of Theorem 1 to see that

0 = P2Ẽ0 = P2(dΛ− dTΘ̃1) = Θ1 − P2dTΘ̃1 = Θ1 − (1− dTP1)Θ̃1 ,

giving Θ̃1 −Θ1 = dTP1Θ̃1 (or Θ̃1 = Θ1 if m = 1). Thus

Ẽ0 − E0 = (dΛ− dTΘ̃1)− (dΛ− dTΘ1) = −d2
TP1Θ̃1 = 0 .

(Note that, as dΛ is a first-order vector 1-form, P2dΛ = SdΛ = Θ1.) �

5.5 The First Variation Formula

Theorem 5. Let C be a compact connected m-dimensional submanifold of Rm
with boundary ∂C, let γ be an m-curve in E whose domain contains C, and let

X be a variation field on E vanishing on γ(∂C) with prolongation X1
m on

o

TmE.
Then ∫

C

(̄1γ)∗LX1
m

Λ =

∫
C

(̄2γ)∗iXE0 ;

consequently γ is an extremal of Λ precisely when E0 vanishes along the image
of ̄2γ.

Proof. We note first that∫
C

(̄1γ)∗LX1
m

Λ =

∫
C

(̄1γ)∗iX1
m
dΛ

=

∫
C

(̄2γ)∗iX2
m
τ2,1 ∗
mE dΛ

=

∫
C

(̄2γ)∗iX2
m
E0 +

∫
C

(̄2γ)∗iX2
m
dTΘ1 ,

using the definition of the Euler form E0. But prolongations commute with basis
total derivatives and Θ1 is horizontal over E, so that∫

C

(̄2γ)∗iX2
m
dTΘ1 =

∫
C

(̄2γ)∗dTiX1
m

Θ1 =

∫
C

d(̄1γ)∗iXΘ1 = 0

and we see that the second integral vanishes; thus∫
C

(̄1γ)∗LX1
m

Λ =

∫
C

(̄2γ)∗iX2
m
E0 =

∫
C

(̄2γ)∗iXE0

because E0 is horizontal over E.
Now let γ be an immersion. If E0 = 0 at every point in the image of ̄2γ, then

for any vector field X on E and any t ∈ C we will have (̄2γ)∗iXE0
∣∣
t

= 0, so that
the integral over C will vanish and γ will be an extremal.
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If, instead, q = j2
0(γ ◦ tt) is some point in the image of ̄2γ where E0|q is non-

zero, then there must be a vector field X on E such that the vector-valued function
iXE0 gives a strictly positive multiple of dmt when evaluated at q, and hence when
evaluated in some neighbourhood U of q. Let b be a positive bump function on E
whose support lies in the interior of U and which satisfies b(q) = 1. Then

∫
C

(̄1γ)∗L(bX)1
m

Λ =

∫
C

(̄2γ)∗ibXE0 > 0 ,

so that γ cannot be an extremal. �

5.6 Integral equivalents for m ≥ 2

Let Λ = Ldmt be a homogeneous Lagrangian with m ≥ 2, and write its Hilbert
equivalent Θ1 as

Θ1 = ϑi ⊗ dm−1ti ;

the scalar 1-forms ϑi are called the Hilbert forms of Λ. If Λ never vanishes, define
the Carathéodory equivalent Θ̃m ∈ Ωm,01 by

Θ̃m =
1

Lm−1

m∧
i=1

ϑi .

Theorem 6. The Carathéodory equivalent Θ̃m is an integral equivalent of Λ.

Proof. We must show that imT Θm = (−1)m(m−1)/2m!Λ, so rewrite Θm as

Θm =
1

m!Lm−1

∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m) ,

where Sm is the permutation group, and use induction. The calculation uses
dj ϑi = δijL, the proof of which is similar to that used to show that iTΘ1 = mΛ;
we also define τr,s ∈ Sm by

τr,s(i) =


m− s (i = r)

i− 1 (r + 1 ≤ i ≤ m− s)
i otherwise .
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Now

iT

( ∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m−s) ⊗ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

)
=
∑
σ∈Sm

(−1)σdj
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s))⊗ dtj ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

=

m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1
(
ϑσ(1) ∧ · · · ∧ (dj ϑσ(r)) ∧ · · · ∧ ϑσ(m−s))⊗

⊗ dtj ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= L

m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1
(
ϑσ(1) ∧ · · · ∧ ϑσ(r−1) ∧ ϑσ(r+1) ∧ · · · ∧ ϑσ(m−s))⊗

⊗ dtσ(r) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= L

m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1(−1)m−r−s
{

(
ϑστr,s(1) ∧ · · · ∧ ϑστr,s(r−1) ∧ ϑστr,s(r+1) ∧ · · · ∧ ϑστr,s(m−s)

)
⊗

⊗ dtστr,s(r) ∧ dtστr,s(m−s+1) ∧ · · · ∧ dtστr,s(m)

}
= (−1)m−s−1L

m−s∑
r=1

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= (−1)m−s−1(m− s)L
∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m) ,

so if

isTΘm =
(−1)s(2m−s−1)/2

(m− s)!Lm−s−1

{
∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m−s) ⊗ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

}
then

is+1
T Θm =

(−1)s(2m−s−1)/2

(m− s)!Lm−s−1

{
(−1)m−s−1(m− s)L

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

}
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=
(−1)(s+1)(2m−s−2)/2

(m− s− 1)!Lm−s−2

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

as required. Hence

imT Θm =
(−1)m(m−1)/2

L−1

∑
σ∈Sm

(−1)σdtσ(1) ∧ · · · ∧ dtσ(m)

= (−1)m(m−1)/2m!Ldt1 ∧ · · · ∧ dtm

= (−1)m(m−1)/2m! Λ . �

We see also from the induction formula that

im−1
T Θm = (−1)m(m−1)/2 (m− 1)!Θ1

where Θ1 is the Hilbert equivalent; consequently Θm is Lepagian. Then, as dΘm =
Em, ∫

C

(j1γ)∗LX1
m

Θm =

∫
C

(j1γ)∗iX1
m
Em

= (−1)m(m−1)/2m!

∫
C

(j2γ)∗iXE0

for any vector field X on E vanishing on γ(∂C), because contractions by vector
fields anticommute, so that imT iX1

m
Em = (−1)miX1

m
imT Em.

5.7 Another integral equivalent

When m = 1 then the only Lepagian integral equivalent of a Lagrangian is the
Hilbert equivalent. But when m > 1 there may be other integral equivalents. Put

Θr+1 =
(−1)r

(r + 1)2
SdΘr (1 ≤ r < m)

where, as usual, Θ0 = Λ.

Lemma 17. Each Θr is a first-order vector form, an element of Ωr,m−r1 , horizontal
over E.

Proof. Each Θr is first-order because neither S nor d increases the order of a vector
form. By definition Θ0 is horizontal over E, and if Θr is horizontal over E then

the contraction of dΘr with any vector field on
o

TmE vertical over E will again be
horizontal over E; thus Θr+1 will also be horizontal over E. �

Theorem 7. The scalar m-form Θm is a Lepagian integral equivalent of Λ called
the fundamental equivalent of Λ.
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Proof. We first show that, in coordinates,

Θr =
1

(r!)2

∂rL

∂ua1
i1
· · · ∂uarir

dua1 ∧ · · · ∧ duar ⊗
(

∂

∂tir
· · · ∂

∂t1
dmt

)
.

This formula clearly holds for r = 1 (and, indeed, for r = 0); so suppose that it
holds for a given value of r. Then

Θr+1 =
(−1)r

(r + 1)2
SdΘr

=
(−1)r

(r + 1)2

1

(r!)2
Sj
(

∂r+1L

∂ua1
i1
· · · ∂uarir ∂u

ar+1

ir+1

du
ar+1

ir+1
+ · · ·

)
∧

∧ dua1 ∧ · · · ∧ duar ⊗
(
∂

∂tj
∂

∂tir
· · · ∂

∂t1
dmt

)
=

1

((r + 1)!)2

∂r+1L

∂ua1
i1
· · · ∂uar+1

ir+1

dua1 ∧ · · · ∧ duar+1⊗

⊗
(

∂

∂tir+1
· · · ∂

∂t1
dmt

)
so that the formula also holds for the case r + 1. In particular, therefore, we have

Θm =
1

(m!)2

∂mL

∂ua1
i1
· · · ∂uamim

dua1 ∧ · · · ∧ duam ×
(

∂

∂tim
· · · ∂

∂t1
dmt

)

=
1

(m!)2

∂mL

∂ua1
i1
· · · ∂uamim

dua1 ∧ · · · ∧ duam ×

∣∣∣∣∣∣∣
δ1
i1
· · · δ1

im
...

...
δmi1 · · · δmim

∣∣∣∣∣∣∣
=

1

m!

∂mL

∂ua1
1 · · · ∂u

am
m
dua1 ∧ · · · ∧ duam .

Thus, using the calculation in the proof of Lemma 15,

imT Θm = m!(−1)m(m−1)/2

(
1

m!

∂mL

∂ua1
1 · · · ∂u

am
m

det
(
uaikj
))
dt1 ∧ · · · ∧ dtm

= (−1)m(m−1)/2 ∂mL

∂ua1
1 · · · ∂u

am
m

det
(
uaikj
)
dt1 ∧ · · · ∧ dtm

= (−1)m(m−1)/2m!Ldt1 ∧ · · · ∧ dtm

= (−1)m(m−1)/2m! Λ . �

Theorem 8. The fundamental equivalent Θm of a homogeneous Lagrangian Λ has
the property that dΘm = Em = 0 if, and only if, E0 = 0.

Proof. If Em = 0 then E0 = 0 by the recurrence relation of Lemma 16. So show
the converse, we use the definition

Θr+1 =
(−1)r

(r + 1)2
SdΘr
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and the fact that dΘr ∈ Ωr+1,m−r
1 to see that the homotopy operator P1 from

Theorem 1 takes the form

P1

(
χi1···im−r⊗dti1∧· · ·∧dtim−r

)
=

1

(r + 1)2
Sjχi1···im−r⊗

(
∂

∂tj
dti1∧· · ·∧dtim−r

)
(the formula in the proof of Theorem 1 was for an element of Ωr,s+1

1 ); thus we may
rewrite the definition of Θr+1 as

Θr+1 = (−1)rPdΘr .

Now from
Er = dΘr − (−1)rdTΘr+1

we obtain

P2dEr = −(−1)rP2dTdΘr+1 = (−1)r(dTP1dΘr+1 − dΘr+1)

so that
(−1)r+1P2dEr = dΘr+1 − dTP1dΘr+1

using the homotopy formula of Theorem 1; but

Er+1 = dΘr+1 − (−1)r+1dTΘr+2 = dΘr+1 − dTP1dΘr+1

so that
Er+1 = (−1)r+1P2dEr .

Similarly,

P2dEm−1 = −(−1)m−1P2dTdΘm = (−1)mdΘm = (−1)mEm .

It follows that if E0 = 0 then Em = 0. �
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About Boundary Terms in Higher Order Theories

Lorenzo Fatibene, Mauro Francaviglia, Silvio Mercadante

Abstract. It is shown that when in a higher order variational principle one
fixes fields at the boundary leaving the field derivatives unconstrained, then
the variational principle (in particular the solution space) is not invariant
with respect to the addition of boundary terms to the action, as it happens
instead when the correct procedure is applied. Examples are considered
to show how leaving derivatives of fields unconstrained affects the physical
interpretation of the model. This is justified in particular by the need of
clarifying the issue for the purpose of applications to relativistic gravita-
tional theories, where a bit of confusion still exists. On the contrary, as
it is well known for variational principles of order k, if one fixes variables
together with their derivatives (up to order k − 1) on the boundary then
boundary terms leave solution space invariant.

1 Introduction
Recently the interest in higher order Lagrangian theories has been renewed within
the framework of covariant field theories in various contexts, aiming to suitably
extend standard (Hilbert-Einstein) General Relativity in order to model, at least
partially, dark energy/matter effects (see [1], [9] and references quoted therein) via
the use of gravitational Lagrangians depending non-linearly on the curvature.

In gravitational literature different attitudes towards boundary conditions in
GR and in alternative gravitational theories are presented (see [10] for a detailed
review). We shall here stress that mathematical consequences of different attitudes
must be considered before any physical interpretation is attempted and that of
course one is not free to ignore these consequences, that might be (and usually
are) rather crucial for a number of physically relevant issues, e.g. the definition of
conservation laws and their correct physical interpretation.

From the mathematical viewpoint, any attitude towards boundary conditions
should be dictated by Hamilton’s least action principle. This principle is a defini-
tion of the critical sections which have to be understood as physical configurations.
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Being it a definition one is logically free to choose the formulation which is more

suitable to the situation. However, there are physical and mathematical conse-

quences of this choice which must be in any case taken into account. Moreover, it

would be appreciated if a general guiding principle would avoid to treat each model

on its own on the base of physical considerations which in some cases (e.g. when

dealing with exotic physics or non-trivial generalizations of the models already

considered) could be unclear.

In particular, we shall hereafter show that if one assumes that only the value

of fields must be fixed while (higher order) derivatives are left unconstrained at

the boundary, then one cannot keep that pure divergences in the action leave the

solution space invariant, as it happens in the standard applications of Calculus of

Variations. This is particularly relevant for Gravity, since in the literature (see

e.g. [12]) it is often claimed that in standard GR one is free to choose not to fix

first derivatives of the metric at the boundary, since the boundary terms of the

Hilbert action can be written as a total variation and hence can be compensated

in various non-unique ways by adding suitable boundary terms to the action. Even

if this is mathematically correct in GR it is in any case rather misleading since

such a procedure fails to hold if one considers Lagrangians that are non-degenerate

and non-linear in curvature. Accordingly we believe that whenever such a choice

is adopted one should clearly state that this is done at the expense of changing the

space of solutions and affecting conservation laws which is unfortunately physically

disturbing; see also [7].

As a motivation for such an uncanonical choice it is often claimed that fix-

ing higher order variations of the fields may affect their physical interpretation

so that this standard attitude should not be embraced without considering these

effects. This is of course true and we fully agree that detailed discussions on

the role that different boundary conditions have in GR is extremely important.

However, it is also true the other way around, i.e. when leaving variations of

field derivatives free at the boundary one should always be careful about the

change of solution space, the interpretation of boundary fluxes as well as the

further spurious boundary equations that appear besides the (bulk) field equa-

tions.

Of course there are also other issues to be considered when fixing boundary

terms of variational principles. For example boundary terms affect also conserva-

tion laws and their effect should be considered as further criteria to choose among

boundary terms that leave the solution space unchanged; see [4], [8].

Hereafter, we shall present explicit examples in Mechanics and Field Theory.

From these examples it is clearly shown that if one artificially wants to describe a

system by a higher order Lagrangian adding pure divergences to the Lagrangian

itself, then in order to maintain the standard interpretation of the physical system

one is forced to fix variations and their derivatives at the boundary. The examples

will in fact show, en passant, how the solution space may drastically change and

even reduce to empty if the standard procedures of Calculus of Variations are not

used.
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2 The Relation between Higher Order Variations and Boundary
Terms

Let us consider the following Lagrangian

L′(q, q̇, q̈) = q̇q̈ +
1

2

(
q̇2 − ω2q2

)
+ ω2qq̇ (1)

which is easily found to be equivalent to the Lagrangian of an harmonic oscillator
and to give rise to the same dynamics via Euler-Lagrange equations (of order 2).
Varying it we have

δL′ = δq̇q̈ + q̇δq̈ + q̇δq̇ − ω2qδq + ω2δqq̇ + ω2qδq̇ =

=
d

dt
(δqq̈)− δq d

3q

dt3
+
d

dt
(q̇δq̇)− d

dt
(q̈δq) +

d3q

dt3
δq +

+
d

dt
(q̇δq)− q̈δq − ω2qδq + ω2δqq̇ +

d

dt

(
ω2qδq

)
− ω2q̇δq =

=
d

dt

(
q̇δq̇ +

(
q̇ + ω2q

)
δq
)
−
(
q̈ + ω2q

)
δq (2)

If following the standard prescriptions of Calculus of Variations we assume δq = 0
and δq̇ = 0 on the boundary of an interval [t0, t1] then we obtain in fact the equation
of motion of the 1d-harmonic oscillator

q̈ + ω2q = 0 (3)

This is no mystery since the Lagrangian (1) can be easily recasted as follows

L′(q, q̇, q̈) =
1

2

(
q̇2 − ω2q2

)
+
d

dt

(
1

2

(
q̇2 + ω2q2

))
so that it manifestly differs from the harmonic oscillator Lagrangian L(q, q̇) =
1
2

(
q̇2 − ω2q2

)
by a total time derivative (which is the mechanical equivalent of

a pure divergence term in field theory). Hence, in this case, we know that the
pure-divergence-term d

dt

(
1
2

(
q̇2 + ω2q2

))
in the Lagrangian L′ is totally unessential

with respect to the equation of motion. Let us stress that in this case the pure
divengence term is even zero on-shell because of the conservation of total energy,
since the boundary term is nothing but the total derivative of the Hamiltonian.

If one decides instead to fix only δq = 0 on the boundary, leaving δq̇ unfixed,
then extra boundary field equations are added in order to kill the extra boundary
contribution to the action. The equations of motion that follow form (2) in this
case are {

q̈ + ω2q = 0

q̇0 = 0

which in fact admit less solutions than Eq. (3). Notice that solutions to this problem
are in fact just a zero-measure set in the solution space of the 1d-harmonic oscillator!

If one decides not to keep the first derivatives fixed, by adding pure divergences
one can even invent nastier and nastier examples. For instance, by considering the
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following 1-parameter family of Lagrangians

L′′(q, q̇, q̈; Λ) =
1

2

(
q̇2 − ω2q2

)
+
d

dt

(
1

6
q̇3 +

(
ω2

2
q2 + Λ2

)
q̇

)
with Λ real, which produce equations of motion in the form{

q̈ + ω2q = 0

q̇2
0 + ω2q2

0 = −Λ2

wee see that, for any Λ 6= 0, one has no solution at all, since there are no initial
conditions satisfying the boundary equation. And even for Λ = 0 the solution space
is much smaller than the solution space of the harmonic oscillator, since it reduces
again to quiet.

3 Examples in General Relativity
Of course one could argue that field theory is not Mechanics and that in Field
Theory there is more space to play with. Such an assumption is of course true, but
still one has to pay a lot of attention when playing. . . ! Let us then present similar
situations in GR.

Let M be a 4-dimensional manifold with boundary Ω and let us consider the
metric Lagrangian

L =
√
gR−∇α

(√
ggµν

(
uαµν − ūαµν

))
=

=
[√
ggαβ(ΓρασΓσρβ − ΓσσρΓ

ρ
αβ) + dσ(

√
ggαβ ūσαβ)

]
ds (4)

where: ds is the standard local volume element induced by the coordinates; here
and below, Γαβµ are the coefficients of the Levi-Civita connection of the metric g; we

set uλµν = Γλµν − δλ(µΓαν)α and ūλµν = Γ̄λµν − δλ(µΓ̄αν)α for any connection Γ̄λµν chosen at

will on M . Γαβµ as well as uλµν are functions of the first derivatives of the field gµν ,

while Γ̄λµν is just a “fixed parametrization” i.e. a non-dynamical background (as one
could easily see by realizing that the Euler-Lagrange equations of (4) with respect
to Γ̄λµν are identities). As long as the background connection Γ̄αβµ is considered, one
is free to fix it at will: it can be a generic connection or the Levi-Civita connection
of a background metric ḡ (which could even have in principle a different signature)
depending on the situation.

The Lagrangian (4) is covariant and first order in gµν ; the connection Γ̄αβµ is
not subjected to any field equations so that it can be any connection both a priori
and a posteriori (we stress that connections exist globally on any manifold); bulk
field equations for g are vacuum Einstein field equations.

The background ūλµν is here added to preserve covariance. One could fix co-

ordinates so that ūλµν = 0 (usually at a point), or consider a fixed ūλµν(x) as a
point dependence (we stress that it is relegated into a divergence). Our procedure
is analogous to the one used by Hawking and Ellis (see [6]) to study the Cauchy
problem in Relativity; there a background (metric) is used at the level of field
equations, to show essential hyperbolicity, while here it is used at the level of the
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action. The two approaches are equivalent since the background is non-dynamical
and its fixing commutes with the derivation of field equations; see also [5].

The variation of this Lagrangian is given by

δL =
√
gGµνδg

µν −∇λ
(
√
g(δµ(αδ

ν
β) −

1

2
gαβ)(uλµν − ūλµν)δgαβ −√ggµνδūλµν

)
with Gµν = Rµν − 1

2Rgµν . Applying standard techniques of Calculus of Variation
one obtains only the bulk standard field equations Gµν = 0. If, instead, one fixes
only δgµν = 0 on the boundary, then a new boundary equation (associated to δūλµν)
is added √

ggµν |Ω = 0 ⇒ gµν |Ω = 0

This boundary condition is not only incompatible with the bulk field equations,
but with kinematics in the first place (metrics are assumed in fact to be non-
degenerate so that they are everywhere forbidden to vanish). Hence if one considers
the Lagrangian (4), that differs from standard GR by a divergence, and fixes the
metric only, then the solution space is empty !

One could argue that the background ūλµν is unphysical since it has no dynamics
and that therefore there is no need to consider its variations. That is certainly
reasonable though the argument can be reversed: since the field ūλµν is unphysical,
then physics should be independent of how one decides to treat it: keeping it fixed or
varying it, possibly varying an underlying metric ḡµν that fixes it on the boundary,
alone or together with its first derivative. The above example shows instead how
the physical predictions of the theory (in particular the solution space) do depend
on which unphysical degree of freedom is kept fixed on the boundary. Moreover,
conservation laws would result to be affected by terms ensuing form the divergence
(they can be easily calculated as in [5]).

