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On the diophantine equation x2 + 5k17l = yn

István Pink, Zsolt Rábai

Abstract. Consider the equation in the title in unknown integers (x, y, k, l, n)
with x ≥ 1, y > 1, n ≥ 3, k ≥ 0, l ≥ 0 and gcd(x, y) = 1. Under the above
conditions we give all solutions of the title equation (see Theorem 1).

1 Introduction
There are many results concerning the generalized Ramanujan-Nagell equation

x2 +D = yn, (1)

where D > 0 is a given integer and x, y, n are positive integer unknowns with
n ≥ 3. Results obtained for general superelliptic equations clearly provide effective
finiteness results for this equation, too (see for example [9], [45], [47], and the
references given there).

The first result concerning the above equation was due to V. A. Lebesque [28]
who proved that there are no solutions for D = 1. Ljunggren [29] solved (1) for
D = 2, and Nagell [39], [40] solved it for D = 3, 4 and 5. In his elegant paper
[21], Cohn gave a fine summary of the earlier results on equation (1). Further, he
developed a method by which he found all solutions of the above equation for 77
positive values of D ≤ 100. For D = 74 and D = 86, equation (1) was solved by
Mignotte and de Weger [35]. By using the theory of Galois representations and
modular forms Bennett and Skinner [8] solved (1) for D = 55 and D = 95. On
combining the theory of linear forms in logarithms with Bennett and Skinner’s
method and with several additional ideas, Bugeaud, Mignotte and Siksek [13] gave
all the solutions of (1) for the remaining 19 values of D ≤ 100.

Let S = {p1, . . . , ps} denote a set of distinct primes and S the set of non-zero
integers composed only of primes from S. Put P := max{p1, . . . , ps} and denote by
Q the product of the primes of S. In recent years, equation (1) has been considered
also in the more general case when D is no longer fixed but D ∈ S with D > 0.
It follows from Theorem 2 of [46] that in (1) n can be bounded from above by an
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2 István Pink, Zsolt Rábai

effectively computable constant depending only on P and s. In [25] an effective
upper bound was derived for n which depends only on Q. Cohn [20] showed that
if D = 22k+1 then equation (1) has solutions only when n = 3 and in this case
there are three families of solutions. The case D = 22k were considered by Arif
and Abu Muriefah [2]. They conjectured that the only solutions are given by
(x, y) = (2k, 22k+1) and (x, y) = (11 · 2k−1, 5 · 22(k−1)/3), with the latter solution
existing only when (k, n) = (3M + 1, 3) for some integer M ≥ 0. Partial results
towards this conjecture were obtained in [2] and [19] and it was finally proved by
Arif and Abu Muriefah [5]. Arif and Abu Muriefah [3] proved that if D = 32k+1

then (1) has exactly one infinite family of solutions. The case D = 32k has been
solved by Luca [31] under the additional hypothesis that x and y are coprime. In
fact in [32] Luca solved completely equation (1) if D = 2a3b and gcd(x, y) = 1.
Abu Muriefah [1] established that equation (1) with D = 52k may have a solution
only if 5 divides x and p does not divide k for any odd prime p dividing n. The
case D = 2a3b5c7d with gcd(x, y) = 1, where a, b, c, d are non-negative integers was
studied by Pink [41]. The cases when D = 72k and D = 2a5b were also considered
by Luca and Togbe [33], [34]. For the case D = 2a5b13c, see Goins, Luca and Togbe
[24], while if D = 5a13b, see [38]. The cases D = 2a11b and D = 5a11b have been
recently considered in [17] and [16], respectively. Let p ≥ 5 be an odd prime with
p 6≡ 7 (mod 8). Arif and Abu Muriefah [6] determined all solutions of the equation
x2 + p2k+1 = yn, where gcd(n, 3h0) = 1 and n ≥ 3. Here h0 denotes the class
number of the field Q(

√
−p). They also obtained partial results [4] if D = p2k,

where p is an odd prime. In the particular case when gcd(x, y) = 1, D = p2, p
prime with 3 ≤ p < 100, Le [27] gave all the solutions of equation (1). The case
D = p2k with 2 ≤ p < 100 prime and gcd(x, y) = 1 was considered by Bérczes and
Pink [10]. If in (1) D = a2 with 3 ≤ a ≤ 501 and a is odd then Tengely [48] solved
completely equation (1) under the assumption (x, y) ∈ N2, gcd(x, y) = 1. The
equation A4 +B2 = Cn for AB 6= 0 and n ≥ 4 was completely solved by Bennett,
Ellenberg and Nathan [7] (see also Ellenberg [23]). For related results concerning
equation (1) see [43], [44] and the references given there. For a survey concerning
equation (1) see [14].

2 Results
Consider the following equation

x2 + 5k17l = yn (2)

in integer unknowns x, y, k, l, n satisfying

x ≥ 1 , y > 1 , n ≥ 3 , k ≥ 0 , l ≥ 0 and gcd(x, y) = 1 . (3)

Theorem 1. Consider equation (2) satisfying (3). Then all solutions of equation (2)
are:

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3), (8, 3, 0, 1, 4)} .

Remark 1. We may assume without loss of generality that in (2) n ≥ 5 prime or
n ∈ {3, 4}. The proof of our Theorem 1 is organized as follows. If n ≥ 5 prime we
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use some properties of Lucas sequences, to derive a sharp upper bound for n (see
also Pink [41], Theorem 2). Then we apply the result of Bilu, Hanrot and Voutier
[11] concerning the existence of primitive prime divisors in Lucas sequences.

If n ∈ {3, 4} there is a general method for giving all solutions of equations of
the form x2 + pkql = yn. Namely the problem is reduced to finding S-integral
points on several elliptic curves, where S = {p, q}. This works well, but in some
cases the computation of the rank and the Mordell-Weil group becomes very time
consuming so we need another approach. By using the parametrization provided
by Lemma 1 we get several equations of the form

X ± Y = 3u2,

where X, Y are S-units and S = {p, q}. These equations are considered locally
to get a contradiction or are transformed to Ljunggren-type equations. In fact, we
have to give all S-integral points on the resulting Ljunggren-type curves. Then,
using MAGMA we solve completely the equations under consideration.

3 Auxiliary results
Let S = {p1, . . . , ps} be a set of distinct primes and denote by S the set of non-zero
integers composed only of primes from S. Equation (2) is a special case of an
equation of the type

X2 +D = Y n, (4)

where

gcd(X,Y ) = 1 (5)

and

D ∈ S , D > 0 , X ≥ 1 , Y > 1 , n ≥ 3 . (6)

The next lemma provides a parametrization for the solutions of equation (4).

Lemma 1. Suppose that equation (4) has a solution under the assumptions (5)
and (6) with n ≥ 3 prime. Denote by d > 0 the square-free part of D = dc2 and
let h be the class number of the field Q(

√
−d). Then equation (5) has a solution

with d 6≡ 7 (mod 8) in one of the following cases:

(a) there exist u, v ∈ Z such that x+ c
√
−d = (u+ v

√
−d)n and y = u2 + dv2.

(b) d ≡ 3 (mod 8) and there exist U, V ∈ Z with U ≡ V ≡ 1 (mod 2) such that

x+ c
√
−d =

(
U+V

√
−d

2

)3

and y = U2+dV 2

4 .

(c) n = 3 if D = 3u2 ± 8 or if D = 3u2 ± 1 for some u ∈ Z.

(d) n = 5 if D ∈ {19, 341}.

(e) p | h.

Proof. This is a theorem of Cohn [22]. �
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Recall that a Lucas pair is a pair (α, β) of algebraic integers such that α+β and
αβ are non-zero coprime rational integers and α/β is not a root of unity. Given a
Lucas pair (α, β) one defines the corresponding sequence of Lucas numbers by

Ln =
αn − βn

α− β
, (n = 0, 1, 2, . . . ) .

A prime number p is called a primitive divisor of Ln if p divides Ln but does not
divide (α− β)2L1 · · ·Ln−1.

The next lemma gives a necessary condition for an odd prime p to be a primitive
prime divisor of the n-th term of a Lucas sequence if n is an odd prime. Namely
we have the following.

Lemma 2. Let Ln = αn−βn
α−β be a Lucas sequence and suppose that n is an odd

prime. Further, let A = (α − β)2. If p is a primitive prime divisor of Ln then

n | p−
(
A
p

)
, where

(
·
p

)
denotes the Legendre symbol with respect to the prime p.

Proof. See Carmichael [18]. �

The next lemma is a deep result of Bilu, Hanrot and Voutier [11] concerning
the existence of primitive prime divisors in a Lucas sequence.

Lemma 3. Let Ln = Ln(α, β) be a Lucas sequence. If n ≥ 5 is a prime then Ln has
a primitive prime divisor except for finitely many pairs (α, β) which are explicitly
determined in Table 1 of [11].

Proof. This follows from Theorem 1.4 of [11] and Theorem 1 of [49]. �

The following lemma of Holzer gives a criterium for the existence of solutions
of ternary quadratic equations.

Lemma 4. Let a, b, c be coprime integers, and consider the equation

ax2 + by2 + cz2 = 0 (7)

where x, y, z are unknown integers. If there is a non-trivial solution for (7), then
there is one satisfying

|x| ≤
√
|bc| , |y| ≤

√
|ac| , |z| ≤

√
|ab| .

Proof. See [37]. �

4 Proof of the Theorem
We introduce some notations which will be used in the course of the proof of our
Theorem. Consider equation (2) satisfying the assumptions (3). Denote by d > 0
the square-free part of 5k17l that is 5k17l = d(5a17b)2 where d ∈ {1, 5, 17, 85}
and a, b ∈ Z≥0. Further, let K be the imaginary quadratic field K = Q(

√
−d)

and denote by h the class number of K. As was mentioned in Remark 1, we have
to distinguish essentially three cases without loss of generality. Namely, we may
assume that in equation (2) n ≥ 5 prime or n ∈ {3, 4}.
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Case 1: n ≥ 5 prime. Suppose first that (2) holds satisfying (3) with n ≥ 5 prime.
If in (2) y > 1 is even we obviously have that x is odd. Since for any odd integer t
we have t2 ≡ 1 (mod 8) we get that 1 + d ≡ 0 (mod 8) by reducing (2) modulo 8.
This leads to d ≡ 7 (mod 8) for d ∈ {1, 5, 17, 85} which is clearly a contradiction.
Hence in what follows we may assume that in (2) y > 1 is odd (and hence x ≥ 1
is even). Since for d ∈ {1, 5, 17, 85} the class number of the field K = Q(

√
−d) is

1 or 2m, (m ≥ 1) we get by Lemma 1 that equation (2) can have a solution under
assumption (3) with n ≥ 5 prime only in the cases (a) and (d). Since k ≥ 1 and
l ≥ 1 we see that in (2) D = 19 cannot occur. Further, if D = 341 = 11 · 31 then
since D = 5k · 17l this choice for D is impossible, too. Hence equation (2) can
have a solution only in case (a) of Lemma 1. Namely, using the parametrization
provided by Lemma 1 and taking complex conjugation, we get

(x+ 5a17b
√
−d) = (u+ v

√
−d)n and (x− 5a17b

√
−d) = (u− v

√
−d)n (8)

for some u, v ∈ Z. Further, we also have y = u2 +dv2. By (9) we see that u | x and
since y > 1 is odd and gcd(x, y) = 1 we get that gcd(2u, y) = 1. Let α = u+v

√
−d

and β = u−v
√
−d. Then gcd(αβ, α+β) = gcd(y, 2u) = 1. If α/β is a root of unity

then since n ≥ 5 is prime we have α/β ∈ {±1,±i} if d = 1. This leads to u = 0 or
u = ±v. Now u = 0 yields x = 0 which is a contradiction by (4). If u = ±v then
2 | y = u2 +v2 which contradicts the fact that y is odd. If d ∈ {5, 17, 85}, then α/β
is a root of unity if α/β ∈ {±1}, which leads to either u = 1, v = 0 or u = 0, v = 1.
If u = 1, v = 0, then we get a contradiction with y ≥ 3. If u = 0, v = 1, then y = d
holds, which leads to a contradiction with gcd(x, y) = 1. Thus

Ln :=
(u+ v

√
−d)n − (u− v

√
−d)n

2v
√
−d

(9)

is a Lucas sequence.
Further, by (9) we have

Ln =
5a17b

v

for some non-negative integers a, b. By Lemma 3 we get that Ln has a primitive
divisor for n ≥ 5 prime. Also the only prime divisors of Ln can be 5 or 17. By
Lemma 2 we get that if p is a primitive divisor of Ln, then p ≡ ±1 (mod n), so
n | p± 1 holds. Since p ∈ {5, 17}, we have that one of the following cases holds:

n | 4 = 22 , n | 6 = 2 · 3 , n | 16 = 24 , n | 18 = 2 · 32

Since n ≥ 5 we get a contradiction for all cases, which implies that (2) does not
have a solution for n ≥ 5.