Similar (but nastier) examples can be considered: e.g. the Lagrangian

L′ =
√
gR− 1

Λ
∇α
(√
ggµνR

(
uαµν − ūαµν

))
that is again classically equivalent to the Hilbert Lagrangian. The variation is now

δL′ =
√
gGµνδg

µν −∇λ
(

1

Λ
δ(
√
ggµν)R

(
uλµν − ūλµν

)
+

1

Λ
δR
√
ggµν

(
uλµν − ūλµν

))
+

−∇λ
(

1

Λ

√
ggµν(R− Λ)δuλµν −

1

Λ

√
ggµνRδūλµν

)
Here, if we fix δgµν = 0 leaving δR, δuλµν and δūλµν unconstrained on the

boundary, we have three boundary field equations
√
ggµν

(
uαµν − ūαµν

)
δR|Ω = 0 ⇒ uαµν |Ω = ūαµν |Ω

√
ggµν(R− Λ)δuλµν |Ω = 0 ⇒ R|Ω = Λ

gµνRδūλµν |Ω = 0 ⇒ R|Ω = 0

(5)

As in the previous example, these three conditions are incompatible and the re-
sulting solution space is again empty. Unlike the previous example, however, if in
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this case one decides not to vary the background the first two equations in (5) are
still obtained along with Einstein equation; they (in particular, the second one) are
enough to force the solution space to be empty. Here the troubles are generated
exactly from not fixing δuλµν at the boundary. If now one adds to the Lagrangian
a divergence that suitably counterbalance the first constraint, then this is enough,
for any Λ 6= 0, to prevent Minkowski spacetime from being a solution of the theory,
with a devastating effect on Newtonian limit and the physical interpretation of
the whole theory.) The first condition imposes in fact to gµν an arbitrary asymp-
totic; if ūλµν is suitably chosen, then one could impose to gµν to be asymptotically
anti-de Sitter, de Sitter or anything else. In any case, the solution space is again
empty !

Other even more complicated examples can be studied under the form

Lf =
√
gR−∇α

(√
ggµνf(R; Λ, . . . )

(
uαµν − ūαµν

))
We stress that of course there are reasonable boundary terms which do not force

the solution space to be empty, but there is no guiding principle helping one in dis-
tinguishing good boundary terms from bad ones, so that such a procedure should
be better avoided (being misleading) or, if really necessary, treated with the cor-
rect mathematical instruments. All this in the case that the “real” Lagrangian we
start deforming is the Hilbert Lagrangian, that is known to be the only non-trivial
second order Lagrangian linear in the curvature of a metric field. Linearity implies
Hamiltonian degeneracy, so that the second order theory is essentially equivalent
to a first order theory with second order field equations. It is exactly this degener-
acy and the existence of a family of covariant first order (see [5]) that allows one
to play with a certain success with the addition of divergences. One should be
aware that such a method cannot hold any longer in more general families of grav-
itational theories, such as e.g. all f(R), Gauss-Bonnet, Lovelock, Chern-Simons
Lagrangians and so on, including all effective Lagrangians that ensue from low
limits of spacetime and/or quantum requirements.

4 Conclusions
We have here considered two attitudes in a variational principle of order k. Let
us summarize our point. A weakly critical configuration is a configuration that
extremizes the action for any deformation which vanishes along the boundary (while
the field derivatives are left unconstrained).

A critical configuration is instead a configuration which extremizes the action
for any deformation which vanishes together with its derivatives (up to order k−1)
along the boundary.

Of course a weakly critical configuration is also critical, while the converse is
false in general. From these simple examples we may easily conclude that, in
a theory of order k, pure-divergence-terms may be considered unessential with
respect to the field equations only if one considers critical configurations. On the
contrary, by adding boundary terms to the action one can easily force the space of
weakly critical configurations to be smaller or even empty.

Of course one is free to abandon the invariance of the action with respect
to boundary contributions (as in a sense is done in the Hamiltonian formalism).
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Unfortunately, such an attitude strongly impacts on conservation laws which are
an essential part of the physical interpretation of the theory as well.

Weakly critical configurations are considered in [12] (against the standard re-
sults in Variational Calculus and other important monographs in GR that more
correctly consider only critical configurations; see [2], [6], [11]). In our opinion
there is no real reason to impose an often artificial boundary term to a covariant
action, breaking general covariance, in order to allow more general deformations of
fields. Deformations in Lagrangian formalism have indeed no physical meaning. In
Mechanics they are called in fact virtual dispacements also to stress the fact that
they are not physical and they just need to be generically independent.

Any procedure that fixes fields and no derivatives at the boundary is certainly
very similar (if not technically identical) to a gauge fixing. Gauge fixing are useful
in practice in special situations but there is no reason to break gauge covariance by
fixing a gauge when a gauge covariant procedure allows to obtain the same result
from a more fundamentally satisfactory point of view.

Another way of considering these examples is from control theory in the Hamil-
tonian framework. Boundary terms of the action are exactly the way of mimiking
control theory at the Lagrangian level. In such a framework one is not concerned
with computing physical configurations (namely, solutions of field equations) but
how (and whether) physical configurations can respond to some constraint im-
posed at the boundary. For example, computing the electric field in a space with a
conductor, knowing that the boundary, i.e. the surface of the conductor, is equipo-
tential.

In this context the extra boundary equations are exactly interpreted as the
condition one wishes to impose at the boundary. Here (and only here) one should
guarantee that the boundary conditions imposed can be physically realized. It is no
surprise that in certain cases there exist no configuration obeying those boundary
conditions, meaning that one cannot physically impose those particular boundary
conditions.

We have to stress that in gravitational experiments we are now technologically
unable to impose any boundary conditions. It is therefore interesting to know that
some requirements are forbidden in principle.

We have also to stress that the framework of control theory is by no means
related to the determination of solutions of field equations, where by definition one
wants to obtain all possible field configurations. Moreover, if we unnecessarily rely
on boundary terms to obtain field equations, then this freedom cannot be exploited
to deal with conservation laws (see [3]). In fact, it is well-known that, although
divergences leave invariant critical configurations, they affect conservation laws and
conserved quantities that are an important part of the physical interpretation of
the model. If boundary terms are fixed for field equations one could only hope
conservation laws to turn out to make sense.
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Tangent Lie algebras to the holonomy group of a

Finsler manifold

Zoltán Muzsnay, Péter T. Nagy

Abstract. Our goal in this paper is to make an attempt to find the largest
Lie algebra of vector fields on the indicatrix such that all its elements are
tangent to the holonomy group of a Finsler manifold. First, we introduce the
notion of the curvature algebra, generated by curvature vector fields, then
we define the infinitesimal holonomy algebra by the smallest Lie algebra of
vector fields on an indicatrix, containing the curvature vector fields and their
horizontal covariant derivatives with respect to the Berwald connection.
At the end we introduce conjugates of infinitesimal holonomy algebras by
parallel translations with respect to the Berwald connection. We prove that
this holonomy algebra is tangent to the holonomy group.

1 Introduction
The notion of the holonomy group of Riemannian manifolds can be generalized very
naturally for Finsler manifolds: it is the group generated by canonical homogeneous
(nonlinear) parallel translations along closed loops. Until now the holonomy groups
of non-Riemannian Finsler manifolds were described only in special cases: the
Berwald manifolds have the same holonomy group as some Riemannian manifolds
(cf. Z.I. Szabó, [8]) and the holonomy groups of Landsberg manifolds are compact
Lie groups (cf. L. Kozma, [3]). A thorough study of the holonomy algebras of
homogeneous (nonlinear) connections was initiated by W. Barthel [1], he gave a
successive extension by Berwald’s covariant derivation of the Lie algebras generated
by the curvature vector fields. A general setting for the study of infinite dimensional
holonomy groups and holonomy algebras of nonlinear connections was initiated by
P. Michor in [5], but the tangential properties of the holonomy algebras to the
holonomy group were not clarified.

Recently, the authors introduced in [6] the notion of tangent Lie algebras to the
holonomy group and proved that the curvature algebra (the Lie algebra generated
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by curvature vector fields) is a tangent algebra to the holonomy group. With
this technique we have constructed a Finsler manifold (with singular metric) with
infinite dimensional curvature algebra, which implies that the holonomy group can
not be a finite dimensional Lie group in this case. We suspect that for most of
non-Riemannian Finsler manifolds, the holonomy group is not a finite dimensional
Lie group.

In a recent paper [2] M. Crampin, D.J. Saunders carried on a deep analysis
of the holonomy structures of bundles with fibre metrics, and in particular the
holonomy structures of Landsbergian type Finsler manifolds. In these cases, the
holonomy groups are finite dimensional Lie groups. They introduced the notion of
holonomy algebra and proved a version of Ambrose-Singer Theorem for such spaces.
Reflecting to our results, they noticed that in the general Finslerian framework the
holonomy algebra should contain the parallel translated curvature algebras. They
showed that in this case the topological closure of this holonomy algebra contains
the covariant derivatives of curvature vector fields, but the tangent properties of
the successive covariant derivatives of curvature vector fields are not obvious from
this approach in the cases, when the holonomy group is not a finite dimensional
Lie group. The difficulty comes from the fact, that a topologically non-closed
infinite dimensional Lie algebra of vector fields may expand, if we add the covariant
derivatives of its elements.

Our goal in this paper is to make an attempt to find the right notion of the
holonomy algebra of Finsler spaces. The holonomy algebra should be the largest
Lie algebra such that all its elements are tangent to the holonomy group. In our
attempt we are building successively Lie algebras having the tangent properties.
First, we introduce the notion of the curvature algebra (the Lie algebra generated
by curvature vector fields) which is a tangent Lie algebra to the holonomy group
(cf. [6]). Then we define the infinitesimal holonomy algebra by the smallest Lie
algebra of vector fields on an indicatrix, containing the curvature vector fields and
their horizontal covariant derivatives with respect to the Berwald connection and
prove the tangential property of this Lie algebra to the holonomy group. At the
end we introduce the notion of the holonomy algebra of a Finsler manifold by all
conjugates of infinitesimal holonomy algebras by parallel translations with respect
to the Berwald connection. We prove that this holonomy algebra is tangent to
the holonomy group. The question of whether the holonomy algebra introduced in
this way is the largest Lie algebra, which is tangent to the holonomy group, is still
open.

2 Preliminaries
Let M be an n-dimensional C∞ manifold and let X∞(M) denote the vector space
of smooth vector fields on M . For a local coordinate system (x1, . . . , xn) on M
we denote by (x1, . . . , xn; y1, . . . , yn) the induced local coordinate system on the
tangent bundle TM .

Finsler manifold, canonical connection, parallelism

A Finsler manifold is a pair (M,F), where the Finsler function F : TM → R is
continuous, smooth on T̂M := TM \{0}, its restriction Fx = F|TxM is a positively



Tangent Lie algebras to the holonomy group of a Finsler manifold 139

homogeneous function of degree 1 and the symmetric bilinear form (the Finsler
metric)

gx,y : (u, v) 7→ gij(x, y)uivj =
1

2

∂2F2
x(y + su+ tv)

∂s ∂t

∣∣∣
t=s=0

is positive definite at every y ∈ T̂xM .
Geodesics of Finsler manifolds are determined by a system of second order

ordinary differential equation ẍi + 2Gi(x, ẋ) = 0, i = 1, . . . , n, where Gi(x, ẋ) are
locally given by

Gi(x, y) :=
1

4
gil(x, y)

(
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
)
yjyk. (1)

The associated homogeneous (nonlinear) parallel translation τc : Tc(0)M → Tc(1)M

along a curve c : [0, 1] → R is defined by vector fields X(t) = Xi(t) ∂
∂xi along c(t)

which are solutions of the differential equation

DċX(t) :=
(dXi(t)

dt
+Gij(c(t), X(t))ċj(t)

) ∂

∂xi
= 0, where Gij =

∂Gi

∂yj
. (2)

Horizontal distribution, Berwald connection, curvature

Let (TM, π,M) and (TTM, ρ, TM) denote the first and the second tangent bun-
dle of the manifold M , respectively. The horizontal distribution HTM ⊂ TTM
associated with the Finsler manifold (M,F) can be defined as the image of the
horizontal lift which is an isomorphism X → Xh between TxM and HyTM at
y ∈ TxM defined by(

Xi ∂

∂xi

)h
:= Xi

(
∂

∂xi
−Gki (x, y)

∂

∂yk

)
. (3)

If VTM := Kerπ∗ ⊂ TTM denotes the vertical distribution on TM , then for any
y ∈ TM we have TyTM = HyTM ⊕ VyTM . The projectors corresponding to this
decomposition will be denoted by h : TTM → HTM and v : TTM → VTM . We
note that the vertical distribution is integrable.

Let (V̂TM, ρ, T̂M) be the vertical bundle over T̂M := TM \ {0}. We denote

by X∞(M), respectively by X̂∞(TM) the vector space of smooth vector fields
on M and of smooth sections of the bundle (V̂TM, τ, T̂M), respectively. The

horizontal Berwald covariant derivative of a section ξ ∈ X̂∞(TM) by a vector field
X ∈ X∞(M) is ∇Xξ := [Xh, ξ].

In an induced local coordinate system (xi, yi) on TM for vector fields ξ(x, y) =
ξi(x, y) ∂

∂yi and X(x) = Xi(x) ∂
∂xi we have (3) and hence

∇Xξ =

(
∂ξi(x, y)

∂xj
−Gkj (x, y)

∂ξi(x, y)

∂yk
+
∂Gij(x, y)

∂yk
(x, y)ξk(x, y)

)
Xj ∂

∂yi
. (4)

Let (π∗TM, π̄, T̂M) be the pull-back bundle of (T̂M, π,M) by the map π : TM →
M . Clearly, the mapping(

x, y, ξi
∂

∂yi

)
7→
(
x, y, ξi

∂

∂xi

)
: V̂TM → π∗TM (5)
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is a canonical bundle isomorphism. In the following we will use the isomorphism
(5) for the identification of these bundles.

The Riemannian curvature tensor field R(x,y)(X,Y ) := v
[
Xh, Y h

]
, X, Y ∈ TxM ,

(x, y) ∈ T̂M characterizes the integrability of the horizontal distribution. Namely,
if the horizontal distribution HT̂M is integrable, then the Riemannian curvature
is identically zero. The expression of the Riemannian curvature tensor

R(x,y) = Rijk(x, y)dxj ⊗ dxk ⊗ ∂

∂xi

on the pull-back bundle (π∗TM, π̄, T̂M) is

Rijk(x, y) =
∂Gij(x, y)

∂xk
− ∂Gik(x, y)

∂xj
+Gmj (x, y)Gikm(x, y)−Gmk (x, y)Gijm(x, y).

Indicatrix bundle

The indicatrix IpM of an n-dimensional Finsler manifold (M,F) at a point p ∈M
is the compact hypersurface IpM := {y ∈ TpM ;F(y) = 1} in TpM , diffeomorphic
to the standard (n − 1)-sphere. The indicatrix bundle (IM,π,M) of (M,F) is a
smooth subbundle of the tangent bundle (TM, π,M). The group Diff∞(IpM) of all
smooth diffeomorphisms of an indicatrix IpM is a regular infinite dimensional Lie
group modeled on the vector space X∞(IpM) of smooth vector fields on IpM . The
Lie algebra of the infinite dimensional Lie group Diff∞(IpM) is the vector space
X∞(IpM), equipped with the negative of the usual Lie bracket, (cf. A. Kriegl and
P.W. Michor [4], Section 43).

Let c(t), 0 ≤ t ≤ a be a smooth curve joining the points p = c(0) and q = c(a) in
the Finsler manifold (M,F). Since the parallel translation τc : TpM → TqM along

the curve c : [0, a]→M is a differentiable map between T̂pM and T̂qM preserving
the value of the Finsler function, it induces a parallel translation τc : IpM → IqM
in the indicatrix bundle.

Holonomy group

The notion of the holonomy group of Riemannian manifolds can be generalized
very naturally for Finsler manifolds:

Definition 1. The holonomy group Hol(p) of a Finsler space (M,F) at p ∈ M is
the subgroup of the group of diffeomorphisms Diff∞(IpM) of the indicatrix IpM
determined by parallel translation of IpM along piece-wise differentiable closed
curves initiated at the point p ∈M .

Clearly, the holonomy groups at different points of M are isomorphic. We note
that the holonomy group Hol(p) is a topological subgroup of the regular infinite
dimensional Lie group Diff∞(IpM), but its differentiable structure is not known in
general.
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3 Tangent Lie algebras to diffeomorphism groups
Here we discuss the tangential properties of Lie algebras of vector fields to an
abstract subgroup of the diffeomorphism group of a manifold. The results of this
section will be applied in the following to the investigation of tangent Lie algebras
of the holonomy subgroup of the diffeomorphism group of an indicatrix IxM and to
the fibred holonomy subgroup of the diffeomorphism group of the indicatrix bundle
I(M).

Let P be a C∞ manifold, let H be a (not necessarily differentiable) subgroup of
the diffeomorphism group Diff∞(P ) and let X∞(P ) be the Lie algebra of smooth
vector fields on P .

Definition 2. A vector field X ∈ X∞(P ) is called tangent to the subgroup H of
Diff∞(P ), if there exists a C1-differentiable 1-parameter family {φt ∈ H}t∈(−ε,ε) of

diffeomorphisms of M such that φ0 = Id and ∂φt
∂t

∣∣
t=0

= X. A Lie subalgebra g of
X∞(P ) is called tangent to H, if all elements of g are tangent vector fields to H.

Unfortunately, it is not true, that tangent vector fields to the group H generate a
tangent Lie algebra to H. This is why we have to introduce a stronger tangency
property in Definition 4.

Definition 3. A C∞-differentiable k-parameter family

{φ(t1,...,tk) ∈ Diff∞(P )}ti∈(−ε,ε)

of diffeomorphisms of P is called a commutator-like family if it satisfies the equa-
tions

φ(t1,...,tk) = Id, whenever tj = 0 for some 1 ≤ j ≤ k.

We remark, that the commutators of commutator-like families are commutator-like,
and the inverse of commutator-like families are commutator-like.

Definition 4. A vector field X ∈ X∞(P ) is called strongly tangent to the sub-
group H of Diff∞(P ), if there exists a commutator-like family

{φ(t1,...,tk) ∈ Diff∞(P )}ti∈(−ε,ε)

of diffeomorphisms satisfying the conditions

(A) φ(t1,...,tk) ∈ H for all ti ∈ (−ε, ε), 1 ≤ i ≤ k,

(B)
∂kφ(t1,...,tk)

∂t1···∂tk

∣∣
(0,...,0)

= X.

It follows from the commutator-like property that
∂kφ(t1,...,tk)

∂t1...∂tk

∣∣
(0,...,0)

is the first

non-necessarily vanishing derivative of the diffeomorphism family {φ(t1,...,tk)} at
any point x ∈ P , and therefore it determines a vector field. On the other hand,
by reparametrizing the commutator like family of diffeomorphism, it can be shown
that if a vector field is strongly tangent to a group H, then it is also tangent to H.
Moreover, we have the following
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Theorem 1. Let V be a set of vector fields strongly tangent to the group H ⊂
Diff∞(P ). The Lie subalgebra v of X∞(P ) generated by V is tangent to H.

The proof of the theorem is based on two important observations. The first is a
generalization of the well-known relation between the commutator of vector fields
and the commutator of their induced flows. Namely, if {φ(s1,...,sk)} and {ψ(t1,...,tl)}
are commutator-like k-parameter, respectively l-parameter families of local diffeo-
morphisms, then the family of (local) diffeomorphisms [φ(s1,...,sk), ψ(t1,...,tl)] defined
by the commutator of the group Diff∞(U) is a commutator-like (k + l)-parameter
family and

∂k+l[φ(s1,...,sk), ψ(t1,...,tl)]

∂s1 . . . ∂sk ∂t1 . . . ∂tl

∣∣∣
(0,...,0;0,...,0)

(x)

= −

[
∂kφ(s1,...,sk)

∂s1 . . . ∂sk

∣∣∣
(0,...,0)

,
∂lψ(t1,...,tl)

∂t1 . . . ∂tl

∣∣∣
(0,...,0)

]
(x)

at any point x ∈ U . The second important fact to prove the theorem is that
the linear combinations of vector fields tangent to H are also tangent to H. The
detailed computations can be found in [6].

4 The curvature algebra at a point
Now, se summarize our results on the tangent Lie algebras of the holonomy group
Hol(p) at a point p ∈M , their proofs can be found in [6].

Definition 5. A vector field ξ ∈ X(IpM) on the indicatrix IpM of the Finsler
manifold (M,F) is called a curvature vector field at the point p ∈ M , if it is
in the image of the curvature tensor, i.e. if there exist X,Y ∈ TpM such that
ξ = rp(X,Y ), where

rp(X,Y )(y) := R(p,y)(X
h, Y h) (6)

The Lie subalgebra Rp :=
〈
rp(X,Y );X,Y ∈ TpM

〉
of X(IpM) generated by the

curvature vector fields at the point p ∈ M is called the curvature algebra at the
point p ∈M .

Since the Finsler function is preserved by parallel translations, its derivatives with
respect to horizontal vector fields are identically zero. According to [7], eq. (10.9),
the derivative of the Finsler metric with respect to R(p,y)(X

h, Y h) vanishes, i.e.

g(p,y)

(
y,R(p,y)(X

h, Y h)
)

= 0, for any y,X, Y ∈ TxM.

This means that the curvature vector fields ξ = rp(X,Y ) are tangent to the indica-
trix. In the sequel we investigate the tangential properties of the curvature algebra
to the holonomy group of the canonical connection ∇ of a Finsler manifold.

Proposition 1. Any curvature vector field at a point p ∈M is strongly tangent to
the holonomy group Hol(p).
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Proposition 2. The curvature algebra Rp at any point p ∈ M of a Riemannian
manifold (M, g) is isomorphic to the linear Lie algebra on the tangent space TpM
generated by the curvature operators of (M, g) at p ∈M .

Remark 1. The dimension of the curvature algebra at any point p ∈M of a Finsler
surface is ≤ 1.

5 Fibred holonomy group and fibred holonomy algebra
Now, we introduce the notion of the fibred holonomy group of a Finsler manifold
(M,F) as a subgroup of the diffeomorphism group of the total manifold IM of the
bundle (IM,π,M) and apply our results on tangent vector fields to an abstract
subgroup of the diffeomorphism group to the study of tangent Lie algebras to the
fibred holonomy group.

Definition 6. The fibred holonomy group Holf(M) of (M,F) consists of fibre pre-
serving diffeomorphisms Φ ∈ Diff∞(IM) of the indicatrix bundle (IM,π,M) such
that for any p ∈ M the restriction Φp = Φ|IpM ∈ Diff∞(IpM) belongs to the
holonomy group Hol(p).

We note that the holonomy group Hol(p) and the fibred holonomy group Holf(M)
are topological subgroups of the infinite dimensional Lie groups Diff∞(IpM) and
Diff∞(IM) respectively.

The definition of strongly tangent vector fields yields

Remark 2. A vector field ξ ∈ X∞(IM) is strongly tangent to the fibred holonomy
group Holf(M) if and only if there exists a family

{
Φ(t1,...,tk)

∣∣
IM

}
ti∈(−ε,ε) of fibre

preserving diffeomorphisms of the bundle (IM,π,M) such that for any indicatrix
Ip the induced family

{
Φ(t1,...,tk)

∣∣
IpM

}
ti∈(−ε,ε) of diffeomorphisms is contained in

the holonomy group Hol(p) and ξ
∣∣
IpM

is strongly tangent to Hol(p).