Case 2: n = 3. At first, we point out that the usual method concerning the search
for S-integral points on certain elliptic curves proves to be time consuming in this
case, so we show a different approach.

By Lemma 1, we see that

x+ 5a17b
√
−d = (u+ v

√
−d)3 (10)
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holds, where d ∈ {1, 5, 17, 85} and u, v ∈ Z. After expanding the right handside of
equation (10), and comparing the imaginary parts, we get that

5a17b = v(3u2 − dv2) . (11)

In (11) gcd(v, 3u2 − dv2) = 1 holds, since otherwise we would get gcd(u, v) 6= 1,
which implies gcd(x, y) 6= 1, which is clearly a contradiction. From this, we get the
following type of equations: {

3u2 − dv2 = f

v = g
(12)

where

(f, g) ∈ {(±1,±5a17b), (±5a,±17b), (±17b,±5a), (±5a17b,±1)} .

Since d ∈ {1, 5, 17, 85}, we get a total of 16 cases, we have to deal with. We will
illustrate the method in one of the more interesting cases, all the others can be
done in the same way. Let d = 5, f = ±17b, g = ±5a. From this, we get that

3u2 − 52a+1 = ±17b (13)

holds. Our main goal is to transform this to Ljunggren-type curves. To reduce the
number of curves, and so the time of the computation we write (13) to the form
of Ax2 +By2 +Cz2 = 0. Now using Holzer’s theorem (see Lemma 4) we get, that
(13) has a nontrivial solution if and only if b is odd and 3u2− 52a+1 = −17b holds.
Now we transform this to the following type.

3
( u

172b1

)2

= 5i+1

(
5a1

17b1

)4

− 17j+1 (14)

where i, j ∈ {0, 2}, and a = 4a1 + i+ 1, b = 4b1 + j+ 1. So, the problem is reduced
to finding all the {17}-integral points on quartics of the form of

3Y 2 = 5i+1X4 − 17j+1 , i, j ∈ {0, 2} , where X =
5a2

17b2
and Y =

u

172b2
.

Now, we can use MAGMA to determine all the solutions of the above equations.
Repeating this for all the 16 cases we get that all the solutions of (2) with n = 3
are:

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3)} .

We point out that, in many of the above cases the method used can be combined
with local methods to simplify the computations. AMdemo

Case 3: n = 4. If n = 4 holds, then we can write the following:

y4 − x2 = 5k17l
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which can be factored as

(y2 − x)(y2 + x) = 5k17l. (15)

In (15) gcd(y2 − x, y2 + x) = 1 holds, else we would get a contradiction with
gcd(x, y) = 1. So, we get that {

y2 − x = f

y2 + x = g

where (f, g) ∈ {(1, 5k17l), (5k, 17l), (17l, 5k), (5k17l, 1)}. Now, by adding the first
equation to the second, we get, that

2y2 = f + g

holds. Now using the same method as in the n = 3 case we get that with n = 4 all
the solutions of (2) are

(x, y, k, l, n) ∈ {(8, 3, 0, 1, 4)} .
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[10] A. Bérczes, I. Pink: On the diophantine equation x2 + p2k = yn. Archiv der
Mathematik 91 (2008) 505–517.

[11] Y. Bilu, G. Hanrot, P.M. Voutier: Existence of primitive divisors of Lucas and Lehmer
numbers. With an appendix by M. Mignotte. J. Reine Angew. Math. 539 (2001) 75–122.

[12] Y. Bugeaud: On the diophantine equation x2 − pm = ±yn. Acta Arith. 80 (1997)
213–223.



8 István Pink, Zsolt Rábai
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General theory of Lie derivatives for Lorentz tensors

Lorenzo Fatibene, Mauro Francaviglia

Abstract. We show how the ad hoc prescriptions appearing in 2001 for the
Lie derivative of Lorentz tensors are a direct consequence of the Kosmann
lift defined earlier, in a much more general setting encompassing older re-
sults of Y. Kosmann about Lie derivatives of spinors.

1 Introduction
The geometric theory of Lie derivatives of spinor fields is an old and intriguing
issue that is relevant in many contexts, among which we quote the applications in
Supersymmetry (see [5], [22]) and the problem of separation of variables of Dirac
equation (see [10]). It is as well essential for the understanding of the general
foundations of the theory of spinor fields and, eventually, of General Relativity
as a whole. We stress that despite spinor fields can be endowed with a correct
physical interpretation only in a quantum framework, this quantum field theory is
obtained by quantization procedures from a classical variational problem. Hence
even if a classical field theory describing spinors is not endowed with a direct phys-
ical interpretation its variational issues (field equations and conserved quantities)
are mathematically interesting on their own as well as they have important conse-
quences on the corresponding quantum field theory.

The situation in Minkowski spacetime (as well as on other maximally symmetric
spaces) is pretty well established and it is based on the existence of sufficiently many
Killing vectors ξ. The problem of Lie derivatives arises when one wants to generalize
these arguments to more general spacetimes, i.e. when Killing vectors are less than
enough, or when coupling with gravity, i.e. when the metric background cannot
be regarded as being fixed a priori but it has to be determined dynamically by
field equations. A definition for Lie derivatives of spinors along generic spacetime
vector fields, not necessarily Killing ones, on a general curved spacetime was already
proposed in 1971 by Y. Kosmann (see [16], [17], [18], [19]) by an ad hoc prescription.
In 1996 we and coauthors (see also [12]) provided a geometric framework which

2010 MSC: 14D21, 22E70, 15A66
Key words: Lie derivative of spinors, Kosmann lift, Lorentz objects
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justifies the ad hoc prescription within the general framework of Lie derivatives on
fiber bundles (see also [24], [23] and [2]) in the explicit context of gauge natural
bundles [15] which turn out to be the most appropriate arena for (gauge-covariant)
field theories [6].

The key point is the construction of the (generalized) Kosmann lift (so-called by
us in honour of the original ad hoc prescription) which is induced by any spacetime
frame. This lift is defined on any principal bundle Σ having the special orthogo-
nal group as structure group in any dimension and signature. According to this
prescription a spacetime vector field ξ is uniquely lifted to a bundle vector field ξ̂Σ.

This lift ξ̂Σ on the principal bundle Σ defines in turn the Lie derivative operator
on sections of any fiber bundle associated to Σ, where objects like spinors or spin-
connections are defined as sections. Unfortunately, this Lie derivative is not natural,
in the sense that it does not preserve the commutator unless it is restricted to Killing
vectors only. However, we stress that an advantage of this framework consists in
showing and definitely explaining why there cannot be and in fact there is no
possible natural prescription for the Lie derivative of spinors. As a consequence,
one has to choose whether to restrict artificially to Killing vectors (which is certainly
physically impossible unless under extremely special conditions) or to learn how
to cope with the fact that spinors are non-natural objects. The gauge natural
formalism is a possible escape (see [3]). In any case unless restricting to very special
situation, one has to define Lie derivatives with respect to arbitrary spacetime
vector fields. Furthermore, even in special situations one can a posteriori restrict
the vector field to be Killing one (if any exists) in order to obtain a unifying view
on the matter, in which all Lie derivatives are obtained as a specialization of a
general notion.

The very same framework introduced for spinors provides a suitable arena to
deal with Lorentz tensors in GR. Similar approaches can be found in the literature
(see [27]) as well as more recently (see [21]). In GR there are many objects which are
endowed with specific transformation rules with respect to Lorentz transformations,
even though, of course, in GR these transformations cannot be implemented in
general by a subgroup of the whole group of all diffeomorphisms. Let us mention
e.g. tetrads and spin connections in a Cartan framework, where pointwise Lorentz
transformations act as a gauge group. This framework is also the kinematical
arena to define the self-dual formulation of GR that is the starting point of LQG
approach.

We shall here review the general theory of Lorentz tensors and their Lie deriva-
tive and compare with the direct and ad hoc method based on Killing vectors
appeared in [22]. The key issue consists in recognizing that Lorentz tensors are,
by definition, sections of some bundle associated to a suitable principal bundle
Σ by means of the appropriate tensorial representation of the appropriate special
orthogonal structure group.

2 The Kosmann lift
Let M be a m-dimensional manifold (which will be required to allow global metrics
of signature η = (r, s), with m = r + s). Let us denote by xµ local coordinates
on M , which induce a basis ∂µ of tangent spaces; let L(M) denote the general
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frame bundle of M and set (xµ, V µa ) for fibered coordinates on L(M). We can
define a right-invariant basis for vertical vectors on L(M)

ρµν = V µa
∂

∂V νa

The general frame bundle is natural (see [15]), hence any spacetime vector field
ξ = ξµ∂µ defines a natural lift on L(M)

ξ̂ = ξµ ∂µ + ∂µξ
ν ρµν

We stress that the lift vector field ξ̂ is global whenever ξ is global.
A connection on L(M) is denoted by Γαβµ and it defines a lift

Γ : TM → TL(M) : ξµ∂µ 7→ ξµ
(
∂µ − Γαβµρ

β
α

)
This lift does not in general preserve commutators, unless the connection is flat.

Ordinary tensors are sections of bundles associated to L(M). The connection
Γαβµ induces connections on associated bundles and defines in turn the covariant
derivatives of ordinary tensors.

Example 1. For example, tensors of rank (1, 1) are sections of the bundle T 1
1 (M)

associated to L(M) using the appropriate tensor representations, namely

λ : GL(m)× V → V : (Jµν , t
µ
ν ) 7→ t′µν = Jµα t

α
β J̄

β
ν

where the bar denotes the inverse in GL(n,R).
The connection Γ on L(M) induces on this associated bundle the connection

T 1
1 (Γ) = dxµ ⊗

(
∂µ −

(
Γαγµt

γ
β − Γγβµt

α
γ

) ∂

∂tαβ

)
which in turn defines the standard covariant derivative of such tensors:

∇ξt = Tt(ξ)− T 1
1 (Γ)(ξ) = ξµ

(
dµt

α
β + Γαγµt

γ
β − Γγβµt

α
γ

) ∂

∂tαβ

If a metric g = gµν dx
µ ⊗ dxν is given on M then its Christoffel symbols

define the Levi-Civita connection of the metric. Such a connection is torsionless
(i.e. symmetric in lower indices) and compatible with the metric, i.e. such that
∇µgαβ = 0.

Let now (Σ,M, π,SO(η)) be a principal bundle over the manifold M and let
(xµ, Sab ) be (overdetermined) fibered “coordinates” on the principal bundle Σ. We
can define a right-invariant pointwise basis σab for vertical vectors on Σ by setting

σab = ηd[aρ
d
b] ρdb = Sdc

∂

∂Sbc

where ηab is the canonical diagonal matrix of signature η = (r, s) and square
brackets denote skew-symmetrization over indices.
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A connection on Σ is in the form

ω = dxµ ⊗
(
∂µ − ωabµ σab

)
Also in this case the connection on Σ induces connections on any associated bundle
and there defines covariant derivatives of sections.

A frame is a bundle map e : Σ → L(M) which preserves the right action,
i.e. such

Σ L(M)

M M

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

...................................................................................................................................................... ............
e

.......................................................................................................................................................

.......................................................................................................................................................

Σ L(M)

Σ L(M)

............................................................................................................
.....
.......
.....

RS

............................................................................................................
.....
.......
.....

Ri(S)

...................................................................................................................................................... ............
e

...................................................................................................................................................... ............
e

i.e. e◦RS = Ri(S)◦e, where R denotes the relevant canonical right actions defined on
the principal bundles Σ and L(M) and where i : SO(η)→ GL(m) is the canonical
group inclusion. We stress that on any M which allows global metrics of signature η
the bundle Σ can always be chosen so that there exist global frames; see [7]. Locally
the frame is represented by invertible matrices eµa and it defines a spacetime metric
gµν = eµa ηab e

ν
b which is called the induced metric.