Since π
(
Φ(t1,...,tk)(p)

)
≡ p and π∗(ξ) = 0 for every p ∈ U , we get the

Corollary 1. Strongly tangent vector fields to the fibred holonomy group Holf(M)
are vertical vector fields. If ξ ∈ X∞(IM) is strongly tangent to Holf(M) then
its restriction ξp := ξ

∣∣
Ip

to any indicatrix Ip is strongly tangent to the holonomy

group Hol(p).

The curvature vector fields and the curvature algebra at a point has been defined
on an indicatrix of the manifold M . Now we extend the domain of their definition
to the total manifold of the indicatrix bundle.

Definition 7. A vector field ξ ∈ X∞(IM) on the indicatrix bundle IM is a curva-
ture vector field of the Finsler manifold (M,F), if there exist X,Y ∈ X∞(M) such
that ξ = r(X,Y ), where r(X,Y )(x, y) := R(x,y)(Xx, Yx) for x ∈ M and y ∈ IxM .
The Lie algebra R(M) generated by the curvature vector fields of (M,F) is called
the curvature algebra of the Finsler manifold (M,F).
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Proposition 3. If the Finsler manifold (M,F) is diffeomorphic to Rn then any
curvature vector field ξ ∈ X∞(IM) of (M,F) is strongly tangent to the fibred
holonomy group Holf(M).

Proof. Since M is diffeomorphic to Rn we can identify the manifold M with the
vector space Rn. Let ξ = r(X,Y ) ∈ X∞(IRn) be a curvature vector field with
X,Y ∈ X∞(Rn). According to Proposition 1 its restriction ξ

∣∣
IpRn

to any indica-

trix IpRn is strongly tangent to the holonomy groups Hol(p). We have to prove
that there exists a family

{
Φ(t1,...,tk)

∣∣
IRn
}
ti∈(−ε,ε) of fibre preserving diffeomor-

phisms of the indicatrix bundle (IRn, π,Rn) such that for any p ∈ Rn the family
of diffeomorphisms induced on the indicatrix Ip is contained in Hol(p) and ξ

∣∣
IpRn

is strongly tangent to Hol(p).
For any p ∈ Rn and −1 < s, t < 1 let Π(sXp, tYp) be the parallelogram in

Rn determined by the vertexes p, p + sXp, p + sXp + tYp, p + tYp ∈ Rn and let
τΠ(sXp,tYp) : Ip → Ip denote the (nonlinear) parallel translation of the indicatrix Ip
along the parallelogram Π(sXp, tYp) with respect to the associated homogeneous
(nonlinear) parallel translation of the Finsler manifold (Rn,F). Clearly we have
τΠ(sXp,tYp) = IdIRn , if s = 0 or t = 0 and

∂2τΠ(sXp,tYp)

∂s ∂t

∣∣∣
(s,t)=(0,0)

= ξp for every p ∈ Rn.

Since the mapping (p, s, t) 7→ Π(sXp, tYp) is a differentiable field of parallelograms
in Rn, the maps τΠ(sXp,tYp), p ∈ Rn, 0 < s, t < 1, define a 2-parameter family
of fibre preserving diffeomorphisms of the indicatrix bundle IRn. The diffeomor-
phisms induced by the family {τΠ(sXp,tYp)}s,t∈(−1,1) on any indicatrix Ip are con-
tained in Hol(p). Hence the vector field ξ ∈ X∞(Rn) is strongly tangent to the
fibred holonomy group Holf(M), hence the assertion is proved. �

Corollary 2. If M is diffeomorphic to Rn then the curvature algebra R(M) of
(M,F) is tangent to the fibred holonomy group Holf(M).

The following assertion shows that similarly to the Riemannian case, the curvature
algebra can be extended to a larger tangent Lie algebra containing all horizontal
covariant derivatives of the curvature algebra vector fields.

Proposition 4. If ξ ∈ X∞(IM) is strongly tangent to the fibred holonomy group
Holf(M) of (M,F), then its horizontal covariant derivative ∇Xξ along any vector
field X ∈ X∞(M) is also strongly tangent to Holf(M).

Proof. Let τ be the (nonlinear) parallel translation along the flow ϕ of the vec-
tor field X, i.e. for every p ∈ M and t ∈ (−εp, εp) the map τt(p) : IpM →
Iϕt(p)M is the (nonlinear) parallel translation along the integral curve of X. If
{Φ(t1,...,tk)}ti∈(−ε,ε) is a C∞-differentiable k-parameter family {Φ(t1,...,tk)}ti∈(−ε,ε)
of fibre preserving diffeomorphisms of the indicatrix bundle (IM,π|M ,M) satisfy-
ing the conditions of Definition 1 then the commutator

[Φ(t1,...,tk), τtk+1
] := Φ−1

(t1,...,tk) ◦ (τtk+1
)−1 ◦ Φ(t1,...,tk) ◦ τtk+1
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of the group Diff∞
(
IM

)
fulfills [Φ(t1,...,tk), τtk+1

] = Id, if some of its variables
equals 0. Moreover

∂k+1[Φ(t1,...,tk), τ(tk+1)]

∂t1 . . . ∂tk+1

∣∣∣∣∣
(0,...,0)

= −
[
ξ,Xh

]
(7)

at any point of M , which shows that the vector field
[
ξ,Xh

]
is strongly tangent to

Holf(M). Moreover, since the vector field ξ is vertical, we have h[Xh, ξ] = 0, and
using ∇Xξ := [Xh, ξ] we obtain

−[ξ,Xh] = [Xh, ξ] = v[Xh, ξ] = ∇Xξ

which yields the assertion. �

Definition 8. Let holf(M) be the smallest Lie algebra of vector fields on the indi-
catrix bundle IM satisfying the properties

(i) any curvature vector field ξ belongs to holf(M),

(ii) if ξ ∈ holf(M) and X ∈ X∞(M), then the covariant derivative ∇Xξ also
belongs to holf(M).

The Lie algebra holf(M) ⊂ X∞(IM) is called the fibred holonomy algebra of the
Finsler manifold (M,F).

Remark 3. The fibred holonomy algebra holf(M) is invariant with respect to the
horizontal covariant derivation with respect to the Berwald connection, i.e.

ξ ∈ holf(M) and X ∈ X∞(M) ⇒ ∇Xξ ∈ holf(M). (8)

The results of this sections yield the following

Theorem 2. If M is diffeomorphic to Rn then the fibred holonomy algebra holf(M)
is tangent to the fibred holonomy group Holf(M).

6 Infinitesimal holonomy algebra
Let holf(M) ⊂ X∞(IM) be the fibred holonomy algebra of the Finsler manifold
(M,F) and let p be a a given point in M .

Definition 9. The Lie algebra hol∗(p) :=
{
ξp; ξ ∈ holf(M)

}
⊂ X∞(IpM) of vector

fields on the indicatrix IpM is called the infinitesimal holonomy algebra at the
point p ∈M .

Clearly, Rp ⊂ hol∗(p) for any p ∈M .
The following assertion is a direct consequence of the definition. It shows that

the infinitesimal holonomy algebra at a point p of (M,F) can be calculated in a
neighbourhood of p.

Remark 4. Let (U,F|U ) be an open submanifold of (M,F) such that U ⊂ M is
diffeomorphic to Rn and let p ∈ U . The infinitesimal holonomy algebras at p of
the Finsler manifolds (M,F) and (U,F|U ) coincide.
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Now, we can prove the following

Theorem 3. The infinitesimal holonomy algebra hol∗(p) at any point p of the
Finsler manifold (M,F) is tangent to the holonomy group Hol(p).

Proof. Let U ⊂M be an open submanifold of M , diffeomorphic to Rn and contain-
ing p ∈M . According to the previous remark we have hol∗(p) :=

{
ξp; ξ ∈ holf(U)

}
.

Since the fibred holonomy algebra holf(U) is tangent to the fibred holonomy group
Holf(U) we obtain that hol∗(p) is tangent to the holonomy group Hol(p). �

7 Holonomy algebra
Let x(t), 0 ≤ t ≤ a be a smooth curve joining the points q = x(0) and p = x(a)
in the Finsler manifold (M,F). If y(t) = τty(0) ∈ Ix(t)M is a parallel vector field
along x(t), 0 ≤ t ≤ a, where τt : IqM → Ix(t)M denotes the homogeneous (nonlin-

ear) parallel translation, then we have Dẋy(t) :=
(
dyi(t)
dt +Gij(x(t), y(t))ẋj(t)

)
∂
∂xi =

0. Considering a vector field ξ on the indicatrix IqM , the map τa∗ξ ◦ τ−1
a : (p, y) 7→

τa∗ξ(y(a)) gives a vector field on the indicatrix IpM . Hence we can formulate

Lemma 1. For any vector field ξ ∈ hol∗(q) ⊂ X∞(IqM) in the infinitesimal holon-
omy algebra at q the vector field τa∗ξ◦τ−1

a ∈ X∞(IpM) is tangent to the holonomy
group Hol(p).

Proof. Let {φt ∈ Hol(q)}t∈(−ε,ε) be a C1-differentiable 1-parameter family of dif-
feomorphisms of IqM belonging to the holonomy group Hol(q) and satisfying the

conditions φ0 = Id, ∂φt
∂t

∣∣
t=0

= ξ. Since the 1-parameter family

τa ◦ φt ◦ τ−1
a ∈ Diff∞(IpM)}t∈(−ε,ε)

of diffeomorphisms consists of elements of the holonomy group Hol(p) and satisfies
the conditions

τa ◦ φ0 ◦ τ−1
a = Id,

∂
(
τa ◦ φt ◦ τ−1

a

)
∂t

∣∣∣
t=0

= τa∗ξ ◦ τ−1
a ,

the assertion follows. �

Definition 10. A vector field Bγξ ∈ X∞(IpM) on the indicatrix IpM will be called
the Berwald translate of the vector field ξ ∈ X∞(IqM) along the curve γ = x(t) if

Bγξ = τa∗ξ ◦ (τa)−1.

Remark 5. Let y(t) = τty(0) ∈ Ix(t)M be a parallel vector field along γ = x(t),
0 ≤ t ≤ a, started at y(0) ∈ Ix(0)M . Then, the vertical vector field ξt = ξ(x(t), y(t))
along (x(t), y(t)) is the Berwald translate ξt = τt∗ξ0 ◦ τt−1 if and only if

∇ẋξ =

(
∂ξi(x, y)

∂xj
−Gkj (x, y)

∂ξi(x, y)

∂yk
+Gijk(x, y)ξk(x, y)

)
ẋj

∂

∂yi
= 0.

Now, lemma 1 yields the following
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Corollary 3. If ξ ∈ hol∗(q) then its Berwald translate Bγξ ∈ X∞(IpM) along any
curve γ = x(t), 0 ≤ t ≤ a, joining q = x(0) with p = x(a) is tangent to the
holonomy group Hol(p).

This last statement motivates the following

Definition 11. The holonomy algebra holp(M) of the Finsler manifold (M,F) at
the point p ∈ M is defined by the smallest Lie algebra of vector fields on the
indicatrix IpM , containing the Berwald translates of all infinitesimal holonomy
algebras along arbitrary curves x(t), 0 ≤ t ≤ a joining any points q = x(0) with
the point p = x(a).

Clearly, the holonomy algebras at different points of the Finsler manifold (M,F)
are isomorphic. The previous lemma and corollary yield the following

Theorem 4. The holonomy algebra holp(M) at p ∈M of a Finsler manifold (M,F)
is tangent to the holonomy group Hol(p).
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Conformal vector fields on Finsler manifolds

József Szilasi, Anna Tóth

Abstract. Applying concepts and tools from classical tangent bundle ge-
ometry and using the apparatus of the calculus along the tangent bundle
projection (‘pull-back formalism’), first we enrich the known lists of the
characterizations of affine vector fields on a spray manifold and conformal
vector fields on a Finsler manifold. Second, we deduce consequences on
vector fields on the underlying manifold of a Finsler structure having one
or two of the mentioned geometric properties.

Introduction
The theory of ‘geometrical’ – projective, affine, conformal, isometric – vector fields
on a Finsler manifold has a vast literature, mainly from the period dominated tech-
nically by the classical tensor calculus, visually, ‘the debauch of indices’. Chapter
VIII of K. Yano’s book ‘The theory of Lie derivatives and its applications’ presents a
survey of the main achievements from the beginning of the 20th century to 1957. A
good overview of the developments of the next decades can be found in R. B. Misra’s
paper [15], written in 1981, revised and updated in 1993. It is important to note
that in a 2-part paper, see [13], [14], M. Matsumoto clarified and improved some
results of Yano in the framework of his theory of Finsler connections.

From the (relatively) modern, but partly tensor calculus based literature the
works of H. Akbar-Zadeh [2], [3], J. Grifone [9], [10] and R. L. Lovas [12] are worth
mentioning. Grifone applies systematically the ‘τTM : TTM → TM formalism’,
combining with the Frölicher-Nijenhuis calculus of vector-valued forms; Lovas for-
mulates and proves his results in terms of the ‘pull-back formalism

◦
π :
◦
TM ×M TM →

◦
TM ’.

Our paper is a continuation of both Grifone’s and Lovas’s works. Although we are
going to develop the greater part of the theory in terms of the pull-back bundle,

2010 MSC: 53C60, 53A30
Key words: spray manifold, Finsler manifold, projective vector field, affine vector field, con-

formal vector field
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the concepts and techniques of the tangent bundle geometry, including the vertical
calculus on TM , also play an eminent role in our considerations. To make the
paper more readable, in section 1 we summarize in a coherent way the various
concepts and tools which will be indispensable in the following.

We apply two types of a Lie derivative operator: besides the classical Lie deriva-
tive operator Lξ on TM (ξ ∈ X(TM)) we need a further operator, denoted by L̃ξ,
which acts on the tensor algebra of the C∞(TM)-module of the sections of the

vector bundle π : TM ×M TM → TM (or of the bundle
◦
π). To assure the validity

of the crucial identity [L̃ξ, L̃η] = L̃[ξ,η] in case of the ‘new’ operator, we are forced
to differentiate with respect to projectable vector fields on TM . In section 2 some
basic properties of the operator L̃ξ are established.

The affine and projective properties of a Finsler manifold depend only on its
canonical spray, so it is natural to examine affine and projective vector fields in the
(virtual) generality of spray manifolds. A vector field X on a manifold M is said
to be an affine vector field or a Lie symmetry for a spray S : TM → TTM if S is
invariant under the flow of the complete lift Xc of X, that is, if LXcS = [Xc, S] = 0.
In Lovas’s paper [12] various equivalents of this property are established. In sec-
tion 3 we enrich his list with some new items, which will be technically useful in
the next section.

By a conformal vector field on a Finsler manifold (M,F ) we mean a vector
field X on M satisfying

L̃Xcg = ϕg,

where g is the metric tensor of the Finsler manifold (the vertical Hessian of the
energy function E = 1

2F
2) and ϕ is a function, defined and continuous on TM ,

smooth on the deleted bundle
◦
TM . It turns out at once that ϕ has to be fibrewise

constant, i.e., of the form ϕ = f ◦ τ , where f is a smooth function on M and τ is
the tangent bundle projection. Homothetic and isometric (or Killing) vector fields
are the particular cases for which ϕ is a constant function, resp. identically zero. In
section 4 we present further characterizations of conformal vector fields on a Finsler
manifold (Proposition 2), one of them has already been proposed by Grifone in [10].
We show that if a vector field X ∈ X(M) is both affine and conformal on a Finsler
manifold (M,F ), then Xc is a conformal vector field for the Sasaki extension of
the metric tensor of (M,F ) (Proposition 3).

At this stage, the following ‘expectable’, but non-trivial conclusions may be
deduced fairly easily:

(a) Homothetic vector fields on a Finsler manifold are affine vector fields (Propo-
sition 4).

(b) If a vector field on a Finsler manifold is both projective and conformal, then
it is a homothetic vector field (Proposition 5).

(c) If a vector field preserves the Dazord volume form of a Finsler manifold and
it is also projective, then it is an affine vector field (Proposition 6, (i)).

(d) If a vector field is both volume-preserving (in the above sense) and conformal,
then it is a Killing field (Proposition 6, (ii)).
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1 Basic setup
1.1 Generalities

Most of our basic notations and conventions will be the same as in [4], see also [16].
However, for the reader’s convenience, we present here a short review on the most
essential things.

(a) By a manifold we mean a finite dimensional smooth manifold whose underlying
topological space is Hausdorff, second countable and connected. In what follows,
M will be an n-dimensional manifold, where n ≥ 2. Let k ∈ N∪{∞}. We denote by
Ck(M) the set of k-times continuously differentiable real-valued functions on M ,
with the convention that C0(M) is the set of continuous functions on M . In
particular, C∞(M) is the real algebra of smooth functions on M .

(b) The tangent space of M at a point p ∈M is denoted by TpM ;

TM :=
⋃
p∈M

TpM .

The tangent bundle of M is the triplet (TM, τ,M), where the tangent bundle
projection τ is defined by τ(v) := p if v ∈ TpM . Instead of (TM, τ,M) we usu-
ally write τ : TM → M or simply τ . Similarly, the tangent bundle of TM is
(TTM, τTM , TM) or τTM : TTM → TM or τTM . In general, we prefer to denote
a bundle by the same symbol as we use for its projection.

A vector field on M is a smooth section of the tangent bundle τ : TM → M .
The vector fields on M form a C∞(M)-module which will be denoted by X(M).
The zero vector field o on M is defined by

p ∈M 7→ o(p) := 0p := the zero vector in TpM.

The deleted bundle for τ is the fibre bundle
◦
τ :
◦
TM →M , where

◦
TM := TM\o(M),

◦
τ := τ �

◦
TM .

(c) If ϕ : M → N is a smooth mapping between smooth manifolds, then we denote
its derivative by ϕ∗, which is a fibrewise linear smooth mapping of TM into TN .
Two vector fields X ∈ X(M) and Y ∈ X(N) are ϕ-related if ϕ∗ ◦X = Y ◦ ϕ; then
we write X ∼

ϕ
Y . A vector field ξ on TM is said to be projectable if there exists

a vector field X on M such that ξ ∼
τ
X.

(d) The classical graded derivations of the graded algebra Ω(M) :=
⊕n

k=0 Ωk(M)
of differential forms on M are

the Lie derivative LX (X ∈ X(M)),
the substitution operator iX (X ∈ X(M)),
the exterior derivative d,

related by H. Cartan’s ‘magic’ formula

LX = iX ◦ d+ d ◦ iX . (1)
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1.2 Canonical constructions and objects

(a) By the vertical lift of a smooth function f on M we mean the function

f v := f ◦ τ ∈ C∞(TM);

the complete lift of f is the function f c ∈ C∞(TM) given by

f c(v) := v(f), v ∈ TM.

(b) A vector field ξ on TM is vertical if ξ ∼
τ
o. The vertical vector fields form a

C∞(TM)-module Xv(TM), which is also a subalgebra of the Lie algebra X(TM).
The Liouville vector field on TM is the unique vertical vector field C ∈ Xv(TM)
such that

Cf c = f c for all f ∈ C∞(M). (2)

The vertical lift of a vector field X on M is the unique vertical vector field
Xv ∈ Xv(TM) satisfying

Xvf c = (Xf)v for all f ∈ C∞(M); (3)

the complete lift Xc ∈ X(TM) of X is characterized by

Xcf c = (Xf)c, f ∈ C∞(M) (4)

(see [19], Ch. I.3). Then we have

Xcf v = (Xf)v, f ∈ C∞(M). (5)

Both Xv and Xc are projectable: Xv ∼
τ
o, Xc ∼

τ
X. Lie brackets involving verti-

cal and complete lifts satisfy the rules

[Xv, Y v] = 0, [Xc, Y v] = [X,Y ]v, [Xc, Y c] = [X,Y ]c, (6a–c)

[C,Xv] = −Xv, [C,Xc] = 0. (7a–b)

(c) Let

TM ×M TM :=
{

(u, v) ∈ TM × TM | τ(u) = τ(v)
}
,

◦
TM ×M TM :=

{
(u, v) ∈

◦
TM × TM | ◦τ(u) = τ(v)

}
.

If

π := pr1 � TM ×M TM,
◦
π := pr1 �

◦
TM ×M TM,

then both π and
◦
π are vector bundles over TM and

◦
TM , resp., with fibres

{u} × Tτ(u)M ∼= Tτ(u)M ; u ∈ TM, resp. u ∈
◦
TM.

We denote by Sec(π) and Sec(
◦
π) the C∞(TM)-, resp. C∞(

◦
TM)-module of the

sections of these bundles. A typical section in Sec(π) is of the form

X̃ : v ∈ TM 7−→ (v,X(v)) ∈ TM ×M TM,
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where X : TM → TM is a smooth mapping such that τ ◦X = τ . X is called the
principal part of X̃. We have a canonical section in Sec(π), denoted by δ, whose
principal part is the identity mapping of TM . Every vector field X on M yields a
section X̂ in Sec(π), called a basic section, whose principal part is X ◦ τ . Locally,
the C∞(TM)-module Sec(π) is generated by the basic sections.

We denote by Tkl (π) the C∞(TM)-module of the type (k, l) tensors over the

module Sec(π); the meaning of Tkl (
◦
π) is analogous.

(d) We have a canonical C∞(TM)-linear injection i : Sec(π) → X(TM) given on
the basic sections by

i(X̂) := Xv, X ∈ X(M), (8)

and a canonical C∞(TM)-linear surjection j : X(TM)→ Sec(π) such that

j(Xv) := 0, j(Xc) := X̂. (9)

Then Im(i) = Ker(j) = Xv(TM). The mapping J := i ◦ j is said to be the vertical
endomorphism of X(TM). It follows immediately that

Im(J) = Ker(J) = Xv(TM),J2 = 0.

Due to their C∞(TM)-linearity, i, j and J have a natural pointwise interpretation.

1.3 Some vertical calculus

(a) We define the vertical differential ∇vF of a function F ∈ C∞(TM) as a 1-form
in T0

1(π) given by

∇vF (X̃) := ∇v
X̃
F := (iX̃)F, X̃ ∈ Sec(π). (10)

The vertical differential ∇vỸ of a section Ỹ ∈ Sec(π) is the type (1, 1) tensor
in T1

1(π) defined by {
∇vỸ (X̃) := ∇v

X̃
Ỹ := j[iX̃, η],

η ∈ X(TM), j(η) = Ỹ .
(11)

(It is easy to check that ∇v
X̃
Ỹ does not depend on the choice of η satisfying

j(η) = Ỹ .)
By the standard technique, to make sure that Leibniz’s rule holds, the operators

∇v
X̃

may be extended to tensor derivations of the full tensor algebra of Sec(π).

(b) Next we consider the graded algebra Ω(TM) of differential forms on TM , and
we define an operator

dJ : Ω(TM) −→ Ω(TM)

by the rules

dJF := dF ◦ J, dJdF := −ddJF ; F ∈ C∞(TM). (12)

Then dJ is a graded derivation of degree 1 of Ω(TM), called the vertical differen-
tiation on TM . We have (and we shall need) the following important relation:

dJ ◦ LC − LC ◦ dJ = dJ. (13)
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For details, we refer to the book [6]. We mention that ∇v and dJ, at the level of
functions, are related by

dJF = ∇vF ◦ j, F ∈ C∞(TM).

(c) Let K be a type (1, 1) tensor on TM , interpreted as an endomorphism of the
C∞(TM)-module X(TM). It will be convenient to denote the Lie derivative −LηK
(η ∈ X(TM)) by [K, η]. Then, for any vector field ξ on TM ,

[K, η]ξ = [Kξ, η]−K[ξ, η].

We have, in particular,

[J, C] = J; [J, Xv] = 0, [J, Xc] = 0 (X ∈ X(M)). (14a–c)

In what follows, for simplicity, we shall denote also by i, j and J the restrictions

of these mappings to Sec(
◦
π) and X(

◦
TM).

1.4 Ehresmann connections

(a) By an Ehresmann connection in
◦
TM we mean a C∞(

◦
TM)-linear mapping

H : Sec(
◦
π) −→ X(

◦
TM)

such that
j ◦ H = 1

Sec(
◦
π)
.

We emphasize (cf. 1.2(d)) that the C∞(
◦
TM)-linearity of H makes it possible to

interpret an Ehresmann connection as a strong bundle map.

(b) Let H : Sec(
◦
π) → X(

◦
TM) be an Ehresmann connection in

◦
TM . Then

Xh(
◦
TM) := Im(H) is a submodule of X(

◦
TM), and we have the direct decompo-

sition X(
◦
TM) = Xv(

◦
TM) ⊕ Xh(

◦
TM). Vector fields on

◦
TM belonging to Xh(

◦
TM)

are called horizontal. Notice that they do not form, in general, a subalgebra of the

Lie algebra X(
◦
TM). The mappings

h := H ◦ j, v := 1
X(
◦
TM)

− h,

V := i−1 ◦ v : X(
◦
TM) −→ Sec(

◦
π)

are called the horizontal projection, the vertical projection and the vertical mapping

associated to H, respectively. h and v are indeed projection operators in X(
◦
TM),

while the mapping V has the properties

V ◦ i = 1
Sec(

◦
π)
, Ker(V) = Im(H).

The horizontal lift of a vector field X on M (with respect to H) is

Xh := H(X̂) = h(Xc).
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(X̂ and Xc are regarded here as a section in Sec(
◦
π) and a vector field on

◦
TM ,

resp.; for simplicity, we make no notational distinction.)

(c) An Ehresmann connection H is said to be homogeneous if

[C,Xh] = 0 for all X ∈ X(M).

Then H, as a strong bundle map of
◦
TM ×M TM to T

◦
TM , may be extended

continuously to a mapping TM ×M TM → TTM such that

H(0p, v) = (o∗)p(v) for all p ∈M,v ∈ TpM.

Thus, in what follows, we shall always assume that a homogeneous Ehresmann
connection is defined on the entire TM ×M TM (or on Sec(π)).

(d) If H is an Ehresmann connection in
◦
TM , then the mapping

∇ : X(
◦
TM)× Sec(

◦
π) −→ Sec(

◦
π), (ξ, Ỹ ) 7−→ ∇ξỸ

given by

∇vξỸ := ∇v
VξỸ

(11)
= j[vξ,HỸ ] (15a)

∇hξỸ := ∇h
jξỸ := V[hξ, iỸ ] (15b)

is a covariant derivative operator in the vector bundle
◦
π, called the Berwald deriva-

tive induced by H.

By the tension of H we mean the ∇h-differential t := ∇hδ of the canonical

section. Then, for any section X̃ ∈ Sec(
◦
π),

t(X̃) := (∇hδ)(X̃) := ∇h
X̃
δ = V[HX̃, C]. (16)

In particular,

it(X̂) = [Xh, C], X ∈ X(M);

therefore H is homogeneous if, and only if, its tension vanishes.

With the help of the induced Berwald derivative we define the torsion T of an
Ehresmann connection H by

T(X̃, Ỹ ) := ∇HX̃ Ỹ −∇HỸ X̃ − j[HX̃,HỸ ]; X̃, Ỹ ∈ Sec(
◦
π).

Evaluating on basic sections, we obtain the more expressive formula

iT(X̂, Ŷ ) = [Xh, Y v]− [Y h, Xv]− [X,Y ]v; X,Y ∈ X(M).
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2 Lie derivative along the tangent bundle projection
Let ξ be a projectable vector field on TM (1.1(c)). We define a Lie derivative

operator L̃ξ on the tensor algebra of the C∞(TM)-module Sec(π) by the rules

L̃ξϕ := ξϕ, if ϕ ∈ C∞(TM); (17a)

L̃ξỸ := i−1[ξ, iỸ ], if Ỹ ∈ Sec(π), (17b)

and by extending it to the whole tensor algebra in such a way that L̃ξ satisfies

the product rule of tensor derivations. Since ξ is a projectable and iỸ is a vertical
vector field, it follows that the vector field [ξ, iỸ ] is vertical, so L̃ξỸ is well-defined.
If v = i ◦ V is the vertical projection associated to an Ehresmann connection H in
TM , then i−1[ξ, iỸ ] = V[ξ, iỸ ], so we get the useful formula

L̃ξỸ = V[ξ, iỸ ]. (18)

Notice, however, that the Lie derivative operator L̃ξ does not depend on any Ehres-
mann connection in TM .

If, in particular, ξ := Xc or ξ := Xh, where X is a vector field on M , then (18)
takes the form

L̃Xc Ỹ = V[Xc, iỸ ], (19)

resp.

L̃Xh Ỹ = V[Xh, iỸ ]
(15b)
= ∇h

X̂
Ỹ . (20)

Since [Xc, iδ] = [Xc, C]
(7b)
= 0, it follows that

L̃Xcδ = 0. (21)

The Lie derivative of a basic section with respect to a complete lift leads essentially
to the ordinary Lie derivative. Namely, for any vector fields X, Y on M we have

L̃Xc Ŷ
(19)
= V[Xc, Y v]

(6b)
= V[X,Y ]v = V ◦ i[̂X,Y ] = [̂X,Y ] = L̂XY .

This relation indicates that our Lie derivative operator L̃Xc is a natural extension
of the classical Lie derivative LX on M .

Lemma 1. For any projectable vector fields ξ, η on TM ,

[L̃ξ, L̃η] = L̃[ξ,η]. (22)

Proof. Obviously, both sides of (22) act in the same way on smooth functions

on TM . If Ỹ is a section of π, then, applying (18) repeatedly,

[L̃ξ, L̃η]Ỹ = L̃ξV[η, iỸ ]− L̃ηV[ξ, iỸ ] = V([ξ, iV[η, iỸ ]]− [η, iV[ξ, iỸ ]])

= V([ξ, [η, iỸ ]] + [η, [iỸ , ξ]]) = −V[iỸ , [ξ, η]] = V[[ξ, η], iỸ ]

= L̃[ξ,η]Ỹ . �
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Lemma 2. Let X ∈ X(M), η ∈ X(TM). Then

L̃Xcjη = jLXcη. (23)

Proof. Since

0
(14c)
= [J, Xc]η = [Jη,Xc]− J[η,Xc],

we find
iL̃Xcjη = [Xc,Jη] = J[Xc, η] = i(jLXcη),

which implies (23). �

We end this section with the definition of the Lie derivative L̃ξD of a covariant
derivative D : X(TM)× Sec(π)→ Sec(π): it is given by the rule

(L̃ξD)(η, Z̃) := L̃ξ(DηZ̃)−Dη(L̃ξZ̃)−D[ξ,η]Z̃,

where η ∈ X(TM), Z̃ ∈ Sec(π).
Notice finally that the theory of Lie derivatives ‘along the tangent bundle pro-

jection’ sketched here works without any change also on the bundle

◦
π :
◦
TM ×M TM →

◦
TM .

3 Affine vector fields on a spray manifold
3.1

By a spray for M we mean a C1 mapping S : TM → TTM , smooth on
◦
TM , such

that

τTM ◦ S = 1TM ; (24)

JS = C; (25)

[C, S] = S. (26)

Condition (25) is equivalent to the requirement τ∗ ◦S = 1TM , so a spray for M
is a section also of the secondary vector bundle τ∗ : TTM → TM . In view of (26),
a spray is a homogeneous vector field (of class C1) of degree 2. We say that a
manifold endowed with a spray is a spray manifold.

3.2

If H is a homogeneous Ehresmann connection in TM , then S := H ◦ δ is a
spray for M , called the spray associated to H. Indeed, for any vector w in TM ,
S(w) = H(w,w) ∈ TwTM , therefore τTM (S(w)) = w, so (24) is valid. Since

J ◦ S = i ◦ j ◦ H ◦ δ = i ◦ δ = C,

condition (25) also holds. To check (26), observe first that the vector field [C, S]−S
is vertical, and hence h[C, S] = hS. However, hS = H ◦ j ◦ H ◦ δ = H ◦ δ =: S, so
we get h[C, S] = S. On the other hand, by the homogeneity of H,

0 = −it(δ) = −v[H ◦ δ, C] = v[C, S],
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therefore h[C, S] = [C, S] and [C, S] = S. Finally, the C1 differentiability of S can
be shown using the ‘Observation’ in 3.11 (p. 1378) of [16].

Thus sprays exist in abundance for a manifold. Conversely, if S is a spray
for M , then there exists a unique torsion-free homogeneous Ehresmann connec-
tion H in TM such that the horizontal lifts with respect to H are given by

Xh := H(X̂) =
1

2
(Xc + [Xv, S]), X ∈ X(M). (27)

For a proof of this fundamental fact we refer to [16], 3.3, or to the original source [5].
The Ehresmann connection specified by (27) is said to be the Ehresmann connection
induced by the spray S.

3.3

Let (M,S) be a spray manifold. We say that a vector field X on M is a projective
vector field for (M,S) (or for the spray S) if there is a continuous function ϕ

on TM , smooth on
◦
TM , such that

[Xc, S] = ϕC. (28)

If, in particular, ϕ is the zero function, then we say that X is an affine vector field
for (M,S), or a Lie symmetry of S.

Proposition 1. Suppose (M,S) is a spray manifold. Let H be the Ehresmann
connection induced by S, and let ∇ be the Berwald derivative arising from H. For
a vector field X on M , the following conditions are equivalent:

(i) X is a Lie symmetry of S;

(ii) [h, Xc] = 0;

(iii) [v, Xc] = 0;

(iv) L̃Xc∇ = 0;

(v) [Xc, Y h] = [X,Y ]h, for any vector field Y on M ;

(vi) [L̃Xc , L̃Y h ] = L̃[X,Y ]h , Y ∈ X(M);

(vii) L̃Xc ◦ V = V ◦ LXc .

Proof. The equivalence of conditions (i), (ii) and (iv) has already been proved
in [12].
(ii) ⇐⇒ (iii) This is evident, since v = 1 − h (1 := 1X(TM)) and [1, ξ] = 0 for
all ξ ∈ X(TM).
(ii) ⇐⇒ (v) For any vector field Y on M ,

[h, Xc]Y c = [hY c, Xc]− h[Y c, Xc] = [Y h, Xc]− h[Y,X]c = [Y h, Xc]− [Y,X]h,
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so the vanishing of [h, Xc] implies that [Xc, Y h] = [X,Y ]h. The converse is also
true, since [h, Xc] annihilates the module of vector fields: for any vector field ξ on
TM we have

[h, Xc]Jξ = [h ◦ J(ξ), Xc]− h[Jξ,Xc] = 0.

(v) ⇐⇒ (vi) This is an immediate consequence of the identity

[L̃Xc , L̃Y h ] = L̃[Xc,Y h]

(see Lemma 1).
(iii) ⇐⇒ (vii) For any vector field ξ on TM ,

iL̃Xc(Vξ) = [Xc,vξ], iV(LXcξ) = v[Xc, ξ],

hence L̃Xc(Vξ) = V(LXcξ) if, and only if,

0 = [vξ,Xc]− v[ξ,Xc] = [v, Xc]ξ. �

4 Conformal vector fields on a Finsler manifold
4.1

Let (M,F ) be a Finsler manifold. We recall that the Finsler function F : TM → R
here is assumed to be smooth on

◦
TM , positive (F (v) > 0, if v ∈

◦
TM), positive-

-homogeneous of degree 1 (F (λv) = λF (v) for all v ∈ TM and positive real num-
ber λ), and it is also required that the metric tensor

g :=
1

2
∇v∇vF 2

is fibrewise non-degenerate. The function E := 1
2F

2 is the energy function of

(M,F ). The homogeneity of F implies that over
◦
TM we have

CF = F, CE = 2E.

The Hilbert 1-form of (M,F ) is

θ̃ := ∇vE = F∇vF – in the pull-back formalism,

θ := dJE – in the τTM formalism.

It is easy to check that

θ̃(X̃) = g(X̃, δ) for each X̃ ∈ Sec(
◦
π).

θ̃ and θ are related by
θ = θ̃ ◦ j. (29)

The 2-form
ω := dθ = ddJE

on
◦
TM is said to be the fundamental 2-form of (M,F ). Its relation to the metric

tensor is given by

ω(Jξ, η) = g(jξ, jη); ξ, η ∈ X(
◦
TM). (30)

The non-degeneracy of g implies the non-degeneracy of ω – and vice versa.
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Lemma 3. With the notations introduced above, let (M,F ) be a Finsler manifold,
and let X be a vector field on M . Then

(L̃Xc θ̃) ◦ j = LXcθ; (31)

(L̃Xcg)(jξ, jη) = (LXcω)(Jξ, η); ξ, η ∈ X(
◦
TM). (32)

Proof. We check only the less trivial second relation:

(LXcω)(Jξ, η) = Xcω(Jξ, η)− ω(LXcJξ, η)− ω(Jξ,LXcη)

(23),(30)
= Xcg(jξ, jη)− ω(LXcJξ, η)− g(jξ, L̃Xcjη).

Since LXcJξ = [Xc,Jξ] = −[J, Xc]ξ + J[Xc, ξ] = JLXcξ, the second term at the
right-hand side of the above relation takes the form

ω(LXcJξ, η) = ω(JLXcξ, η)
(30)
= g(jLXcξ, jη)

(23)
= g(L̃Xcjξ, jη).

So we obtain

(LXcω)(Jξ, η) = Xcg(jξ, jη)− g(L̃Xcjξ, jη)− g(jξ, L̃Xcjη) = (L̃Xcg)(jξ, jη). �

4.2

We continue to assume that (M,F ) is a Finsler manifold. The 2n-form

σ :=
(−1)

n(n−1)
2

n!
ωn,

where ωn = ω ∧ · · · ∧ ω (n factors) is a volume form on
◦
TM , called the Dazord

volume form of (M,F ). By the divergence of a vector field ξ on
◦
TM (with respect

to σ) we mean the unique function div ξ ∈ C∞(
◦
TM) such that

Lξσ = (div ξ)σ.

Lemma 4. If (M,F ) is a Finsler manifold, then the divergence of the Liouville

vector field C on
◦
TM with respect to the Dazord volume form is n = dimM .

Proof. LCω = LCddJE = dLCdJE
(13)
= ddJLCE − ddJE = 2ddJE − ddJE = ω.

From this it follows by induction that LCωn = nωn, whence our claim. �

4.3

If (M,F ) is a Finsler manifold, then there exists a unique spray S for M such that

iSddJE = −dE over
◦
TM, and S � o(M) = 0. (33)

We say that S is the canonical spray of (M,F ); the Ehresmann connection induced
by S according to (27) is said to be the canonical connection of (M,F ). It may
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be characterized as the unique torsion-free homogeneous Ehresmann connection H
for M which is compatible with the Finsler function in the sense that dF ◦ H = 0,
or, equivalently,

XhF = 0 for all X ∈ X(M).

With the help of the canonical connection, we define the Sasaki extension G of the
metric tensor g of (M,F ) by the rule

G(ξ, η) := g(jξ, jη) + g(Vξ,Vη); ξ, η ∈ X(
◦
TM), (34)

where V is the vertical mapping associated to H. Then G is a Riemannian metric

tensor on
◦
TM .

For subsequent applications, we collect here some further technical results.

Lemma 5. For any section X̃ in Sec(π), we have

∇v
X̃
δ = X̃. (35)

Proof. Let H be a homogeneous Ehresmann connection for M and let S := H ◦ δ
be the spray associated to H (3.2). Then, applying the so-called Grifone identity
([8], Prop. I.7) in the last step, we find that

∇v
X̃
δ := j[iX̃,Hδ] = j[iX̃, S] = X̃. �

Lemma 6. The energy function of a Finsler manifold can be obtained from the
metric tensor by

g(δ, δ) = 2E; (36)

from the fundamental 2-form by

ω(C, S) = 2E, (37)

where S is a spray for the base manifold.

Proof.

g(δ, δ) = ∇v(∇vE)(δ, δ) = ∇v
δ(∇vE)(δ) = ∇v

δ(∇vE(δ))−∇vE(∇v
δδ)

(35)
= ∇v

δ(CE)−∇vE(δ) = C(CE)− CE = 4E − 2E = 2E;

ω(C, S) = ddJE(C, S) = CdJE(S)− S(dJE(C))− dJE([C, S])

= C(CE)− dJE(S) = 4E − 2E = 2E. �

Lemma 7. The divergence of the canonical spray of a Finsler manifold vanishes.

Proof. LSω = LSddJE
(1)
= iSdddJE + diSddJE

(33)
= −ddE = 0, which implies our

claim. �
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4.4

Let (M,F ) be a Finsler manifold. We say that a vector field X on M is a projective,
resp. an affine vector field of (M,F ), if it is a projective vector field, resp. a Lie
symmetry for the canonical spray of (M,F ). A vector field X on M is said to be
a conformal vector field, if the Lie derivative of the metric tensor of (M,F ) with
respect to the complete lift of X satisfies the relation

L̃Xcg = ϕg (38)

for a continuous function ϕ : TM → R, of class C1 on
◦
TM , called the conformal

factor of X. Particular cases of conformal vector fields are homothetic vector fields
for which the conformal factor is a constant function and isometric vector fields,
also called Killing vector fields, for which the conformal factor is the zero function
on TM .

Lemma 8. If X is a conformal vector field on a Finsler manifold (M,F ) with
conformal factor ϕ, then XcE = ϕE.

Proof.

2XcE
(36)
= Xc(g(δ, δ)) = (L̃Xcg)(δ, δ) + 2g(L̃Xcδ, δ)

(21)
= (L̃Xcg)(δ, δ)

(38)
= ϕg(δ, δ)

(36)
= 2ϕE. �

Lemma 9. If X is a conformal vector field on a Finsler manifold (M,F ), then the
conformal factor of X is the vertical lift of a smooth function on M .

Proof. In view of the previous lemma, XcE = ϕE, where ϕ ∈ C0(TM)∩C1(
◦
TM).

Acting on both sides of this relation by the Liouville vector field, we get on the one
hand

C(XcE) = C(ϕE) = (Cϕ)E + 2ϕE,

on the other hand

C(XcE) = [C,Xc]E +Xc(CE) = 2XcE = 2ϕE,

so it follows that (Cϕ)E = 0, and hence Cϕ = 0. This means that ϕ is positive-
-homogeneous of degree 0, which implies (see, e.g., [16], 2.6, Lemma 2) that ϕ is of
the form ϕ = f ◦ τ , f ∈ C∞(M). �

Proposition 2. Let (M,F ) be a Finsler manifold. For a vector field X on M , the
following conditions are equivalent:

(i) X is a conformal vector field with conformal factor ϕ;

(ii) XcE = ϕE;

(iii) LXcθ = ϕθ;

(iv) L̃Xc θ̃ = ϕθ̃;



Conformal vector fields on Finsler manifolds 163

(v) LXcω = ϕω + dϕ ∧ dJE; ϕ = f ◦ τ, f ∈ C∞(M).

In conditions (ii)–(iv), ϕ ∈ C0(TM) ∩ C1(
◦
TM).

Proof. The arrangement of our reasoning follows the scheme

(i) =⇒ (ii)

=
⇒ ⇐
=

(v) ⇐= (iii) ⇐⇒ (iv).

(i) =⇒ (ii) This is just a restatement of Lemma 8.
(ii) =⇒ (iii) Let Y be a vector field on M . We have on the one hand

(LXcθ)(Y v) = Xc(θ(Y v))− θ([Xc, Y v])
(6b)
= Xc(θ(Y v))− θ([X,Y ]v) = 0

= (ϕθ)(Y v),

since the vertical vector fields are annullated by the 1-form θ = dJE. On the other
hand,

(LXcθ)(Y c) = Xc(dJE(Y c))− dJE([Xc, Y c])
(6c)
= Xc(Y vE)− [X,Y ]vE

(6b)
= Xc(Y vE)− [Xc, Y v]E = Y v(XcE)

(ii)
= Y v(ϕE)

(∗)
= ϕ(Y vE)

= (ϕdJE)(Y c) = (ϕθ)(Y c).

At step (∗) we used the fact that our condition XcE = ϕE implies, as it turns
out from the proof of Lemma 9, that ϕ is a vertical lift. Thus LXcθ = ϕθ, as we
claimed.

(iii) =⇒ (v) By our condition,

LXcω = LXcdθ = dLXcθ
(iii)
= d(ϕθ) = dϕ ∧ θ + ϕdθ = ϕω + dϕ ∧ dJE.

To check that the function ϕ here is a vertical lift, we evaluate both sides of (iii)
at a spray S. Then θ(S) = dJE(S) = dE(C) = 2E, while

(LXcθ)(S) = Xc(dJE(S))− dJE([Xc, S]) = 2XcE − J[Xc, S]E = 2XcE,

since [Xc, S] is vertical (see, e.g., [16], p. 1350). Thus we obtain that XcE = ϕE,
which implies, as we have just remarked, that ϕ = f ◦ τ , f ∈ C∞(M).

(v) =⇒ (i) For any vector fields ξ, η on
◦
TM,

(L̃Xcg)(jξ, jη)
(32)
= (LXcω)(Jξ, η)

(v)
= (ϕω + dϕ ∧ dJE)(Jξ, η)

= ϕω(Jξ, η) + dJϕ(ξ)dJE(η)− dϕ(η)dJE(Jξ)

dJϕ=0
= ϕω(Jξ, η)

(30)
= (ϕg)(jξ, jη),

hence L̃Xcg = ϕg.