As for the Levi-Civita connection, a frame defines a connection on Σ (called the
spin-connection of the frame) given by

ωabµ = eaα
(
Γαβµe

bβ + dµe
bα
)

(1)

where Γαβµ denote Christoffel symbols of the induced metric. The spin-connection
is compatible with the frame in the sense that

∇µeνa = dµe
ν
a + Γνλµe

λ
a − ωcaµeνc ≡ 0

In general the (natural) lift ξ̂ of a spacetime vector field ξ to L(M) is not adapted
to the image e(Σ) ⊂ L(M) and thence it does not define any vector field on Σ.

With this notation the Kosmann lift of ξ = ξµ∂µ is defined by ξ̂K = ξµ∂µ + ξ̂abσab
(see [4]) where we set:

ξ̂ab = e[a
ν ∇µξνeb]µ − ωabµ ξµ (2)

and where eaµ = ηaceµc and ebν denote the inverse frame matrix.
Let us stress that despite appearing so, the Kosmann lift (2) does not in fact

depend on the connection, but just on the frame and its first derivatives. The same
lift can be written as ξ̂ab = ∇[bξa] − ωabµ ξµ where we set ξa = ξµeaµ since one can
prove that

∇bξa = eaν∇µξνe
µ
b

Another useful equivalent expression for the Kosmann lift is giving the vertical
part of the lift with respect to the spin connection (see [6], pages 288–290), namely

ξ̂ab(V ) := ξ̂ab + ωabµ ξ
µ = e[a

ν ∇µξνeb]µ = ∇[bξa] (3)



General theory of Lie derivatives 15

This last expression is useful since it expresses a manifestly covariant quantity.
We have to stress that the Kosmann lift does not preserve commutators. In

fact if one considers two spacetime vectors ξ and ζ and computes the Kosmann lift
of the commutator [ξ, ζ] one can easily prove that

[ξ, ζ] K̂ = [ξ̂K , ζ̂K ] +
1

2
eaα£ζg

αλ£ξgλβe
bβσab

Thence only if one restricts to Killing vectors (i.e. £ξg = 0) one recovers that the
lift preserves commutators.

3 The Lie Derivative of Lorentz Tensors
Let λ be a representation (of rank (p, q)) of SO(η) over a suitable vector space
V . Let EA be a basis of V so that a point t ∈ V is given by t = tAEA and
λ(J, t) = λAB(J)tB .

Example 2. For example, if V = T 1
1 (Rm) ∼ Rm ⊗Rm with coordinates tab we may

have
λ : SO(η)× V → V : (J, t) 7→ Jac t

c
dJ̄

d
b

the bar denoting now the inverse in SO(η). This is the tensor representation of
rank (1, 1).

Then, by definition, a Lorentz tensor is a section of the bundle Σλ = Σ ×λ V
associated to λ through the representation λ. Fibered coordinates on Σλ are in the
form (xµ, tA) and transition functions of Σ act on Σλ through the representation λ.

If we consider a global infinitesimal generator of automorphisms over Σ (also
called a Lorentz transformation) locally expressed as

Ξ = ξµ(x)∂µ + ξab(x)σab

(which projects over the spacetime vector field ξ = ξµ∂µ) this induces a global
vector field over Σλ locally given by

Ξλ = ξµ(x)∂µ + ξA
∂

∂tA
ξA = ξab∂abλ

A
B(I)tB

Let us remark that this vector field is linear in ξ.

Example 3. For example, if λ is the tensor representation of rank (1, 1) given above,
then the induced vector field is

Ξλ = ξµ∂µ +
(
ξa·c t

c
b − tad ξd·b

) ∂

∂tab

where indices are lowered and raised by ηab.

According to the general framework for Lie derivatives (see [24]) for a section
t : M → Σλ : xµ 7→ (x, tA(x)) of the bundle Σλ with respect to the (infinitesimal)
Lorentz tranformation Ξ, we find

£Ξt = Tt(ξ)− Ξλ ◦ t =
(
ξµdµt

A − ξab∂abλAB(I)tB
) ∂

∂tA
(4)
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Example 4. For example, if λ is the tensor representation of rank (1, 1) given above
the Lie derivative of a section reads as

£Ξt =
(
ξµdµt

a
b − ξa·c tcb + tad ξ

d·
b

) ∂

∂tab
=
(
ξµ∇µtab − (ξ(V ))

a·
c t
c
b + tad (ξ(V ))

d·
b

) ∂

∂tab

where (ξ(V ))
a·
c = ξa·c + ωacµξ

µ denotes the vertical part of Ξ with respect to the
same connection used for the covariant derivative ∇µtab = dµt

a
b + ωacµt

c
b − ωcbµtac .

Let us stress that in spite of its convenient connection-dependent expressions the
Lie derivative does not eventually depend on any connection (as it may seem from
our second expression).

Notice that this definition of Lie derivatives is natural, i.e. it preserves commu-
tators, namely

[£Ξ1
,£Ξ2

]σ = £[Ξ1,Ξ2]σ (5)

Unfortunately, Lorentz tranformations as introduced above have nothing to do
with coordinate transformations (or spacetime diffeomorphisms). They have been
introduced as gauge transformations acting pointwise and completely unrelated to
spacetime diffeomorphisms. Indeed the Lie derivative (4) can be performed with
respect to bundle vector fields Ξ instead of spacetime vector fields and this is
completely counterintuitive if compared with what expected for spacetime objects
like, for example, spinors. These objects are in fact expected to react to spacetime
transformations; on the other hand, on a general spacetime there is nothing like
Lorentz transformations.

We shall hence define Lie derivatives of Lorentz tensors with respect to any
spacetime vector field and then show that in Minkowski spacetime, where Lorentz
trasformations are defined, these reproduce and extend the standard notion. The
price to be paid is loosing naturality like (5) (which will be retained only for Killing
vectors if Killing vectors exist on M).

Let us restrict to vector fields ξ̂K of Σ which are the Kosmann lift of a spacetime
vector field ξ and define the Lie derivative of the Lorentz tensor t with respect to
the spacetime vector field ξ to be

£ξt ≡ £ξ̂K t = (ξµdµt
A − ξ̂ab∂abλAB(I)tB)

∂

∂tA

where ξ̂ab is expressed in terms of the derivatives of ξµ (and the frame) as in (2).