(iii) ⇐⇒ (iv) If LXcθ = ϕθ, then for any vector field ξ on
◦
TM ,

(L̃Xc θ̃)(jξ)
(31)
= (LXcθ)(ξ)

(iii)
= (ϕθ)(ξ)

(29)
= ϕθ̃(jξ),

whence L̃Xc θ̃ = ϕθ̃. The converse may be checked in the same way. �
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We note that relation (v), as a characterization of conformal vector fields on a
Finsler manifold, was announced first by J. Grifone [10].

Corollary 1. Let (M,F ) be a Finsler manifold. For a vector field X on M , the
following conditions are equivalent:

(i) X is a homothetic vector field, i.e., L̃Xcg = αg, where α is a real number;

(ii) the energy function is an eigenfunction ofXc with eigenvalue α, i.e., XcE = αE;

(iii) LXcθ = αθ;

(iv) L̃Xc θ̃ = αθ̃;

(v) LXcω = αω.

In conditions (iii)–(v) α is a real number. With the choice α := 0 we obtain
criteria that a vector field X on M be a Killing vector field of (M,F ).

Proposition 3. Let (M,F ) be a Finsler manifold. If a vector field X on M is
both affine and conformal, then Xc is a conformal vector field on the Riemannian

manifold (
◦
TM,G), i.e., LXcG = ϕG, where ϕ ∈ C0(TM) ∩ C1(

◦
TM) and G is the

Sasaki extension of the metric tensor of (M,F ).

Conversely, if Xc is a conformal vector field of (
◦
TM,G), then X is a conformal

vector field on the Finsler manifold (M,F ).

Proof. Suppose first thatX is both an affine and a conformal vector field on (M,F ).

Applying (34), (23) and Proposition 1/(vii), for any vector fields ξ, η on
◦
TM we

have

(LXcG)(ξ, η) = LXc(G(ξ, η))−G(LXcξ, η)−G(ξ,LXcη)

= LXc(g(jξ, jη)) + LXc(g(Vξ,Vη))− g(jLXcξ, jη)

− g(VLXcξ,Vη)− g(jξ, jLXcη)− g(Vξ,VLXcη)

= L̃Xc(g(jξ, jη)) + L̃Xc(g(Vξ,Vη))− g(L̃Xc(jξ), jη)

− g(L̃Xc(Vξ),Vη)− g(jξ, L̃Xc(jη))− g(Vξ, L̃Xc(Vη))

= (L̃Xcg)(jξ, jη) + (L̃Xcg)(Vξ,Vη)

= ϕg(jξ, jη) + ϕg(Vξ,Vη) = ϕG(ξ, η).

This proves that Xc is a conformal vector field on (
◦
TM,G). Conversely, under this

condition we find that

2ϕE = ϕg(δ, δ) = ϕg(VC,VC) = ϕG(C,C) = (LXcG)(C,C)

= Xc(G(C,C))−G([Xc, C], C)−G(C, [Xc, C]) = Xc(G(C,C))

= Xcg(δ, δ) = 2XcE,

so, by Proposition 2, X is a conformal vector field on (M,F ). �
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Proposition 4. Any homothetic vector field on a Finsler manifold is an affine vector
field.

Proof. Let (M,F ) be a Finsler manifold, and let S be the canonical spray for
(M,F ). Suppose that X is a homothetic vector field of (M,F ). Then, by Corol-
lary 1, there is a real number α such that XcE = αE, or, equivalently, LXcω = αω.
So we have

LXcdE = d(XcE) = αdE
(33)
= −αiSω = −iS(αω) = −iS(LXcω)

= −LXciSω + i[Xc,S]ω = LXcdE + i[Xc,S]ω.

Thus i[Xc,S]ω = 0, and hence – by the non-degeneracy of ω – [Xc, S] = 0. This
means that X is a Lie symmetry of the canonical spray of (M,F ). �

Lemma 10. If X is a conformal vector field on an n-dimensional Finsler manifold,
then (with respect to the Dazord volume form) divXc = nϕ, where ϕ is the
conformal factor of X.

Proof. Choose a local frame (Xi)
n
i=1 for TM over an open subset U of M . Then

the family (Xv
i , X

c
i )
n
i=1 is a local frame for TTM over τ−1(U). It may be shown

by a little lengthy inductive argument that

(LXcω)(Xv
1, X

c
1, . . . , X

v
n, X

c
n) = nϕω(Xv

1, X
c
1, . . . , X

v
n, X

c
n),

which implies our claim. �

Proposition 5. If a vector field is both a projective and a conformal vector field on
a Finsler manifold, then it is a homothetic vector field.

Proof. Let (M,F ) be an n-dimensional Finsler manifold. Suppose that a vector
field X on M is both projective and conformal. Then, on the one hand,

[Xc, S] = ψC, ψ ∈ C0(TM) ∩ C1(TM),

where S is the canonical spray of (M,F ). On the other hand, by Proposition 2,

XcE = f vE, f ∈ C∞(M).

Thus we get

2ψE = ψ(CE) = [Xc, S]E = Xc(SE)− S(XcE) = −S(f vE)

= −(Sf v)E − f v(SE) = −f cE,

taking into account that S is horizontal with respect to the canonical connection
of (M,F ) and hence SE = 1

2SF
2 = F (SF ) = 0 (see 4.3), applying furthermore

the relation Sf v = f c(f ∈ C∞(M)), whose verification is routine. It follows that

ψ = −1

2
f c.
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Now we determine the divergence (with respect to the Dazord volume form)
of both sides of the relation [Xc, S] = − 1

2f
cC. Applying the well-known rules for

calculation (see, e.g., [1], §6.5 or [11], XV, §1) we find that

div[Xc, S] = Xc divS − S divXc Lemmas 7, 10
= −S(nf v) = −nf c

and

div
(
−1

2
f cC

)
= −1

2
(Cf c + f c divC)

Lemma 4
= −1

2
(n+ 1)f c.

So (n − 1)f c = 0, where n ≥ 2 (1.1 (a)), whence f c = 0. This implies by the
connectedness of M that f is a constant function, and therefore the conformal
factor of X is constant. �

We note that this result is an infinitesimal version of Theorem 2 in [17].

Proposition 6. Let (M,F ) be a Finsler manifold. Suppose that a vector field X
on M preserves the Dazord volume form of (M,F ), i.e., LXcσ = 0. If, in addition,

(i) X is a projective vector field, then X is affine;

(ii) X is a conformal vector field, then X is isometric.

Proof. First we note that our condition LXcσ = 0 implies that divXc = 0.
(i) Suppose that X is also a projective vector field, i.e.,

[Xc, S] = ψC, ψ ∈ C0(TM) ∩ C1(
◦
TM).

Observe that over
◦
TM the function ψ satisfies the relation Cψ = ψ. Indeed, by

the Jacobi identity

0 = [C, [Xc, S]] + [Xc, [S,C]] + [S, [C,Xc]] = [C, [Xc, S]]− [Xc, S],

hence
[Xc, S] = [C, [Xc, S]] = [C,ψC] = (Cψ)C,

therefore (Cψ)C = ψC, and so Cψ = ψ.
Now, as in the previous proof, we calculate the divergence of both sides of the

relation [Xc, S] = ψC. Since divXc = divS = 0, we have

div[Xc, S] = Xc divS − S divXc = 0.

On the other hand, by our above remark,

div(ψC) = ψ divC + Cψ = (n+ 1)ψ.

So it follows that ψ = 0, hence [Xc, S] = 0. Thus X is an affine vector field on
(M,F ).
(ii) Now suppose that (divXc = 0 and) X is also a conformal vector field. Then,
by Proposition 2, XcE = f vE, f ∈ C∞(M). Since

nf v
Lemma 10

= divXc cond.
= 0,

it follows that XcE = 0. Thus, by Corollary 1, X is an isometric vector field on
(M,F ). �
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A geometric analysis of dynamical systems with

singular Lagrangians

Monika Havelková

Abstract. We study dynamics of singular Lagrangian systems described
by implicit differential equations from a geometric point of view using the
exterior differential systems approach. We analyze a concrete Lagrangian
previously studied by other authors by methods of Dirac’s constraint theory,
and find its complete dynamics.1

1 Introduction
Singular (or degenerate) Lagrangian systems were first systematically considered
by Dirac [2]. He was probably the first who noticed that the classical Hamilton
equations make sense only for Lagrangians L(t, qσ, q̇σ) satisfying the regularity
condition

det

(
∂2L

∂q̇σ∂q̇ν

)
6= 0,

and proposed a generalization to describe and understand dynamics of singular
Lagrangians. Unfortunately, his approach was more heuristic than rigorous from
the mathematical point of view, with an unpleasant consequence: study of the dy-
namics of concrete Lagrangian systems provided by different authors using Dirac’s
procedure can lead to different results.

A mathematically correct approach has been achieved later, with help of dif-
ferential geometry. The dynamics of degenerate Lagrangian systems can be inves-
tigated in two geometrically distinct ways:

Indirect (image) approach concerns the well-known Hamiltonian formalism in
symplectic geometry mapping a Lagrangian system from the tangent to the cotan-
gent bundle: Hamiltonian dynamics then appears as image dynamics via Legendre

2010 MSC: 51P05
Key words: singular Lagrangian systems, geometric constraint algorithm, extended dynamics,

proper dynamics, final constraint submanifold
1This work awarded prize at the 12th Czech-Slovak Students’ Research Conference (SVOČ),

Úst́ı nad Labem, Czech Republic, May 2011
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map which is degenerate. An explicit study of the image (hamiltonian) dynamics is
possible if the Legendre map has a constant rank (the image space is a submanifold
in the cotangent space). Applying a procedure called “constraint algorithm” one
can obtain, under some other assumptions on the Lagrangian, a final constraint
submanifold where the image motion proceeds (among many references see e.g. [1],
[5], [6], [7]).

Direct approach originally due to O. Krupková [8] concerns study of Hamiltonian
exterior differential systems in jet bundles. This approach develops the idea of
Goldschmidt and Sternberg [4] understanding Hamilton equations as equations for
integral sections of an exterior differential system in the first jet bundle over a
fibred manifold and is not restricted to some particular kind of Lagrangian systems
(regarding rank, or order). Whatever is the Legendre map, in this approach there is
a direct geometric relation to extremals (solutions of the Euler-Lagrange equations)
as those integral sections of the Hamiltonian exterior differential system which are
holonomic (i.e. take the form of prolongations). As proposed in [8], within the
“direct” setting one can study in a unified way both the Hamiltonian (extended)
and the Lagrangian (proper) dynamics of any Lagrangian system (including highly
singular), and to obtain a geometrically exact description of the dynamics. From
the point of view of mathematics, this is a method of analysing the structure of
solutions of implicit second (or higher) order differential equations. It should be
pointed out (also shown on examples in [8], [9]) that the resulting Hamiltonian (and
Lagrangian) dynamics need not be bounded to a “final constraint submanifold”,
and may proceed rather in the whole phase space in a way which can be understood
as a “controlled chaotic motion”. Moreover, in cases when a “final constraint
submanifold” exists, the motion typically is not described by a vector field along
this submanifold but rather by a more complicated family of vector fields (vector
distribution).

In this article we investigate a singular mechanical system given by the La-
grangian

L = q̇1q̇3 − q2q̇3 + q1q3.

This Lagrangian system has been studied by several authors (e.g. [3] and refer-
ences therein) by means of the Dirac constraint algorithm, however, its dynamical
properties were not clarified: the obtained results are incomplete and conclusions
on the dynamical properties of this Lagrangian system made by different authors
are not in agreement. It should be pointed out that the main result – to obtain
Hamiltonian dynamics for this Lagrangian system, has not been achieved.

We show that problems of this kind can be rigorously solved by application of
the above mentioned Hamiltonian exterior differential systems method. For the
given Lagrangian, we obtain the corresponding dynamical distribution in the first
jet bundle, and show that this distribution is not completely integrable and has a
nonconstant rank. This means, however, that to obtain the dynamics one has to
apply a general integration method developed in [8], called a “geometric constraint
algorithm”. With help of the geometric constraint algorithm we solve the prob-
lem completely: we compute the Euler-Lagrange equations and Hamilton equa-
tions in terms of the corresponding distributions and find the complete structure
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of solutions (so-called proper dynamics and extended dynamics, respectively). In
particular, the Hamilton and Euler-Lagrange equations are not equivalent, and the
dynamics are not representable by a vector field, they are even not representable
by a vector field along a certain “final constraint submanifold” of the evolution
space. It turns out that the dynamics are restricted to (the same) final constraint
submanifold, however, along this submanifold the extended (Hamiltonian) and the
proper (Lagrangian) motion are governed by distinct nonintegrable distributions
of rank greater than one, the Lagrangian dynamics being characterized by the
rank 2 semispray subdistribution of the distribution describing the Hamiltonian
dynamics. Among others this means that neither the Hamiltonian nor the La-
grangian “solution pattern” follows within a foliation in the evolution space (or its
submanifold). It can be shown, however, that the nonintegrable semispray sub-
distribution of rank 2 inherits an intrinsic structure such that, within the final
constraint submanifold, (prolonged) extremals are constrained to a family of sub-
manifolds parametrized by functions on the evolution space. Moreover, along each
of these submanifolds the motion is regular, i.e. extremals are integral sections of
a semispray vector field.

2 Singular Lagrangian systems
We shall consider a fibred manifold π : Y → X; Y = R×M where M is a smooth
manifold of dimension m, and its first jet prolongation J1Y . Local fibred coordi-
nates are denoted by (t, qσ), where 1 ≤ σ ≤ m, and the corresponding coordinates
on J1Y are denoted by (t, qσ, q̇σ). The manifold J1Y is called evolution space.

We shall use the following setting due to [8], [9]:

• A geometric description of the dynamics using a vector distribution on J1Y .

• Formulation of Hamilton theory as a problem of finding all solutions of this
distribution.

• Formulation of Lagrange theory as a problem of finding holonomic solutions
of this distribution.

Equations of motion of a Lagrangian system defined by a Lagrangian λ = Ldt,
L = L(t, qσ, q̇σ), are represented by the Euler-Lagrange form

Eλ = Eσω
σ ∧ dt, Eσ =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
,

1 ≤ σ ≤ m, where ωσ = dqσ − q̇σdt. In what follows we assume that the Euler-
Lagrange equations are nontrivially of order two, and denote

Eσ = Aσ +Bσν q̈
ν .

It is known that there exists a unique 2-contact form F on J2Y such that the
2-form α = Eλ + F is closed and projectable onto J1Y [9].

The form α gives rise to the following two distributions on J1Y which are
in general distinct but their holonomic sections are the same and coincide with
prolongations of extremals:
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• The characteristic distribution of α

D = span{iξα}, where ξ runs over all vector fields on J1Y

• The Euler-Lagrange distribution of α

∆ = span{iξα}, where ξ runs over all vertical vector fields on J1Y

Note that D ⊂ ∆.
In terms of a Lagrangian

α = dθλ,

where

θλ = Ldt+
∂L

∂q̇σ
ωσ

is the Cartan form.

Definition 1. Equations for integral sections of ∆ are called Hamilton equations,
solutions of the Hamilton equations are called Hamilton extremals.

Definition 2. λ is called regular if rank ∆ = 1. λ is called semiregular if ∆ is
weakly horizontal (i.e. at each point p ∈ J1Y the vector space ∆(x) is not vertical)
and rank ∆ is constant.

Dynamical properties of a Lagrangian system are determined by properties of
its related distributions:

Theorem 1. ∆ is weakly horizontal at x ∈ J1Y if and only if D(x) = ∆(x).

Definition 3. The set P̃ = {x ∈ J1Y |D(x) = ∆(x)} is called the primary con-
straint set.

P̃ ⊂ J1Y need not be a submanifold. This set has the meaning of “possibly

admissible” initial conditions for the Hamilton equations – more precisely, J1Y − P̃
is a primary obstruction set for the hamiltonian initial conditions (outside P̃ there
passes no solution of the Hamilton equations, and consequently, no solution of the
Euler-Lagrange equations).

Theorem 2. The following conditions are equivalent:

1. λ is regular

2. ∆ = span
{
∂
∂t + q̇σ ∂

∂qσ −B
σνAν

∂
∂q̇σ

}
= annih{Aσdt+Bσνdq̇

ν , ωσ}

3. detBσν = det
(

∂2L
∂q̇σ∂q̇ν

)
6= 0.

2.1 The geometric constraint algorithm

The dynamics of a smooth singular Lagrangian system cannot be characterized
by a vector field, or even by a system of continuous vector fields in the evolution
space. In this section we recall a general procedure which enables one to solve the
Euler-Lagrange distribution explicitly [8].
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Since in general the extended dynamics and proper dynamics do not coincide,
we have to distinguish two levels of the integration problem:

(1) to find the extended dynamics, i.e., all integral sections of the Euler-Lagrange
distribution (Hamilton extremals)

(2) to find the proper dynamics, i.e., holonomic integral sections.

2.1.1 Extended dynamics

We shall describe an algorithm for finding the structure of solutions of Hamilton
equations (the dynamics of a Hamiltonian system).

Let us denote

F =

(
1
2 (∂Aσ∂q̇ν −

∂Aν
∂q̇σ ) Bσν

−Bσν 0

)
and (F |A) the matrix F extended by the column Aσ, 1 ≤ σ ≤ m, where:

Aσ =
∂L

∂qσ
− ∂2L

∂t∂q̇σ
− ∂2L

∂qν∂q̇σ
q̇ν and Bσν = − ∂2L

∂q̇σ∂q̇ν
.

Step 1: Find the primary constraint set P̃ . As proved in [8],

P̃ = {x ∈ J1Y | rankF = rank(F |A)}.

If P̃ = ∅, there is no extended dynamics, hence no dynamics at all. If P̃ 6= ∅,
choose a point x ∈ P̃ , and proceed to the next step.

Step 2: Denote M(1) ⊂ P̃ a submanifold of maximal dimension around x and
calculate the Euler-Lagrange distribution ∆(1) along M(1).

Step 3: Exclude from M(1) the points where the restriction of ∆(1) to the

tangent bundle of M(1) is not weakly horizontal and denote the resulting set by P̃ ′.

Repeat Step 2 with P̃ ′ instead of P̃ .
Continue until the procedure is finalized. Then take another (distinct) subman-

ifold M(2) in P̃ around x, repeat the procedure.
After sufficiently many steps one obtains either a bunch of final constraint

submanifolds at x, or finds that there is no final constraint submanifold passing
through x.

Considering then the collection of final constraint submanifolds together with
to them constrained Euler-Lagrange distributions, we get the dynamical picture
corresponding to the solutions of the Hamilton equations.

2.1.2 Proper dynamics

We have to exclude solutions of Hamilton equations which are not holonomic. First
we find the set

P = {x ∈ J1Y | rankB = rank(B|A)},
called primary semispray constraint set. Again, it need not be a submanifold
in J1Y . Outside this set, there exist no prolonged extremals, hence there is no
motion. If P 6= ∅, we choose a point x ∈ P and proceed in a similar way as
described above in searching for the extended dynamics: however, in this case we
consider as admissible only those submanifolds and vector fields belonging to ∆
which along the submanifold can be identified with a semispray.
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3 A singular Lagrangian dynamics
Let us consider the following singular Lagrangian

L = q̇1q̇3 − q2q̇3 + q1q3. (1)

Its Euler-Lagrange equations are implicit second order differential equations

q3 − q̈3 = 0, q̇3 = 0, q1 + q̇2 − q̈1 = 0.

Momenta take the form

p1 = q̇3, p2 = 0, p3 = q̇1 − q2

and the Hamiltonian reads
H = q̇1q̇3 − q1q3. (2)

We can use momenta as a part of new coordinates on J1Y by considering a local
coordinate transformation as follows

(t, q1, q2, q3, q̇1, q̇2, q̇3)→ (t, q1, q2, q3, p3, q̇
2, p1), (3)

and get for the Hamiltonian the expression

H = (p3 + q2)p1 − q1q3. (4)

Computing the Hessian matrix of L we get0 0 1
0 0 0
1 0 0


hence the Legendre map R × TM → R × T ∗M has constant rank equal to 2 and
defines a submanifold of dimension 5.

Let us turn to the analysis of the dynamics on R × TM with help of the cor-
responding distributions. To this end we need the Cartan form θλ and its exterior
derivative dθλ:

θλ = (q1q3 − q̇1q̇3)dt+ q̇3dq1 + (q̇1 − q2)dq3,

dθλ = (q3dq1 + q1dq3 − q̇3dq̇1 − q̇1dq̇3) ∧ dt+ (dq̇1 − dq2) ∧ dq3 + dq̇3 ∧ dq1.

Computing the distributions D and ∆ we get:

D = annih{q3dq1+q1dq3− q̇3dq̇1− q̇1dq̇3, q3dt−dq̇3, dq3, q1dt+dq2−dq̇1, ω3, ω1}

and
∆ = annih{q3dt− dq̇3, dq3, q1dt+ dq2 − dq̇1, ω3, ω1}.

We can see that D ⊂ ∆ and D 6= ∆.

3.1 Extended dynamics

The Lagrangian system possesses primary dynamical constraints (primary obstruc-
tions to initial conditions for the Hamilton equations). The primary constraint set

P̃ is the set of points in the evolution space where rankF = rank(F |A), hence

P̃ = {x ∈ J1Y | q̇3 = 0},

and it is a closed submanifold in J1Y of codimension 1.
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Note that, indeed, outside the submanifold P̃ the Euler-Lagrange distribution
is spanned by two vector fields

∂

∂q2
+

∂

∂q̇1
,

∂

∂q̇2

which are vertical over the base R, hence among the integral curves there are no
sections (the integral curves describe no evolution).

To get the Hamiltonian dynamics we have first to restrict our considerations
to the admissible submanifold P̃ . Along this submanifold the Euler-Lagrange dis-
tribution ∆ and the dynamical distribution D coincide and are spanned by the
following three vector fields:

D = ∆ = span

{
∂

∂t
+ q̇1 ∂

∂q1
− q1 ∂

∂q2
+ q3 ∂

∂q̇3
;

∂

∂q2
+

∂

∂q̇1
;

∂

∂q̇2

}
.

This distribution is weakly horizontal, but we have to exclude points where it is not
tangent to P̃ , that is, the points where q3 6= 0. Indeed, at these points restriction

of D = ∆ to the tangent bundle of P̃ is a vertical distribution. We obtain a
submanifold

M = {x ∈ J1Y | q3 = 0, q̇3 = 0} (5)

of P̃ , and along M the distribution

DM = ∆M = span

{
∂

∂t
+ q̇1 ∂

∂q1
− q1 ∂

∂q2
;

∂

∂q2
+

∂

∂q̇1
;

∂

∂q̇2

}
= span

{
f1

( ∂
∂t

+ q̇1 ∂

∂q1

)
+ (f2 − f1q

1)
∂

∂q2
+ f2

∂

∂q̇1
+ f3

∂

∂q̇2

}
,

(6)

where f1, f2, f3 are arbitrary functions on M . This distribution is tangent to M ,
and weakly horizontal at each point of M , as required. Note that its annihilator is
spanned by the following two 1-forms: q1dt+ dq2 − dq̇1 and ω1 = dq1 − q̇1dt. We
can see that rank ∆M is constant and equal to 3, however, ∆M is not completely
integrable. Summarizing, we have obtained the following structure of solutions of
the Hamilton equations for our Lagrangian:

Theorem 3. Hamilton equations of L are equations for integral sections of the not
completely integrable rank 3 distribution ∆M on the closed 5-dimensional manifold
M ⊂ J1Y above.

In fibred coordinates, the Hamilton equations are equations for sections δ(t) =
(t, xσ(t), yσ(t)) of J1Y , where we have denoted xσ(t) = qσ ◦ δ and y(t) = q̇σ ◦ δ,
and take the following form:

dx1

dt
= y1,

dx2

dt
= g(t)− x1,

dx3

dt
= 0,

dy1

dt
= g(t),

dy2

dt
= h(t),

dy3

dt
= 0,
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where g, h are arbitrary functions on M , g(t) = g ◦ δ and h(t) = h ◦ δ.
In a more conventional way, in “partial Legendre coordinates” defined by (3),

and in terms of Hamiltonian (4) we can write

dq1

dt
=
∂H

∂p1
,

dq2

dt
= g +

∂H

∂q3
,

dq3

dt
= 0,

dp1

dt
= 0,

dq̇2

dt
= h,

dp3

dt
= −∂H

∂q3
.

For this Hamiltonian system M is the final constraint submanifold (having the
meaning of a genuine evolution space, or phase space). Extended motion is con-
straint to this submanifold, is chaotic, not uniquely determined by initial condi-
tions.

3.2 Proper dynamics

We are looking for holonomic Hamilton extremals = prolongations of extremals.
Computing the primary semispray-constraint set we get the following closed

submanifold in the evolution space

P = {x ∈ J1Y | q̇3 = 0}.

Outside this submanifold there are no (prolonged) extremals.

Since P = P̃ , the procedure of restricting the Euler-Lagrange distribution to P
ends with the same submanifold M and the restricted distribution DM = ∆M as
in the Hamiltonian case above. Now, however, this is not yet the end of the story,
since we are interested in holonomic solutions, and the distribution ∆M still has
solutions which are not holonomic, hence do not correspond to extremals. We have
to continue to another step in the geometric constraint algorithm in order to obtain
a maximal submanifold of M with a distribution whose nonvertical vector fields
are semisprays. It is easily seen that this is achieved by taking the manifold M
itself and the rank 2 subdistribution of ∆M which is obtained by choosing f1 = 1
and f2 = q̇2 + q1, i.e. takes the form

D = span

{
∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
+ f

∂

∂q̇2

}
, (7)

where f is an arbitrary function on M . Hence we have obtained the following
result:

Theorem 4. The Euler-Lagrange equations of L are equations for integral sections
of the not completely integrable rank 2 distribution D on the closed 5-dimensional
manifold M ⊂ J1Y above.

Theorem 4 gives a geometric solution to the extremal problem and a complete
geometric “dynamical picture” for the proper dynamics of the given singular La-
grangian system (1). We can see that the motion is restricted to a final constraint
submanifold of dimension 5, and is chaotic and indeterministic there (cannot be
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uniquely determined by initial conditions). Compared with the Hamiltonian dy-
namics obtained in the previous section, the final constraint submanifold is the
same, and the Lagrangian dynamics is given by a rank 2 semispray subdistribution
of the distribution describing the Hamiltonian dynamics.

The distribution D is not completely integrable which means that the (pro-
longed) extremals do not proceed within leaves of a foliation of M . Nevertheless,
as shown below, the geometric picture can be further refined to give us a more
precise and fine description of the Lagrangian dynamics within the final constraint
submanifold M .

Let us turn back to the distribution ∆M (6) and note that it has the following
rank 2 weakly horizontal subdistribution

span

{
∂

∂t
+ q̇1 ∂

∂q1
+ (g − q1)

∂

∂q2
+ g

∂

∂q̇1
+ h

∂

∂q̇2

}
, (8)

where g, h are arbitrary functions on M . Now, for every fixed g(t, q1, q2, q̇1, q̇2)
consider a manifold

Mg = {x ∈ J1Y | q3 = q̇3 = 0, q̇2 = g − q1} ⊂M. (9)

If

φ ≡ ∂g

∂q̇2
− 1 6= 0, (10)

then along Mg distribution (8) takes the form of a rank 2 semispray distribution
spanned by the following vector fields:

∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
+ h

∂

∂q̇2
, (11)

i.e., it is the distribution D restricted to the submanifold Mg. We have to find its
subdistribution tangent to Mg. To this end let us consider local coordinates t̄ = t,
q̄1 = q1, q̄2 = q2, ˙̄q1 = q̇1, z = q̇2 − g + q1, adapted to the submanifold Mg. Note
that regularity of the transformation means that at each point condition (10) holds
true. Transforming (11) to the new coordinates we can see that there is a unique
(up to a multiplier) vector field tangent to Mg, with

h =
1

φ
(q̇1 −X(g)), (12)

where we have denoted

X =
∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
.

Theorem 5. Euler-Lagrange equations of L are equations for integral sections of
the following family of rank one (hence completely integrable) constraint semispray
distributions:

Sg = span

{
∂

∂t
+ q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
+ (q̇2 + q1)

∂

∂q̇1
+

1

φ
(q̇1 −X(g))

∂

∂q̇2

}
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each defined on the closed 4-dimensional manifold

Mg = {x ∈ J1Y | q3 = q̇3 = 0, q̇2 − g + q1 = 0} ⊂M ⊂ J1Y,

where g(t, q1, q2, q̇1, q̇2) is an arbitrary function satisfying condition (10).

Hence, the structure of extremals of the considered singular Lagrangian is com-
pletely described by a family of 4-dimensional submanifolds Mg of the 5-dimen-
sional “final constraint submanifold” M , endowed with semispray distributions of
rank 1. This means that every manifold Mg is foliated by one-dimensional folia-
tion, and the family of these “constraint foliations” in M represents the structure
of integral sections of the non-integrable rank 2 distribution D (7) on the final
constraint submanifold in the evolution space.
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[6] M.J. Gotay, J.M. Nester: Presymplectic Lagrangian systems II: the second order
equation problem. Ann. Inst. H. Poincaré Sect. A, 32 (1980) 1–13.
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Variational formulations I: Statics of mechanical
systems.

W lodzimierz M. Tulczyjew

Abstract. Two improvements of variational formulations of mechanics are
proposed. The first consists in a modification of the definition of equilib-
rium. The second consists in adding elements of control by external devices.
In the present note the proposed improvements are applied to variational
principles of statics. Numerous examples are given.

Introduction
The fundamental concept in variational formulations of physical theories is that of
equilibrium. In the current literature on mechanics an equilibrium configuration is
a configuration at which a function such as internal energy or action assumes a local
minimum. This definition is too narrow. It excludes the treatment of dissipative
systems. A definition of equilibrium based on the response to virtual displacements
is proposed. This proposal does net affect the treatment of potential unconstrained
systems. It allows the treatment of dissipative systems. Applying constraints to
virtual displacements and not to configurations is a natural consequence of this
proposal. A different interpretation of non holonomic constraints is obtained as
one of the results. This modified version of non holonomic constraints applies to
statics as well as dynamics.

The study of motions of an isolated object in a configuration space is the subject
of geometric formulations of mechanics. Let Q be an affine configuration space
modelled on a vector space V . For a potential unconstrained system a motion

q : R→ Q

is required to satisfy the Hamilton principle

δ

∫ ∞
−∞

L ◦ (q, q̇) = 0 .

2010 MSC: 70C20
Key words: variational principles, constraints, Legendre-Fenchel transformation
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Here
L : Q× V → R

is the Lagrangian and
q̇ : R→ V

is the velocity. The Hamilton principle must be satisfied for all variations

δq : R→ V

with compact support. Variations with compact support are used in order to make
the integration meaningful. The Euler-Lagrange equations(

d

dt

∂L

∂q̇
− ∂L

∂q

)
◦ (q, q̇, q̈) = 0

follow from the variational principle.
The formulation of mechanics based on the Hamilton principle is suitable for

studying motions of isolated systems such as planets. Modern formulations of
mechanics should treat boundary value problems and should include elements of
control theory. A motion is typically observed in a precise time interval [t0, t1]. The
observed object is not created at the initial moment t0 and does not disappear at
the terminal moment t1. The past motion of the object interacts with the motion
in the time interval [t0, t1] by supplying the initial momentum p0 and the terminal
momentum p1 is passed onto the future motion. This type of interaction is well
described by the variational principle

δ

∫ t1

t0

L ◦ (q, q̇) = 〈p1, δq(t1)〉 − 〈p0, δq(t0)〉 (1)

with free variations of the boundary configurations. This principle leads to the
equations

p0 =
∂L

∂q̇
(q(t0), q̇(t0))

and

p1 =
∂L

∂q̇
(q(t1), q̇(t1))

in addition to the Euler-Lagrange equations satisfied inside the interval [t0, t1].
The variational principle (1) provides a theoretical background for ballistics.

It is not general enough for treatig guided missiles and not even cars or planes.
External forcess applied to the object during the interval [t0, t1] must be included.
An external force represented by

f : R→ V ∗.

appears in the variational principle

δ

∫ t1

t0

L ◦ (q, q̇) = −
∫ t1

t0

〈f, δq〉+ 〈p1, δq(t1)〉 − 〈p0, δq(t0)〉.
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Equations (
d

dt

∂L

∂q̇
− ∂L

∂q

)
◦ (q, q̇, q̈) = f, (2)

p0 =
∂L

∂q̇
(q(t0), q̇(t0)),

and

p1 =
∂L

∂q̇
(q(t1), q̇(t1))

follow from the principle. The equation (2) is to be satisfied in the interval [t0, t1].
Control by external forces and boundary momenta is not the only form of

control. We suggest that at least this form of control be explicitly included in
modern formulations of mechanics.

This note is a part of a series of notes on variational formulations of physical
theories. Static mechanical systems are considered. Formulations of dynamics of
mechanical systems and field theories will follow.

Statics of mechanical systems is hardly present in modern literature. Static
systems appeared in catastrophe theory. Equilibrium configurations of isolated
systems defined as minima of internal energy functions were studied. Some elements
of control were present. All proposed improvements are fully implemented in the
present note.

1 Equilibria
1.1 Two simple examples

Example 1. LetQ be an affine space modelled on a vector space V with a Euclidean
metric g : V → V ∗. A material point with configuration q ∈ Q is connected with
a spring of spring constant k to a fixed point q0 ∈ Q. The configuration q = q0 is
the only stable configuration of the material point.

Example 2. The material point with configuration q ∈ Q in Example 1 is subject
to friction. The friction is measured by the coefficient ρ. The set

{q ∈ Q; ‖q − q0‖ 6 ρ/k}

is the set of equilibrium configurations.

Definitions of equilibrium:

A) A stable equilibrium configuration is a configuration at which the internal
energy of the system assumes its minimum value.

B) A configuration q is a stable equilibrium configuration if the work of each
process starting at q and not ending at q is positive.

Definition A) applies to the first example. The internal energy is the function

U : Q→ R : q 7→ k

2
‖q − q0‖2.
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It assumes its minimum value at the configuration q = q0. Definition A) does not
apply to the second example.

Definition B) applies to both examples. In the first example the work of a pro-
cess starting at q1 and ending at q2 equals U(q2) − U(q1). This work is always
positive unless q1 = q0. In the second example the work of a process from q1 to q2

equals

U(q2)− U(q1) + ρ× [length of process]. (3)

If q1 = q, q2 = q + ∆q 6= q, then

U(q2)− U(q1) + ρ× [length of process]

=
k

2
‖q − q0 + ∆q‖2 − k

2
‖q − q0‖2 + ρ‖∆q‖

= k〈g(q − q0),∆q〉+
k

2
‖∆q‖2 + ρ‖∆q‖ .

Let

‖q − q0‖ > ρ/k.

Choose ∆q in the direction opposite to (q− q0) and assume that the process is the
straight segment from q to q + ∆q. We have

U(q2)− U(q1) + ρ× [length of process]

= −k‖q − q0‖‖∆q‖+ ρ‖∆q‖+
k

2
‖∆q‖2.

This quantity is negative if ‖∆q‖ is small enough since

−k‖q − q0‖‖∆q‖+ ρ‖∆q‖ < 0.

It follows that q is not a configuration of equilibrium.
Let

‖q − q0‖ 6 ρ/k.

The quantity

ρ× [length of process]

is always positive. It assumes its lowest value

ρ× [length of process] = ρ‖∆

for given q and ∆q if the process is a segment of a straight line. The lowest value
of the term

U(q2)− U(q1) = U(q + ∆q)− U(q)

with a given ‖∆q‖ is obtained when ∆q points in the direction opposite to (q−q0).
In this case

k〈g(q − q0),∆q〉 = −k‖q − q0‖‖∆q‖ > 0.
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If the process is the segment of a straight line from q to q + ∆q and the vector ∆q
points in the direction of −(q − q0), then

U(q2)− U(q1) + ρ× [length of process]

= −k‖q − q0‖‖∆q‖+
k

2
‖∆q‖2 + ρ‖∆q‖ > 0

In all other cases the value of the expression (3) is higher. It follows that q is
a configuration of equilibrium.

The two examples were designed to show that variational formulations have
a wider area of applicability if based on Definition B). This definition appears in
the Levi-Civita formulations of mechanics. It is not present in modern geometric
formulations.

1.2 Precise definitions of local equilibria

Let Q be the configuration space of a system. A virtual displacement trajectory
(a trajectory for short) is a submanifold c ⊂ Q homeomorphic to the interval
R+ = [0,∞) ⊂ R. The submanifold c the image of an embedding

q : R+ → Q.

The point q = q(0) is the initial point of the trajectory and the trajectory will be
denoted by (q, c).

The embedding q is called a parameterization of (q, c). The set of virtual dis-
placement trajectories will be denoted by P(Q).

There is a work function
W(q,c) : c→ R

defined on each trajectory (q, c). We introduce the mapping

W : P(Q)→
⋃

(q,c)∈P(Q)

C∞(R|c) : (q, c) 7→W(q,c).

This mapping characterizes the system.
A configuration q ∈ Q is a local stable equilibrium configuration if for each

displacement trajectory (q, c) the work function W(q,c) has a local minimum at q.
Let c be parameterized by an embedding

q : R+ → Q.

The work function can be converted to a function

W̃q : R+ → R : s 7→W(q,c)(q(s))

of the parameter. The first order necessary condition of equilibrium for a config-
uration q states that for each trajectory (q, c) the derivative of the work function
W̃q satisfies

DW̃q(0) > 0. (4)
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This condition is parameterization independent.
Only the first order differential conditions are used in variational formulations

of physical theories. For the purpose of studying the first order differential crite-
ria virtual displacemements are well represented by vectors δq ∈ TQ tangent to
trajectories and the set of work functions is represented by a work form

σ : TQ→ R

derived from the differentials of work functions. The work form is positive homo-
geneous in the sense that

σ(kδq) = kσ(δq)

if k > 0. The condition (4) assumes the form

σ(δq) > 0

for each vector δq at q.

1.3 Constraints

An unconstrained system is characterized by a work function

W(q,c) : c→ R (5)

defined on each trajectory (q, c). The mapping

W : P(Q)→
⋃

(q,c)∈P(Q)

C∞(R|c) : (q, c) 7→W(q,c).

is also used. Constraints are conditions imposed on trajectories by specifying a
subset C of the set of all displacement trajectories. Trajectories in C are said to
be admissible. A work function (5) is assigned to admissible trajectories. Let
C0 be the set of initial configurations of all admissible displacement trajectories.
Constraints are said to be holonomic if C is the set of all displacement trajectories
included in C0. In other cases constraints are said to be non holonomic.

A system is characterized by the pair (C,W ), with

W : C →
⋃

(q,c)∈C

C∞(R|c) : (q, c) 7→W(q,c).

A configuration q ∈ C0 is a local stable equilibrium configuration of a constrained
system if for each displacement trajectory (q, c) ∈ C the work function W(q,c) has
a local minimum at q.

For the purpose of formulating the first differential order necessary condition of
local equilibrium the system is characterized by a virtual work function

σ : C1 → R

defined on a constraint set C1 ⊂ TQ. For each

q ∈ C0 = τQ(C1)
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the set
C1
q = C1 ∩ TqQ

is a cone in the sense that if
δq ∈ C1

q ,

then
λδq ∈ C1

q

for each
λ > 0.

A vector δq is said to be tangent to a set C0 ∈ Q if there is a curve

γ : R→ Q

such that γ([0,∞)) ⊂ C0 and δq = tγ(0). The set of vectors tangent to C0 is
the tangent set of C0 denoted by TC0. Constraints are said to be holonomic if
C1 = TC0. Otherwise constraints are said to be non holonomic. The inclusion

C1 ⊂ TC0

is usually verified.
The virtual work function is a homogeneous form in the sense that

σ(λδq) = λσ(δq)

if
λ > 0.

The necessary condition of local equilibrium states that a configuration q ∈ C0

is an equilibrium configuration of the static system

(C1, σ)

if the inequality
σ(δq) > 0

is satisfied for each virtual displacement

δq ∈ C1
q .

2 Control of mechanical system by external forces
2.1 Composed systems

Let two static systems with the same configuration space Q be characterized by

(C1
1, σ1)

and
(C1

2, σ2)
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respectively. Then the system constructed by coupling the two systems is charac-
terized by

(C1, σ)

with

C1 = C1
1 ∩ C1

2

and

σ = σ1|C1 + σ2|C1.

Certain regularity is assumed in this construction of the coupled system. Some
possible irregularities will be discussed separately. The construction of the coupled
system is certainly valid when one of the systems is unconstrained.

2.2 Control

Equilibrium configurations of an isolated system are not of much interest. A static
system is usually subjected to control by being coupled to an external system. The
work function σ together with the constraint set C1 provides complete information
on the response of a static system to control. Equilibrium configurations q ∈
C0 ∩ F 0 of a static system characterized by (C1, σ) coupled to an external system
represented by (F 1, ϕ) are determined by the virtual work principle

σ(δq) + ϕ(δq) > 0 for each virtual displacement δq ∈ C1
q ∩ F 1

q .

2.3 The Legendre-Fenchel transformation, the constitutive set

A static system is said to be regular if C1 = TQ, there is a function

U : Q→ R,

and the virtual work form is derived from the potential U according to

σ : TQ→ R : δq 7→ 〈dU, δq〉.

Control by regular external systems is of special interest. Equilibrium configura-
tions q ∈ C0 of a static system (C1, σ) controlled by a regular system represented
by (TQ,dU) are determined by

σ(δq) + 〈dU, δq〉 > 0 for each virtual displacement δq ∈ C1
q . (6)

Note that only the differential dU(q) of the potential U appears in the virtual work
principle (6). Two controlling regular systems (TQ,dU1) and (TQ,dU2) will have
the same effect at q if

dU2(q) = dU1(q).

This equality establishes an equivalence relation of controlling regular systems at
q. A suitable representant of the equivalence class of a system (TQ,dU) at q is the
covector

f = −dU(q) ∈ T∗qQ. (7)
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Due to the presence of constraints two different covectors f1 and f2 in T∗qQ will
still have the the same effect if

〈f2, δq〉 = 〈f1, δq〉 for each virtual displacement δq ∈ C1
q .

This could lead to a further classification of controlling devices different for different
controlled systems. The covector (7) is a completely universal characteristic of a
regular controlling system (TQ,dU) at q. An external force will be the term used
for this covector.

An alternative representation of a static system (C1, σ) is provided by the con-
stitutive set

S = {f ∈ T∗Q; q = πQ(f) ∈ C0,∀δq∈C1
q
σ(δq)− 〈f, δq〉 > 0} (8)

The passage from the objects (C1, σ) characterizing a system to the constitutive
set S is the Legendre-Fenchel transformation known in convex analysis. The con-
stitutive set provides a complete characterization of a convex system. For a convex
system the objects C1 and σ can be reconstructed from the constitutive set.

3 Examples of static systems
The geometric structure used in formulations of statics with external forces is the
diagram

(T∗Q, 〈, 〉)

πQ

y
Q

(9)

It is the cotangent fibration of the configuration space Q with the canonical pairing

〈, 〉 : T∗Q ×
(πQ,τQ)

TQ→ R.

If Q is an affine space modelled on a vector space V , then the cotangent bundle is
identified with Q× V ∗ and the mapping πQ is the canonical projection

πQ : Q× V ∗ → Q : (q, f) 7→ q.

The component f of an element (q, f) of the phase space T∗Q is the external
force applied to the material point at configuratiom q. The tangent bundle TQ is
identified with the product Q×V and the tangent projection is represented by the
canonical projection

τQ : Q× V → Q : (q, δq) 7→ q.

The fibre product of the cotangent bundle wth the tangent bundle is the space of
elements (q, f), (q, δq) in (Q× V ∗)× (Q× V ). The pairing 〈, 〉 is defined by

〈(q, f), (q, δq)〉 = 〈f, δq〉.

The diagram (9) takes the form
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(Q× V ∗, 〈, 〉)

πQ

y
Q

The response of a static system to control by esternal forces is described by the
constitutive set (8).

Example 3. A material point with configuration q in an affine space Q is tied to
a fixed point q0 ∈ Q with a spring of spring constant k. The model space is a
Euclidean vector space V with a metric tensor

g : V → V ∗.

The system is regular. The internal energy of the system is the function

U : Q→ R : q 7→ k

2
‖q − q0‖2.

This function generates the constitutive set

S = {(q, f) ∈ Q× V ∗; f = kg(q − q0)}.

Example 4. A material point with configuration q in a Euclidean affine space Q
is tied to a fixed point with configuration q0 with a rigid rod of length a. The
configuration q is constrained to the sphere

C0 = {q ∈ Q; ‖q − q0‖ = a}.

This is a system with a holonomic bilateral constraint. The set

C1 = {(q, δq) ∈ Q× V ; ‖q − q0‖ = a, 〈g(q − q0), δq〉 = 0}

of admissible virtual displacements is the tangent set TC0 of the holonomic con-
straint C0. With the virtual work form σ = 0 the constitutive set is the set

S = {(q, f) ∈ Q× V ∗; ‖q − q0‖ = a, f = a−2〈f, q − q0〉g(q − q0)}.

Example 5. The rigid rod of the Example 4 is replaced by a flexible string of
length a. The configuration q is constrained to the closed ball

C0 = {q ∈ Q; ‖q − q0‖ 6 a}.