Example 5. For example, for Lorentz tensors of rank (1, 1) we have

£ξt ≡ £ξ̂t =
(
ξµdµt

a
b − ξ̂a·c tcb + tad ξ̂

d·
b

) ∂

∂tab
=

=
(
ξµ∇µtab − (ξ̂(V ))

a·
c t
c
b + tad (ξ̂(V ))

d·
b

) ∂

∂tab
=

=
(
ξµ∇µtab −∇cξa tcb + tad ∇bξd

) ∂

∂tab
=

=
(
∇d
(
ξdtab

)
−∇cξa tcb

) ∂

∂tab
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For a generic Lorentz tensor of any rank, similar terms arise one for each Lorentz
index.

Now since the Kosmann lift on Σ does not preserve commutators these Lie
derivatives are not natural unless one artificially restricts ξ to be a Killing vector
(of course provided M allows Killing vectors!). In fact, one has generically

£[ξ,ζ]t ≡ £[ξ,ζ] K̂ t 6= £[ξ̂K ,ζ̂K ]t = [£ξ̂K ,£ζ̂K ]t ≡ [£ξ,£ζ ]t

Example 6. One can try to specialize this to simple cases in order to make non-
naturality manifest. For example, if one considers a Lorentz vector va and two
spacetime vector fields ξ and ζ one can easily check that

£[ξ,ζ]v
a = [£ξ,£ζ ]v

a +
1

4

(
vαgβρeaσ − vρgβσeaα

)
£ξgρσ£ζgαβ

Let us remark that according to this expression when ξ or ζ are Killing vectors of
the metric g commutators are preserved. Moreover, the extra term does not vanish
in general.

Of course, there are degenerate cases (e.g. setting ξ = ζ) in which the extra
terms vanishes due to coefficients without requiring Killing vectors. However, in
this case also the other terms vanish.

4 Properties of Lie Derivatives of Lorentz Tensors
We shall prove here two important properties of Lie derivatives as defined above
(see, for example, [11], [14], [25], [26] and references quoted therein)

For the Lie derivative of a frame one has

£ξe
a
µ = ξλ∇λeaµ −∇µξλeaλ + (ξ̂(V ))

a
be
b
µ

If we are using, as we can always choose to do, the spin and the Levi-Civita connec-
tions for the relevant covariant derivatives, then ∇λeaµ = 0. By using the Kosmann
lift (3) one easily obtains

£ξe
a
µ = −∇µξλeaλ +∇[bξa]ebµ = −∇µξλeaλ +∇[µξλ]e

aλ = −∇(µξλ)e
aλ =

=
1

2
£ξgµλe

aλ

This expression holds true for any spacetime vector ξ and of course it proves that
the Lie derivative vanishes along Killing vectors.

Let us stress that this last expression, obtained here from the general prescrip-
tion for the Lie derivative of Lorentz tensors, is trivial in view of the expression on
the induced metric as a function of the frame; in fact,

1

2
£ξgµλe

aλ = £ξe
c
µecλe

aλ = £ξe
a
µ

For the second property we wish to prove let us first notice that the frame
induces an isomorphism between TM (on which one considers (xµ, vµ) as fibered
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coordinates) and the bundle of Lorentz vectors Σ ×λ Rm (on which (xµ, va) are
considered as fibered coordinates) by

Φ : TM → Σ×λ Rm : vµ 7→ va = eaµv
µ

We can thence express the Lie derivative of a section v of Σ×λ Rm (i.e. a Lorentz
vector) in terms of the Lie derivative of the corresponding section of TM . In fact
one has:

£ξv
a = ξµ∇µva − (ξ̂(V ))

a
bv
b = ξb∇bva −∇[bξa]vb = £ξv

µeaµ +∇(bξa)vb =

= £ξv
µeaµ −

1

2
eaµ£ξg

µνebνvb = £ξv
µeaµ + £ξe

a
µv
µ (6)

Let us stress that these two properties hold true for any spacetime vector field ξ
and they specialize to the ones discussed in [22] for Killing vectors.

The origin and meaning of the Lie derivative (6) can be easily understood:
one has to take into account that if one drags ξa along a vector field the overall
change of the object receives a contribution from how the vector changes but also
a contribution from how the frame changes.

Similar properties can be easily found for Lorentz tensors of any rank since the
frame transforms ordinary tensors into Lorentz tensors; e.g. one has

Φ : tµν 7→ tab = eaαt
α
βe
β
b

5 Transformation of Lorentz Vectors in Minkowski Spacetime
Let us consider Minkowski spacetime M = R4 with the metric η; being it con-
tractible any bundle over it is trivial. As a consequence we are forced to choose
Σ = R4 × SO(3, 1). Since M ≡ R4 is parallelizable, its frame bundle is trivial,
i.e. L(R4) = R4 ×GL(4). Let us fix Cartesian coordinates xµ on M ≡ R4 and let
us fix a frame ea = δµa∂µ; such a frame induces the Minkowski metric ηµν .

In such notation the Levi-Civita connection vanishes, Γαβµ = 0 and the spin

connection too, ωabµ = 0; the Kosman lift hence specializes to

ξ̂ab(V ) = e[bβ∇βξαea]
α

Let us now consider a vector field ξ the flow which is made of Lorentz coordinate
tranformations x′µ = Λµνx

ν ; since ξ is of course a Killing vector, then the Lie
derivative of a Lorentz vector is

£ξv
a = £ξv

µeaµ =
(
ξα∂αv

µ − vαΛ̇µα

)
δaµ (7)

Such a Lie derivative corresponds to the trasformation rules

v′a = Λabv
b (8)

which is exactly as a vector is expected to trasform under a Lorentz coordinate
transformation.
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A similar result can be easily extended to covectors, tensors and, with slight
though obvious changes, to spinors. When ξ is not Killing, however, the Lie deriva-
tive may not be the infinitesimal counterpart of a finite transformation rule as in (7)
and (8); in this case the traditional interpretation of Lie derivatives as a measure
of changing of objects dragged along spacetime vector fields fails to hold true. One
should however wonder whether such an interpretation is really fundamental to
many common uses of Lie derivatives. Our answer is in the negative as one can
argue by a detailed analysis of physical quantities containing Lie derivatives.