This is a system with a holonomic unilateral constraint. The set

C1 = {(q, δq) ∈ Q× V ; ‖q − q0‖ 6 a, 〈g(q − q0), δq〉 6 0 if ‖q − q0‖ = a}

of admissible virtual displacements is the tangent set TC0 of the configuration
constraint C0. With the virtual work form σ = 0 the constitutive set is the set

S = {(q, f) ∈ Q× V ∗; ‖q − q0‖ 6 a, f = 0 if ‖q − q0‖ ≤ a,
f = ‖f‖a−1g(q − q0) if ‖q − q0‖ = a}.
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Example 6. Let Q be a Riemannian manifold with a metric tensor

g : TQ→ T∗Q.

A material point with configuration q ∈ Q is subject to homogeneous, isotropic
friction. The virtual work form is the mapping

σ : TQ→ R : δq 7→ ρ
√
〈g(δq), δq〉

with ρ > 0. The principle of virtual work is the inequality

ρ
√
〈g(δq), δq〉 > 0

satisfied for each virtual displacement δq ∈ TQ. This inequality is obviously satis-
fied at each q ∈ Q for each virtual displacement δq ∈ TqQ. Hence each configura-
tion is an equilibrium configuration of the system. A covector f ∈ T∗Q is in the
constitutive set if the inequality

ρ‖δq‖ − 〈f, δq〉 > 0

is satisfied for each virtual displacement δq such that τQ(δq) = πQ(f). Let f be in
the constitutive set. By using δq = g−1(f) in the preceding inequality we arrive at

‖f‖2 6 ρ‖f‖.

Hence,
‖f‖ 6 ρ.

The inequality
〈f, δq〉 6 ‖f‖‖δq‖

is the result of the Schwarz inequality applied to the pair of vectors g−1(f) and δq
such that τQ(δq) = πQ(f). If ‖f‖ 6 ρ, then

〈f, δq〉 6 ρ‖δq‖.

Hence, f is in the constitutive set. We conclude that the constitutive set of the
system is the set

S = {f ∈ T∗Q; ‖f‖ 6 ρ}.

Example 7. This is the affine version of Example 6. Let the configuration space Q
be an affine space modelled on a Euclidean vector space V . The material point is
not constrained and is subject to isotropic static friction. The virtual work is the
function

σ : Q× V → R : (q, δq) 7→ ρ(q)‖δq‖ = ρ(q)
√
〈g(δq), δq〉.

The set
S = {(q, f) ∈ Q× V ∗;∀δq∈V ρ(q)‖δq‖ > 〈f, δq〉} (10)

is the constitutive set. Let (q, f) ∈ S. By setting δq = g−1(f) in the inequality

ρ(q)‖δq‖ > 〈f, δq〉
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we obtain the inequality

ρ(q)‖f‖ > ‖f‖2.

Hence,

S ⊂ {(q, f) ∈ Q× F ; ‖f‖ 6 ρ(q)}.

Let (q, f) satisfy the inequality

‖f‖ 6 ρ(q).

The relation

〈f, δq〉 6 |〈f, δq〉| 6 ‖f‖‖δq‖ 6 ρ(q)‖δq‖

is derived from the Schwarz inequality

|〈f, δq〉| 6 ‖f‖‖δq‖.

We have shown that

S = {(q, f) ∈ Q× F ; ‖f‖ 6 ρ(q)}.

Example 8. The material point with configuration q ∈ Q in Example 3 is subject
to friction. The virtual work form is the mapping

σ : Q× V → R : (q, δq) 7→ k〈g(q − q0), δq〉+ ρ(q)‖δq‖.

The constitutive set is the set

S = {(q, f) ∈ Q× V ∗;∀δq∈V k〈g(q − q0), δq〉+ ρ(q)‖δq‖ > 〈f, δq〉}.

This set is the set constitutive set (10) of Example 7 with f replaced by

f − kg(q − q0).

The expression

S = {(q, f) ∈ Q× V ∗; ‖f − kg(q − q0)‖ 6 ρ(q)}

for the constitutive set is the result.

Example 9. Let M be an affine plane modelled on a Euclidean vector space V .
The configuration space of a skate is the set Q = M ×D, where D is the projective
space of directions in the affine space M . We use the Euclidean metric in M to
identify the space D with the unit circle

D = {ϑ ∈ V ; 〈g(ϑ), ϑ〉 = 1}.

Virtual displacements are elements of the space M × V × TD, where

TD = {(ϑ, δϑ) ∈ D × V ; 〈g(ϑ), δϑ〉 = 0}.
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The skate is a system with non holonomic constraints. The set C0 is the entire
space Q. The constraint consists in restricting virtual displacements in M to those
parallel to the direction specified by an element of D. Thus

C1 = {(x, δx, ϑ, δϑ) ∈M × V × TD;∃λ∈Rδx = λϑ}.

The constitutive set is a subset of the space Q × V ∗ × T∗D. The space T∗D is
specified as the set of pairs (ϑ, τ), where ϑ is in D and τ is in the quotient space
V ∗/T◦ϑD, where the space T◦ϑD is the polar of the space TϑD ⊂ V . The quotient
space V ∗/T◦ϑD is dual to TϑD. The set

S = {(x, f, ϑ, τ) ∈ Q× V ∗ × T∗D; 〈f, δx〉+ 〈τ, δϑ〉 = 0

for each (x, δx, ϑ, δϑ) ∈ C1}
= {(x, f, ϑ, τ) ∈ T∗Q; 〈f, ϑ〉 = 0, τ = 0}

is the constitutive set of the system with the virtual work form σ = 0. Let the
skate be subject to friction represented by a non negative function ρ : Q→ R. The
virtual work is the function

σ : C1 → R : (x, δx, ϑ, δϑ) 7→ ρ(x, ϑ)‖δx‖ = ρ(x, ϑ)
√
〈g(δx), δx〉.

The set

S = {(x, f, ϑ, τ) ∈ T∗Q;∀(x,δx,ϑ,δϑ)∈C1ρ(x, ϑ)‖δx‖ > 〈f, δx〉+ 〈τ, δϑ〉}

is the constitutive set. The equality τ = 0 is obtained by setting δx = 0 in the
inequality

ρ(x, ϑ)‖δx‖ > 〈f, δx〉+ 〈τ, δϑ〉

with arbitrary δϑ. By setting δx = λϑ we arrive at the inequality

ρ(x, ϑ)|λ| > λ〈f, ϑ〉

for each λ ∈ R. The inequality must be satisfied for λ = 〈f, ϑ〉. Hence

ρ(x, ϑ)|〈f, ϑ〉| > 〈f, ϑ〉2

and |〈f, ϑ〉| 6 ρ(x, ϑ). If |〈f, ϑ〉| 6 ρ(x, ϑ), then

ρ(x, ϑ)|λ| > |λ||〈f, ϑ〉| > 〈f, λϑ〉

for each λ ∈ R. It follows that the virtual work principle is satisfied. In conclusion
we obtain the expression

S = {(x, f, ϑ, τ) ∈ T∗Q; |〈f, ϑ〉| 6 ρ(x, ϑ), τ = 0}

for the constitutive set of the system.
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Example 10. Let Q be the affine physical space. The example gives a formal
description of experiments performed by Coulomb in his study of static friction.
Let a material point be constrained to the set

C0 = {q ∈ Q; 〈g(k), q − q0〉 > 0},

where q0 is a point in Q and k ∈ V is a unit vector. The boundary

∂C0 = {q ∈ Q; 〈g(k), q − q0〉 = 0}

is a plane passing through q0 and orthogonal to k. In its displacements along
the boundary the point encounters friction proportional to the component of the
external force pressing the point against the boundary. The system is characterized
by the virtual work function σ = 0 defined on the non holonomic constraint

C1 = {(q, δq) ∈ Q× V ; 〈g(k), q − q0〉 > 0,

〈g(k), δq〉 > ν
√
‖δq‖2 − 〈g(k), δq)〉2 if 〈g(k), q − q0〉 = 0},

where ν > 0 is the coefficient of friction. The inequality

〈g(k), δq〉 > ν
√
‖δq‖2 − 〈g(k), δq)〉2

defines a cone in the tangent space TqQ. The axis of the cone is the vector k and
the angle 2ϑ such that ν = cotϑ is the aperture. The principle of virtual work
states that (q, f) is in the constitutive set S if and only if the inequality

〈f, δq〉 6 0

is satisfied for each (q, δq) ∈ C1. If the material point is not on the boundary,
then 〈g(k), q − q0〉 > 0. The virtual displacements are not constrained and a pair
(q, f) ∈ Q × V ∗ is in the constitutive set S if and only if f = 0. If the material
point is on the boundary, then 〈g(k), q− q0〉 = 0. We show that in this case a pair
(q, f) is in the constitutive set if and only if the inequality√

‖f‖2 − 〈f, k〉2〉+ ν〈f, k〉 6 0

is satisfied. If f = −‖f‖g(k), then (q, f) is in the constitutive set and ‖f‖2 −
〈f, k〉2 = 0. Let (q, f) be in the constitutive set and let ‖f‖2 − 〈f, k〉2 6= 0. The
virtual displacement (q, δq) with

δq = g−1(f)− 〈f, k〉k + ν
√
‖f‖2 − 〈f, k〉2k

is in C1 since

〈g(k), δq〉 = ν
√
‖f‖2 − 〈f, k〉2.

From the principle of virtual work and

〈f, δq〉 = ‖f‖2 − 〈f, k〉2 + ν
√
‖f‖2 − 〈f, k〉2〈f, k〉
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it follows that
‖f‖2 − 〈f, k〉2 + ν

√
‖f‖2t− 〈f, k〉2〈f, k〉 6 0

and √
‖f‖2 − 〈f, k〉2〉+ ν〈f, k〉 6 0

since ‖f‖2 − 〈f, k〉2 > 0.
The Schwarz inequality

|〈g(u), v〉 − 〈g(k), u〉〈g(k), v〉| 6
√
‖u‖2 − 〈g(k), u〉2

√
‖v‖2 − 〈g(k), v〉2

for the bilinear symmetric form

(u, v) 7→ (u− 〈g(k), u〉k|v − 〈g(k), v〉k) = 〈g(u), v〉 − 〈g(k), u〉〈g(k), v〉

applied to the pair (g−1(f), δq) leads to the inequality

〈f, δq〉 − 〈f, k〉〈g(k), δq〉 6
√
‖f‖2 − 〈f, k〉2

√
‖δq‖2 − 〈g(k), δq〉2.

If √
‖f‖2 − 〈f, k〉2〉+ ν〈f, k〉 6 0

and
〈g(k), δq〉 > ν

√
‖δq‖2 − 〈g(k), δq〉2,

then √
‖f‖2 − 〈f, k〉2

√
‖δq‖2 − 〈g(k), δq〉2 6 −〈f, k〉〈g(k), δq〉.

It follows that 〈f, δq〉 6 0. Hence, (q, f) is in the constitutive set S. We have shown
that the set

S = {(q, f) ∈ Q× V ∗; 〈g(k), q − q0〉 > 0, f = 0 if 〈g(k), q − q0〉 > 0

and
√
‖f‖2 − 〈f, k〉2 + ν〈f, k〉 6 0 if 〈g(k), q − q0〉 = 0}

is the constitutive set of the system. The inequality√
‖f‖2 − 〈f, k〉2 + ν〈f, k〉 6 0

means that the vector g−1(f) is inside a cone in the tangent space TqQ. The vector
−k is the axis of the cone and the angle 2ϑ such that ν = cotϑ is the aperture.

4 Partial control of static systems
We have considered control of static systems through interaction with systems with
the same configuration space. This is not always the case. One can in general asso-
ciate three distinct configuration spaces with a static system: the internal configu-
ration space Q̄, the control configuration space Q, and the observed configuration
space Q̃. There are differential relations connecting the three spaces.

We will consider the cases when a static system with a configuration space Q̄ is
controlled by external devices in a configuration space Q and the relation between
the two spaces is a differential fibration η : Q̄ → Q. The configuration space Q̄
of the controlled system is the internal configuration space and the configuration
space Q of the controlling devices is the control configuration space. We will refer
to such situations as cases of partial control. The observed configuration space Q̃
will coincide either with Q or with Q̄.
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4.1 Families of functions

An internal energy function

Ū : Q̄→ R

is interpreted as a family of functions defined on fibres of the fibration η. The
symbol (Ū , η) is used to denote this family.

A generating family (Ū , η) generates the constitutive set

S = {f ∈ T∗Q;∃q̄∈Q̄η(q̄) = πQ(f)∀δq̄∈Tq̄Q̄〈dŪ , δq̄〉 = 〈f,Tη(δq̄)〉} (11)

of a partially controlled system.
We denote by VQ̄ the subbundle

{δq̄ ∈ TQ̄; Tη(δq̄) = 0}

of vertical vectors. The set

Cr(Ū , η) = {q̄ ∈ Q̄; 〈dŪ , δq̄〉 = 0 for each δq̄ ∈ Vq̄Q̄}

is called the critical set of the family. If q̄ satisfies the conditions stated in the
definition of S, then the equality 〈dŪ(q̄), δq̄〉 = 0 is obtained with δq = 0 and any
vertical vector δq̄ ∈ Q̄q̄. It follows that q̄ ∈ Cr(Ū , η).

There is a mapping

κ(Ū , η) : Cr(Ū , η)→ T∗Q

characterized by

〈κ(Ū , η)(q̄), δq〉 = 〈dŪ , δq̄〉

for each δq ∈ Tη(q̄)Q and each δq̄ ∈ Tq̄Q̄ such that Tη(δq̄) = δq. The constitutive
set is the image of κ(Ū , η). Note that if

κ(Ū , η)(q̄) = f,

then

πQ(f) = η(q̄).

The constitutive set (11) describes the relation between the controlling force
and the controlled configuration. It is used when the controlled configuration is
the observed configuration. If the internal configuration is observed, then the
constitutive set

S̃ = {(q̄, f) ∈ Q̄× T∗Q; q̄ ∈ Cr(Ū , η), f = κ(Ū , η)(q̄)}

should be used.

4.2 Reduction of generating families

Let (Ū , η) be a family generating the set (11). We have the following obvious
proposition.
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Proposition 1. Let q̄ ∈ Cr(Ū , η). The single point set

Sq̄ = {f ∈ T∗Q;πQ(f) = η(q̄)∀δq̄∈Tq̄Q̄dŪ(δq̄) = 〈f,Tη(δq̄)〉}.

is represented in the form

Sq̄ = {f ∈ T∗Q;πQ(f) = η(q̄)∀δq∈Tη(q̄)Qσq̄(δq) = 〈f, δq〉},

where
σq̄ : Tη(q̄)Q→ R : δq 7→ dŪ(δq̄), δq̄ ∈ Tq̄Q̄,Tη(δq̄) = δq. (12)

It follows from the above proposition that if Cr(Ū , η) is the image of a section
ζ : Q→ Q̄ of the fibration η then the family (Ū , η) generating the set S in (11) can
be replaced by the function

σ : TQ→ R : (δq) 7→ σζ(τQ(δq))(δq),

where σζ(τQ(δq)) is the function σq̄ defined in the the formula (12) with q̄ =
ζ(τQ(δq)). It is obvious that σ = d(Ū ◦ ζ). Thus the set S is generated by the
function U = Ū ◦ ζ.

4.3 Examples

Example 11. Three material points with configurations q0, q, and q′ in the affine
space Q are interconnected with springs with spring constants k1, k2, and k3. The
point q0 is fixed and not controlled. The two points q and q′ are not constrained.
The configuration q′ is not controlled. The internal configuration space is the affine
space Q̄ = Q × Q of internal configurations q̄ = (q, q′) modelled on V × V . The
control configuration space is the space Q of controlled configurations q and V is
the model space. The canonical projection

η : Q̄→ Q : q̄ = (q, q′) 7→ q

is the relation between the two spaces. The internal energy is the function

Ū : Q̄→ R : q̄ = (q, q′) 7→ k1

2
‖q − q0‖2 +

k2

2
‖q′ − q0‖2 +

k3

2
‖q′ − q‖2.

The internal energy defines a family (Ū , η) of functions on fibres of the projection η.
The critical set

Cr(Ū , η) = {q̄ = (q, q′) ∈ Q̄; (k2 + k3)(q′ − q0)− k3(q − q0) = 0}

of the family is the image of the section

ζ : Q→ Q̄ : q = q 7→ (q, q0 + k3(k2 + k3)−1(q − q0))

of the projection η. The constitutive set is the set

S =

{
(q, f) ∈ Q× V ∗; f =

k1k2 + k1k3 + k2k3

k2 + k3
g(q − q0)

}
.
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Note that the presence of the material point with configuration q′ can be ignored.
This is due to the fact that the critical set is the image of a section of the projection
η. The constitutive set is generated by the reduced internal energy function

U = Ū ◦ ζ : Q→ R : q 7→ 1

2

k1k2 + k1k3 + k2k3

k2 + k3
‖q − q0‖2.

This is the internal energy function

U : Q→ R : q 7→ k

2
‖q − q0‖2.

of Example 3 with

k =
k1k2 + k1k3 + k2k3

k2 + k3
.

Example 12. The present example gives a simplified discrete model of the buckling
of a rod. One end of the rod is a point in an affine space Q with configuration q
constrained to the half-line

L = {q ∈ Q; q − q0 = 〈g(u), q − q0〉u, 〈g(u), q − q0〉 > 0}

starting at a point q0 in the direction of a unit vector u. The other end is a point
with configuration q′ constrained to the plane

P = {q′ ∈ Q; 〈g(u), q′ − q0〉 = 0}

through q0 perpendicular to u. The rod can be compressed or extended in length
but not bent. Its relaxed length is a and the elastic constant is k. The buckling of
the rod is simulated by displacements of its end point in the plane P tied elastically
to the point q0 with a spring of spring constant k′. The configuration space Q̄ is
the product Q×Q with holonomic constraints represented by

C0 = {(q, q′) ∈ Q̄; q ∈ L, q′ ∈ P}.

The set

C1 = {(q, q′, δq, δq′) ∈ TQ̄; q ∈ L, q′ ∈ P,
δq = 〈g(u), δq〉u, 〈g(u), δq′〉 = 0}

of admissible virtual displacements is the tangent set of C0. The internal energy
of the system is the function

Ū : C0 → R : (q, q′) 7→ k

2
(‖q − q′‖ − a)2 +

k′

2
‖q′ − q0‖2.

The configuration q′ is not controlled. The internal energy defines a family (Ū , η)
of functions on fibres of

η : C0 → L : (q, q′) 7→ q.
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The critical set is the union of sets

Cr1(Ū , η) = {(q, q′) ∈ Q̄; q ∈ L, q′ = q0}

and
Cr2(Ū , η) = {(q, q′) ∈ Q̄; q ∈ L, q′ ∈ P, (k + k′)‖q′ − q‖ = ka}.

The critical set Cr1(Ū , η) is the image of the section

ζ1 : L→ C0 : q 7→ (q, q0).

The reduced internal energy

U1 = Ū ◦ ζ1 : L→ R : q 7→ k

2
(‖q − q0‖ − a)2

generates the constitutive set

S1 = {(q, f) ∈ Q× V ∗; q ∈ L, 〈f, u〉 = k(‖q − q0‖ − a)}

The critical set Cr2(Ū , η) is not the image of a section of η. A reducion of the
internal energy is still possible since the internal energy written in the form

Ū : C0 → R : (q, q′) 7→ k

2
(‖q − q′‖ − a)2 +

k′

2
(‖q − q′‖2 − ‖q − q0‖2)

is a function only of the distance ‖q − q′‖, and on the critical set Cr2(Ū , η) this
distance is determined by

‖q − q′‖ =
ka

k + k′
.

The result of the reduction is the function

U2 : L→ R : q 7→ −k′‖q − q0‖2 + Constant.

It generates the constitutive set

S2 = {(q, f) ∈ Q× V ∗; q ∈ L, (k + k′)‖q − q0‖ < ka,

〈f, u〉 = −k′‖q − q0‖}.

The constitutive set S = S1 ∪ S2 is not a submanifold of Q× V ∗.

Example 13. A material point with configuration q′ in the affine space Q is con-
nected to a fixed point q0 with a rigid rod of length a. A second material point
with configuration q is tied elastically to q′ with a spring of spring constant k.
The configuration q′ is not controlled. The internal configuration space Q̄ is the
product Q×Q with holonomic constraints represented by

C0 = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a}.

The set

C1 = {(q, q′, δq, δq′) ∈ Q×Q× V × V ;

‖q′ − q0‖ = a, 〈g(q′ − q0), δq′〉 = 0}
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is the tangent set of C0. The control configuration space is the space Q and the
canonical projection

η : Q̄→ Q : (q, q′) 7→ q

is the relation between the two spaces. The internal energy is the function

Ū : C0 → R : (q, q′) 7→ k

2
‖q − q′‖2

and

Cr(Ū , η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q = 〈g(q′ − q0), q′ − q〉a−2(q′ − q0)}.
= {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q0 = ±a(q − q0)‖q − q0‖−1 ifq 6= q0}.

is the critical set. The set

S = {(q, f) ∈ Q× V ∗; ‖f‖ = ka if q = q0,

f = k(1± a‖q − q0‖−1)g(q − q0) if q 6= q0}

is the constitutive set of the family (Ū , η). Note that the critical set is not the
image of a section of η. For each control configuration q we have two different
internal equilibrium configurations (q, q′) if q 6= q0 and an infinity of internal equi-
librium configurations if q = q0. The external force necessary to maintain the
control configuration q depends on the internal configuration. Thus even if the
internal configuration is not directly observed its presence can not be ignored. The
constitutive set is the image of the injective mapping

κ(Ū,η) : Cr(Ū , η)→ Q× V ∗ : (q, q′) 7→ (q, kg(q − q′)).

If the internal configuration is observed, then the set

S̃ = {(q, q′, f) ∈ Q×Q× V ∗; (q, q′) ∈ Cr(Ū , η), f = kg(q − q′)}

can be used to describe the relation between the controlling force and the observed
internal cofiguration.

4.4 Families of forms

A generating family of forms consists of a differential fibration

η : Q̄→ Q

and a form
σ̄ : TQ̄→ R.

The form v̄σ defines a family (v̄σ, η) of forms v̄σq on fibres of the fibration η. Each
form v̄σq is the restriction of the form v̄σ to the set

{δq̄ ∈ TQ̄; η(τQ̄(δq̄)) = q}.
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We denote by VQ̄ the subbundle

{δq̄ ∈ TQ̄; Tη(δq̄) = 0}

of vertical vectors. The set

Cr(σ̄, η) = {q̄ ∈ Q̄; σ̄(δq̄) > 0 for each δq̄ ∈ Vq̄Q̄}

is called the critical set of the family.
A generating family (σ̄, η) generates the set

S = {f ∈ T∗Q; q = πQ(f) ∈ Q,∃q̄∈Q̄q if δq ∈ TqQ,

δq̄ ∈ Tq̄Q̄, and Tη(δq̄) = δq, then σ̄(δq̄) > 〈f, δq〉}.

If q̄ satisfies the conditions stated in the definition of S, then the inequality
σ̄(δq̄) > 0 is obtained with δq = 0 and any vertical vector δq̄ ∈ Vq̄Q̄. It follows
that q̄ ∈ Cr(σ̄, η). Consequently,

S =
⋃

q̄∈Cr(σ̄,η)

Sq̄ ,

where

Sq̄ = {f ∈ T∗Q; q = πQ(f) = η(q̄), if δq ∈ TqQ, δq̄ ∈ Tq̄Q̄

and Tη(δq̄) = δq, then σ̄(δq̄) > 〈f, δq〉}.

It can be shown that if q̄ ∈ Cr(σ̄, η), then the set Sq̄ is not empty. The relation

κ(σ̄, η) : Cr(σ̄, η)→ T∗Q

defined by
graphκ(σ̄, η) = {(q̄, f) ∈ Cr(σ̄, η)× T∗Q; f ∈ Sq̄}

generalizes the mapping κ(Ū , η) introduced in Section 4.1. The constitutive set
is the image of the relation. We refer to the set Sq̄ as the contribution to the
constitutive set S from the critical point q̄.

4.5 Examples

Example 14. Let the point with configuration q′ of Example 11 be subject to
friction. The virtual work form is the family (s̄, η) with

σ̄ : Q×Q× V × V → R : (q, q′, δq, δq′)→ k1〈g(q − q0), δq〉
+ k2〈g(q′ − q0), δq′〉+ k3〈g(q′ − q), δq′ − δq〉+ ρ‖δq′‖

and
η : Q̄→ Q : (q, q′) 7→ q.

With a suitable choice of δq′ the expression

〈−(k2 + k3)g(q′ − q0) + k3g(q − q0), δq′〉
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in the definition

Cr(σ̄, η) = {(q, q′) ∈ Q̄;∀δq′∈V 〈k2g(q′ − q0) + k3g(q′ − q), δq′〉+ ρ‖δq′‖ > 0}
= {(q, q′) ∈ Q̄;∀δq′∈V 〈−(k2 + k3)g(q′ − q0) + k3g(q − q0), δq′〉 6 ρ‖δq′‖}

of the critical set can reach its maximum

‖(k2 + k3)(q′ − q0)− k3(q − q0)‖‖δq′‖.

Hence,

Cr(σ̄, η) = {(q, q′) ∈ Q̄; ‖(k2 + k3)(q′ − q0)− k3(q − q0)‖ 6 ρ}

The critical set is not the image of a section of η. The pair (q, f) ∈ Q × V ∗ is in
the constitutive set if the inequality

k1〈g(q − q0), δq〉+ k2〈g(q′ − q0), δq′〉
+ k3〈g(q′ − q), δq′ − δq〉+ ρ‖δq′‖ − 〈f, δq〉 > 0

is satisfied for some q′ ∈ Q and all (δq, δq′) ∈ V × V . If the inequality is satisfied,
then (q, q′) is in the critical set and δq′ can be set to 0. The resulting inequality

(k1 + k3)〈g(q − q0), δq〉 − k3〈g(q′ − q0), δq〉 − 〈f, δq〉 > 0

has the solution
f = (k1 + k3)g(q − q0)− k3g(q′ − q0).

Combining this result with the definition of the critical set we obtain the final
expression

S =

{
(q, f) ∈ Q× V ∗;

∥∥∥∥f − k1k2 + k1k3 + k2k3

k2 + k3
g(q − q0)

∥∥∥∥ 6 k3

k2 + k3
ρ

}
for the constitutive set. The presence of the internal configuration q′ can not be
ignored. If it is known, then the force f is obtained from (14). The internal
configuration q′ can be observed. The set

S̃ = {(q, q′, f) ∈ Q̄× V ;‖(k2 + k3)(q′ − q0)− k3(q − q0)‖ 6 ρ,
f = (k1 + k3)g(q − q0)− k3g(q′ − q0)}

includes the information about the internal configuration.

Example 15. The material point with configuration q′ in Example 13 is subject to
friction. The family (Ū , η) of functions is replaced by a family of forms (σ̄, η) with

σ̄ : C1 → R : (q, q′, δq, δq′) 7→ k〈g(q − q′), δq − δq′〉+ ρ‖δq′‖.

The set

Cr(σ̄, η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,∀δq′∈V
if 〈g(q′ − q0), δq′〉 = 0, then k〈g(q − q′), δq′〉 6 ρ‖δq′‖}
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is the critical set of the family. The maximum value of the expression

k〈g(q − q′), δq′〉

is
k‖(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)‖‖δq′‖.

Hence,

Cr(σ̄, η) = {(q, q′) ∈ Q̄; k‖(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)‖ 6 ρ}. (13)

The critical set is not a section of the projection η. The expression

(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)

is the component of q − q′ orthogonal to q′ − q0. If q 6= q0, then q′ ∈ C0 must be
such that the length this of component does not exceed ρ/k. If q = q0, then all
configurations q′ ∈ C0 are in the critical set. The pair (q, f) ∈ Q × V ∗ is in the
constitutive set if the inequality

k〈g(q − q′), δq − δq′〉+ ρ‖δq′‖ − 〈f, δq〉 > 0

is satisfied for some q′ ∈ C0 and all (δq, δq′) ∈ V ×V such that 〈g(q′−q0), δq′〉 = 0.
If the inequality is satisfied, then (q, q′) is in the critical set and terms with δq′ can
be discarded. The resulting inequality

k〈g(q − q′), δq〉 − 〈f, δq〉 > 0

leads to
f = kg(q − q′). (14)

The set

S̃ = {(q, q′, f) ∈ Q̄× V ∗; k‖(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)‖ 6 ρ
f = kg(q − q′)}

contains the information about the force in terms of the internal configuration q′.
The description of the constitutive set obtained from (13) and (14) is too compli-
cated to be useful.

5 Clean composition
Let C1 and C2 be subsets of Q. If the intersection C1 ∩ C2 is not empty, we say
that it is clean if

TC1 ∩ TC2 = T(C1 ∩ C2).

Example 16. We consider the composition of two holonomic systems. The con-
straints and the constitutive set for the first system are represented by the sets

C0
1 = {q ∈ Q; ‖q − q1‖ = a},
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C1
1 = {(q, δq) ∈ Q× V ; ‖q − q1‖ = a, 〈g(q − q1), δq〉 = 0},

and
S1 = {(q, f) ∈ Q× V ∗; ‖q − q1‖ = a, f = a−2〈f, q − q1〉g(q − q1)}.

For the second system we have

C0
2 = {q ∈ Q; ‖q − q2‖ = a},

C1
2 = {(q, δq) ∈ Q× V ; ‖q − q2‖ = a, 〈g(q − q2), δq〉 = 0},

and
S2 = {(q, f) ∈ Q× V ∗; ‖q − q2‖ = a, f = a−2〈f, q − q2〉g(q − q2)}.

If the distance ‖q2 − q1‖ between the centres of the spheres C0
1 and C0

2 is less
than 2a, then the composed system is a system with holonomic constraints. The
intersection of the constraints is clean since

C1 = C1
1 ∩ C1

2 = {(q, δq) ∈ Q× V ; ‖q − q1‖ = a, ‖q − q2‖ = a,

〈g(q − q1), δq〉 = 0, 〈g(q − q2), δq〉 = 0}

is the tangent set TC0 of the intersection

C0 = C0
1 ∩ C0

2 = {q ∈ Q; ‖q − q1‖ = a, ‖q − q2‖ = a}.

The constitutive set

S = {(q, f) ∈ Q× V ∗; ‖q − q1‖ = a, ‖q − q2‖ = a, 〈f, δq〉 = 0 for each

δq ∈ V such that 〈g(q − q1), δq〉 = 0 and 〈g(q − q2), δq〉 = 0}.

is obtained from the principle of virtual work. At each q ∈ C0 the set

Sq = {f ∈ V ∗; (q, f) ∈ S}

is the sum
{f ∈ V ∗; (q, f) ∈ S1}+ {f ∈ V ∗; (q, f) ∈ S2}.

If ‖q2 − q1‖ = 2a, then the set

C0 = C0
1 ∩ C0

2 = {q ∈ Q; ‖q − q1‖ = a, ‖q − q2‖ = a}

has only one element q = q1 + 1
2 (q2 − q1). The intersection C1

1 ∩ C1
2 is the set{

(q, δq) ∈ Q× V ; q = q1 +
1

2
(q2 − q1), 〈g(q2 − q1), δq〉 = 0

}
.

The intersection of constraints is not clean since this intersection is not the tangent
set of C0. With

C1 = TC0 =

{
(q, f) ∈ Q× V ∗; q = q1 +

1

2
(q2 − q1), δq = 0

}
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the principle of virtual work produces the constitutive set

S =

{
(q, f) ∈ Q× V ∗; q = q1 +

1

2
(q2 − q1)

}
.

This is not the correct constitutive set for the composed system. The reason of
this failure is that the approximative assumption of perfect rigidity of the separate
constraints is no longer realistic in the case of a composition with

TC0
1 ∩ TC0

2 6= T(C0
1 ∩ C0

2).

To obtain a complete description of the composed system the precise elastic prop-
erties of the constraints must be known. A partial characterization of the system
is provided by the constitutive set

S1 ∩ S2 =

{
(q, f) ∈ Q× V ∗; q = q1 +

1

2
(q2 − q1), f = a−2〈f, q − q1〉g(q − q1)

}
generated by the non holonomic constraint C1 = C1

1 ∩ C1
2. Note that this con-

straint is not integrable since the inclusion C1 ⊂ TC0 does not hold.

6 A geometric setting for catastrophe theory
6.1 The framework

The traditonal approach to statics consists in studying equilibrium configurations
of isolated systems. Catastrophe theory introduces elements of control to this
approach. Families of isolated static systems are considered instead of separate
single systems. Variations of equilibria within the family are studied. Applicability
of this theory is somewhat limited since only unconstrained potential systems are
considered.

We adapt the framework established in Section 4.1. to the catastrophe theory
point of view. The base Q of the differential fibration

η : Q̄→ Q

is the control space. The control configurations are not controlled by external
forces. They are directly set by an external control mechanism. Fibres of the
fibration are behaviour spaces. An internal energy function

Ū : Q̄→ R

is interpreted as a family Cr(Ū , η) of potentials on the behaviour spaces parame-
terized by control configurations. The potential

Uq : Q̄q → R

corresponding to a control configuration q ∈ Q is the restriction of Ū to the fibre
Q̄q = η−1(q). The critical set

Cr(Ū , η) = {q̄ ∈ Q̄; 〈dŪ , δq̄〉 = 0 for each δq̄ ∈ Vq̄Q̄}
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with

VQ̄ = {δq̄ ∈ TQ̄; Tη(δq̄) = 0}

is the catastrophe manifold. Each element q̄ of the catastrophe manifold is an
equilibrium configuration for the potential Uη(q̄). A catastrophe is a singularity of
the catastrophe map

χ : Cr(Ū , η)→ Q

obtained as the restriction of the projection η to Cr(Ū , η). A singularity occurs at
a point q̄ ∈ Cr(Ū , η) at which the rank of the tangent mapping

Tχ : TCr(Ū , η)→ TQ

changes. The change of multiplicity of critical points projecting onto the same
configuration q is also an indication of a singularity.

The framework requires a obvious extension to families of holonomically con-
strained potentials in order to accomodate examples we want to present.

6.2 Examples

Example 17. In Example 13 we used the internal energy

Ū : C0 → R : (q, q′) 7→ k

2
‖q − q′‖2

defined on the holonomic constraint

C0 = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a}.

The critical set

Cr(Ū , η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q = 〈g(q′ − q0), q′ − q〉a−2(q′ − q0)}.

was obtained. This set is now interpreted as the catastrophe manifold. Let D be
the unit sphere

{ϑ ∈ V ; 〈g(ϑ), ϑ〉 = 1}.

The critical set is the image of the injective mapping

γ : R×D → Q̄ : (r, ϑ) 7→ (q0 + (a+ r)ϑ, q0 + aϑ).

The set
R× R× {(ϑ, δϑ) ∈ V × V ;ϑ ∈ D, 〈g(ϑ), δϑ〉 = 0}

is the tangent set T(R×D). The tangent mapping

Tγ : T(R×D)→ Q×Q× V × V
: (r, δr, ϑ, δϑ) 7→ (q0 + (a+ r)ϑ, q0 + aϑ, δrϑ+ (a+ r)δϑ, aδϑ)
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is injective. It follows that γ is an injective immersion. The mapping

χ : R×D → Q : (r, ϑ) 7→ q0 + (a+ r)ϑ

represents the catastrophe map. It is obtained as the composition η ◦ γ. The rank
of the tangent mapping

Tχ : T(R×D)→ Q× V : (r, δr, ϑ, δϑ) 7→ (q0 + (a+ r)ϑ, δrϑ+ (a+ r)δϑ)

is 3 if a+r 6= 0 and 1 if a+r = 0. This indicates a singularity at q = q0. Specialists
will refuse to recognize this singularity as a catastrophe since, as we will see in the
next example, it is not stable.

Example 18. We consider a modified version of Example 13. Let

k : V → V

be a linear mapping positve and symmetric in the sense that

〈g(k(δq1)), δq2〉 = 〈g(k(δq2)), δq1〉

for each pair of vectors δq1 and δq2 and

〈g(k(δq)), δq〉 > 0

unless δq = 0. We use the internal energy

Ū : C0 → R : (q, q′) 7→ 1

2
〈g(k(q − q′)), q − q′〉

defined on the holonomic constraint

C0 = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a}.

The critical set

Cr(Ū , η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q = a−2〈g(k(q′ − q)), q′ − q0〉k−1(q′ − q0)}.

is obtained. If (q, q′) ∈ Cr(Ū , η) and q = q0, then

‖q′ − q0‖ = a (15)

and
q′ − q0 = a−2〈g(k(q′ − q0)), q′ − q0〉k−1(q′ − q0). (16)

A configuration q′ in the set

{q′ ∈ Q; ‖q′ − q0‖ = a}

satisfies the equality (16) if q′ − q0 is an eigenvector of k. The number of such
eigenvectors depends on the number of eigenvalues of k. If k has three distinct
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eigenvalues, then the number is 6. For q sufficiently far from q0 there are two
configurations

q′ = q0 ± a‖k(q − q0)‖−1k(q − q0)

satisfying (15) and the equation

k(q − q′) = a−2〈g(k(q − q′)), q′ − q0〉(q′ − q0)

approximated by

k(q − q0) = a−2〈g(k(q − q0)), q′ − q0〉(q′ − q0).

It is clear that the system described in Example 13 and Example 17 is not topo-
logically stable.
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Book Review

Jaroslav Dittrich

Mathematical results in quantum physics. Edited by P. Exner. World Scientific,
Singapore (2011), 274 pages, ISBN 978-981-4350-35-8

In 1980s a group of Czech mathematical physicists worked at Dubna. In 1987,
a distinguished member of the group Pavel Exner together with his collaborator
Petr Šeba organized there a conference on mathematical physics oriented espe-
cially to the Schrödinger operators with contact interactions. After its success
the conference has been repeated and its scope has enlarged. It has moved to
other places and also other groups take part in the organization. The name es-
tablished as “Mathematical Results in Quantum Physics” and the acronym as
QMath. On the 6–10 September 2010, QMath11 took place at Hradec Králové
in the Czech Republic. 130 participant affiliated in 22 countries registered at the
conference.

The Proceedings contain contributions based on the most Plenary Talks and
the Invited Talks at the topical sessions. Abstracts of the other invited as well as
of the contributed talks are included. A DVD with presentations of most of the
talks delivered to the conference is attached for the convenience of the reader. It
contains also some photographs illustrating the atmosphere. The published plenary
talks are the following.

N. Datta: Relative entropies and entanglement monotones, giving the two new
definitions of relative entropies and showing their use in the quantum information
theory. The description of quantum states by density matrix operator on a finite
dimensional Hilbert space is used.

R.L Frank, E.H. Lieb, R. Seiringer, L.E. Thomas: Binding, stability, and non-
binding of multi-polaron systems. Polaron is an object consisting of an electron
moving in a crystal and interacting with the crystal lattice excitations modeled
by a quantized boson field. Electron is assumed localized in a region large with
respect to crystal lattice spacing so it can be assumed as moving in continuum.
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The authors consider a model Hamiltonian for the system of N polarons

H
(N)
U =

N∑
j=1

p2
j +

∫
a†(k)a(k)dk

+

√
α√
2π

N∑
j=1

∫
1

|k|
[a(k) exp(ik · xj) + a†(k) exp(−ik · xj)]dk

+ U
∑

1≤i<j≤N

|xi − xj |−1 .

Here xj are coordinates of the electrons, pj = −i∇j their momenta, a and a†

bosonic field annihilation and creation operators. Constants α and U are parame-
ters of the model, some other constants are simplified by the choice of units. For
the three-dimensional case, the Hamiltonian acts in the Hilbert space L2(R3N )⊗F
where F is the Fock space of the boson field. The infimum E

(N)
U (α) of the H

(N)
U

spectrum is not an eigenvalue. The existence of binding, i.e. the relation between

E
(N)
U (α) and NE

(1)
U (α), is studied for some ranges of parameters. The authors give

up to date review of the known results and their own recent results. Thermody-

namic stability, N−1E
(N)
U (α) ≥ −constant independent of N , holds for U > 2α > 0.

A. Giuliani: Interacting electrons on the honeycomb lattice. As a model of
graphene, two-dimensional one-atom thick graphite layer, a Hubbard model on a
honeycomb lattice is considered. It describes hopping of electrons between lattice
vertices. Interaction with the three-dimensional electromagnetic field is further
introduced. Mainly the properties of ground state are discussed.

M. Lewin: Renormalization of Dirac’s polarized vacuum. A mean field theory
for the electrons in a atom or molecule is developed. The Hamiltonian of the Dirac
equation with the self-consistent Coulomb field generated by the atomic nuclei,
finite number of real electrons and virtual electrons of the Dirac sea is studied. Its
spectral projection to the energies below the Fermi level is looked for. Its existence
can be proved under an ultraviolet cut-off only. Renormalization of the charge is
discussed. The existence of the asymptotic expansion in the renormalized coupling
constant for the renormalized nuclear charge density is shown.

O. Post: Convergence result for thick graphs. The problem of approximation of
the Laplacian spectral properties on a domain Xε containing a graph X0 by that
on the graph itself (with an appropriate boundary conditions at the vertices) is
discussed. The domain is assumed to be in a sense close to the graph, shrinking
to the graph if a small parameter ε approaches zero. Its geometry is explained,
especially the shape of neighborhoods of vertices and edges. The two Laplace-like
non-negative operators Hε and H0 are defined in different Hilbert spaces Hε =
L2(Xε) and H0 = L2(X0). A linear bounded operator J : H0 → Hε is needed
for their comparison. Typically, the range of J contains transversally constant
functions. It is said that Hε → H0 in the generalized norm resolvent sense of order
O(ε1/2) if and only if there exists J such that

J∗J = id0 , ‖(idε − JJ∗)Rε‖ = O(ε1/2) , ‖JR0 −RεJ‖ = O(ε1/2)
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where Rε = (Hε + 1)−1 denotes the resolvent. Some conditions sufficient for the
validity of the last relation are given and the consequences for the spectra are
discussed. In the Dirichlet case, the first eigenvalue of the transverse Laplacian
diverging as ε→ 0 must be subtracted from the operator of course.

B. Schlein: Spectral properties of Wigner matrices. Hermitian Wigner matrices
are finite N × N Hermitian matrices, the entries of which are random variables,
up to the hermiticity independent, with the same distribution law for the diagonal
entries and the real and the imaginary parts of the nondiagonal entries. Wigner
introduced these matrices as a model of heavy nuclei, they are useful as models of
other complex or chaotic systems as well. A review of know spectral properties is
given and the new author’s result on the statistics of the spectrum is formulated.

R. Sims: Lieb-Robinson bounds and quasi-locality for the dynamics of many-
body quantum systems. Roughly speaking, the velocity of disturbances propaga-
tion in a lattice of quantum systems is studied.

M. Aizenman, S. Warzel: Disorder-induced delocalization on tree graphs. Ran-
dom Schrödinger operator on a regular tree graph is shown to have absolutely
continuous spectrum in a suitable regime.

T. Weidl: Semiclassical spectral bounds and beyond. The Schrödinger like
operator

H(V ) = (−∆)l − V (x) , l > 0 , V (x) ≥ 0 , x ∈ Rd

in L2(Rd) is considered and the sum

Sd,γ(V ) =
∑
j

λγj = Tr(H(V ))γ− , γ ≥ 0

is defined where −λj are negative eigenvalues of H(V ). The ranges of validity of
Lieb-Thirring estimates

Sd,γ(V ) ≤ R(d, γ, l)Scld,γ(V )

are discussed where classical phase space average

Scld,γ(V ) =

∫∫
Rd×Rd

(|ξ|2l − V (x))−
dx dξ

(2π)d
.

Possible values of constants R(d, γ, l) are studied. Similar estimate from below
and several generalizations of the quantity Sd,γ(V ), also in a subdomain of Rd, are
investigated.

Among seven topical sessions the one devoted to the honour of Ari Laptev,
the president of European Mathematical Society in 2007-2010, on the occasion
of his sixtieth birthday had a special significance. Contributions on the talks of
R.D. Benguria on spectral problems in spaces of constant curvature, R.L. Frank
and L. Geisinger on the two-term spectral asymptotic for the Dirichlet Laplacian,
B. Helffer on the Ginzburg-Landau functional, V. Dinu, A. Jensen and G. Nenciu
on the resonance decay law, and M. Loss and G. Stolz on the localization for the
random displacement model are included in the proceedings.
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More evolved contributions from the other topical sessions are those of J. Dol-
beault and M.J. Esteban, and J. Lampart, S. Teufel and J. Wachsmuth on the spec-
tral theory, W.D. Roeck, D. Hasler and I. Herbst, and G.A. Hagedorn and A. Joye
on the many-body quantum systems, L.F. Santos and M. Rigol, and S. Nonnen-
macher on the quantum chaos, M. Fia lkowski, A. Bitner and R. Ho lyst, B. Steffen,
A. Seyfried and M. Boltes, and D. Vašata, P. Exner and P. Šeba on the physics of
social systems.

As most of other proceedings, the book can be recommended to the reader who
is looking for a brief, still up to date, information on the above mentioned topics
with the references to detailed proofs.
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