Lie derivatives appear, e.g., in Noether theorem; in this case they appear natu-
rally as a by-product of variational techniques. Here Noether currents turn out to
be expressed in terms of Lie derivatives expressed as in equation (4). The interpre-
tation of such Lie derivatives as measuring infinitesimal changes along symmetry
transformations is important since, based on that, one can relate Noether currents
to symmetries.

Now the essential point is that there is no reason to expect spacetime vector
fields to be the most general (infinitesimal) symmetries in Physics. Fundamentally
speaking, symmetries encode the observers’ freedom to set their conventions to
describe Physical world. While coordinates are certainly necessary conventions for
any observer (and hence general covariance principle is a fundamental symmetry
that should be expected in any physical system), special systems might need further
conventions which might result in independent class of symmetries (as it happens
in gauge theories, e.g. electromagnetism).

Of course, since these further conventions are independent of spacetime coor-
dinate fixing, gauge transformations cannot be expressed as spacetime diffeomor-
phisms, but they are expressed as field transformations. As such they are vector
fields on the configuration bundle, not on spacetime. It is hence reasonable and im-
portant to have a notion of Lie derivative of fields along bundle vectors, as in (4).
It is only in GR where symmetries come from spacetime vector fields that one
should expect Lie derivatives along spacetime vector fields and their interpretation
as quantities related to the spacetime geometry.

This more general situation, i.e. when the quantities entering Noether theorem
are interpreted as Lie derivatives of fields along bundle vectors, can be simply
discussed by considering a very well-known physical situation, i.e. covariant electro-
magnetism.

The electromagnetic field Fµν = ∂µAν − ∂νAµ is the curvature of a field Aµ
which is usually known as a quadripotential and, as it is well known, is a connection
on a principal bundle P for the group U(1). This is the standard gauge approach
to electromagnetism. The Maxwell Lagrangian is

LM = −1

4

√
gFµνF

µ
·
ν
· (9)

By variation one obtains

δLM = −1

2

√
gHαβδg

αβ +∇µ (
√
gFµν) δAν −∇µ (

√
gFµνδAν) (10)

where we set Hαβ = FµαF
µ
· β − 1

4FρσF
ρ
·
σ
· gµν for the standard energy-momentum

tensor of the electromagnetic field. The second term in (10) produces Maxwell



20 Lorenzo Fatibene, Mauro Francaviglia

equations, namely ∇µ
(√
gFµν

)
= 0. The third term relates to conservation laws

(see [6]).
The Lagrangian (9) is covariant with respect to the infinitesimal transformations

Ξ = ξµ
∂

∂xµ
+ 2∂αξ

µgαν
∂

∂gµν
+ (∂µξ − ∂µξνAν)

∂

∂Aµ

which correspond to 1-parameter families of gauge transformations

x′µ = x′µ(ε)(x)

g′µν =
∂x′µ(ε)

∂x′α
gαβ

∂x′ν(ε)

∂x′β

A′µ =
∂xν

∂x′µ(ε)

(
Aν + ∂να(ε)

)
Here the generator ξµ is related to the coordinate change x′µ = x′µ(ε)(x) while the

generator ξ is related to the gauge transformation α(ε).
Let us remark that Ξ is a vector field on the configuration bundle (that is a

manifold with coordinates (xµ, gµν , Aµ)), not on spacetime. In a general situation
(namely unless the principal bundle P is assumed to be trivial) there is no way of
either lifting a spacetime vector field to the configuration bundle or globally setting
ξ = 0 so to split the vector Ξ into a spacetime vector and a “gauge generator”. In a
physical language one usually says that the condition ξ = 0 is not gauge covariant
and hence local, unless there exist global gauges. (By the way, also when global
gauges exist, the condition is not gauge covariant and hence unphysical, from a
fundamental viewpoint.)

The Lie derivative of the field Aµ along the symmetry generator Ξ is in this
case (see (4))

£ΞAµ = ξλFλµ −∇µ
(
ξ − ξλAλ

)
Noether theorem in this case shows (see again [6]) on-shell conservation of the

following Noether current

Eµ = −√g (Fµν£ΞAν + ξµLM )

In the special case when ξµ = 0 one has

Eµ =
√
g (Fµν∇µξ) = ∇µ (

√
gFµνξ)−∇µ (

√
gFµν) ξ

The second term vanishes on-shell, thus one obtains

Eµ = ∇µ (
√
gFµνξ)

The corresponding conserved quantity is

Q(ξ) =
1

2

∫
∂Ω

√
gFµνξ dsµν



General theory of Lie derivatives 21

where dsµν is the area element on the boundary of the 3-region Ω of spacetime.
This is the electric charge defined à la Gauss.

This example shows clearly what happens in general when gauge transforma-
tions are allowed and symmetry generators live at bundle level: also in this case
Noether theorem involves Lie derivatives, though in the generalized sense intro-
duced above. In this case we are not dealing with Lorentz objects so one cannot
introduce Kosmann lift (or similar lifts) and reduce everything to spacetime vector
fields.

6 Applications
In order to provide an example of concrete aplication of our formalism here intro-
duced in action we shall here consider the application to the so called Holst’s action
principle (see [13]) which is used as an equivalent formulation of GR suitable for
developing LQG through the use of the Barbero-Immirzi connection (see [1], [20],
[8], [9] as well as references quoted therein).

Let us first consider tetrad-affine formulation of GR: the fundamental fields are
a Lorentz connection Γabµ and a vielbein ea = eaµ dx

µ. The connection defines the

curvature form Rab = 1
2R

ab
µνdx

µ∧dxν . Let us also set e = det |eaµ|, Raµ = Rabµνe
ν
b

and R = Rabµνe
µ
ae
ν
b ; here eνb denotes the inverse frame matrix of ebν . The frame

also defines a metric gµν = eaµηabe
b
ν which in turn defines its Levi-Civita spacetime

connection Γαβµ.
On a spacetime of dimension 4, let us consider the Lagrangian

LtA = Rab ∧ ec ∧ ed εabcd

By variation we obtain

δLtA = −2eeσa

(
Raµ −

1

2
Reaµ

)
eµd δe

d
µ − εabcd∇µ

(
ecρe

d
σ

)
εµνρσδΓabµ +

+ εabcd∇µ
(
ecρe

d
σδΓ

ab
µ

)
εµνρσ

Thus one obtains field equations
Raµ −

1

2
Reaµ = 0

∇[µ

(
e[c
ρ e

d]
σ]

)
= 0

The second field equation forces the connection to be the connection induced by
the frame Γabµ = ωabµ (see eq. (1)); then the first equation forces the induced metric
to obey Einstein equations.

This field theory is dynamically equivalent to standard GR, in the sense that
it obeys equivalent field equations. However, the theory is in fact richer in its
physical interpretation, since the use of different variables and action principles
generate larger symmetry and extra conservation laws. In fact, this theory has a
bigger symmetry group being generally covariant and Lorentz covariant.

Noether theorem implies then conservation of the current

Eµ = 4eeµae
ν
b£ΞΓabν − ξµLtA
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along any Lorentz gauge generator Ξ = ξµ∂µ + ξabσab. The Lie derivative of a
connection is given by

£ΞΓabν = ξλRabλν +∇ν ξ̂ab

where we set ξ̂ab = ξab + ξλΓabλ .

Hence one obtains

Eµ = 4eeµa

(
Raµ −

1

2
Reaµ

)
ξλ − 4∇ν (eeµae

ν
b ) ξ̂ab + 4∇ν

(
eeµae

ν
b ξ̂
ab
)

The first and second terms vanish on-shell; hence one obtains

Eµ = 4∇ν
(
eeµae

ν
b ξ̂
ab
)

(11)

Let us stress that this current depends only on the Lorentz generator ξ̂ab.

Here is the issue with physical interpretation: we have two equivalent formu-
lations of Einstein GR where Noether currents in one case depend on spacetime
vector fields while in tetrad-affine formulation Noether currents depend on Lorentz
generator which a priori has nothing to do with spacetime transformations. Let
us stress of course that unless the spacetime is Minkowski, there is no class of
spacetime diffeomorphisms representing Lorentz transformations.

Considering the dynamical equivalence at level of field equations and solution
space, one would like this equivalence to be extended at level of conservation laws.
Moreover, some of the conserved quantities in standard GR are known to be re-
lated to physical quantities such as energy, momentum and angular momentum,
while one would wish to be able to identify the corresponding quantities in the
second formulation. Kosmann lift is in fact essential to relate Lorentz generators
to spacetime diffeomorphisms and the corresponding conservation laws.

The Noether current (11) can be restricted setting Ξ = ξ̂K so that one obtains

EµtA = 4∇ν (e∇µξν)

which corresponds to the standard conserved quantity associated to spacetime dif-
feomorphisms in GR written in terms of Komar superpotential. This (and only
this) restores the equivalence between standard GR and tetrad-affine formulation
at level of conservation laws.

As a further example let us consider the covariant Lagrangian:

LH = LtA + βRab ∧ ea ∧ eb

which is known as Holst’s Lagrangian.

By variations one obtains equations
eµd

(
Raµ −

1

2
Reaµ

)
eσa − βRdρµνεµνρσ = 0

∇[µ

(
e[c
ρ e

d]
σ]

)
= 0
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The second equation still imposes Γabµ = ωabµ ; this in turns implies Ra[ρµν] = 0
(first Bianchi identity) and hence Einstein equations. This shows how also Holst’s
Lagrangian provides an equivalent formulation of standard GR.

It is interesting to check if also in this case the equivalence is preserved also at
level of conservation laws. The Noether current is

EµH = 4eeµae
ν
b£ΞΓabν + eeµc e

ν
dε
cd·
a
·
b£ΞΓabν − ξµLH

As in the previous case this can be recasted modulo terms vanishing on-shell as
follows

EµH − E
µ
tA = ∇ν

(
eeµc e

ν
dε
cd·
a
·
bξ̂
ab
)

Again this has nothing to do with spacetimes symmetries and in general would
affect conserved quantities. When Kosmann lift is again inserted into these con-
servation laws one obtains

EµH − E
µ
tA = ∇ν (∇ρξσεµνρσ)

which vanishes being the divergence of a divergence. Hence once again the cor-
respondence at level of conservation laws is preserved when the Kosmann lift is
used.

7 Conclusion
We presented a framework to deal with Lorentz objects and showed how it applies
to tetrad-affine formulation and Holst’s formulation of GR. In particular we showed
that equivalence can be extended at the level of conservation laws if one introduces
the Kosmann lift which establishes a correspondence among symmetry generators
in different formulations.

One could argue whether the Lie derivatives defined above could be physically
interpreted in a correct way. Of course, one could always restrict to situations in
which enough Killing vectors exist (or even to Minkowski spacetime (R4, η)); in
these cases the standard results are obtained in particular.

However, in a generic spacetime (M, g) one has no Killing vectors and at the end
one has to decide whether a physical interpretation of these objects along generic
spacetime vector field makes any sense.

The framerwork we introduced for Lorentz tensors provides a rigorous way of
investigating formal properties which in our opinion are the only necessary basis
for a physical intepretation of Lie derivatives of Lorentz tensors themselves.
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Paris, série A 262 (1966) 394–397.
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Several examples of nonholonomic mechanical systems

Martin Swaczyna

Abstract. A unified geometric approach to nonholonomic constrained me-
chanical systems is applied to several concrete problems from the classical
mechanics of particles and rigid bodies. In every of these examples the given
constraint conditions are analysed, a corresponding constraint submanifold
in the phase space is considered, the corresponding constrained mechanical
system is modelled on the constraint submanifold, the reduced equations
of motion of this system (i.e. equations of motion defined on the constraint
submanifold) are presented. Finally, solvability of these equations is dis-
cussed and general solutions in explicit form are found.

1 Introduction
In some mechanical and engineering problems one encounters different kinds of
additional conditions, constraining and restricting motions of mechanical systems.
Such conditions are called constraints. Constraints may be given by algebraic equa-
tions connecting coordinates (holonomic or geometric constraints), or by differen-
tial equations, which restrict coordinates and components of velocities (kinematic
constraints). Nonintegrable kinematic constraints, which cannot be reduced to
holonomic ones, are called nonholonomic constraints.

Classical theoretical mechanics deals with nonholonomic constraints only mar-
ginally, mostly in a form of short remarks about the existence of such constraints,
or mentioning some problems where simple nonholonomic constraints occur. Only
rarely, for example, in textbook [2] one can find sections where nonholonomic con-
straints are discussed in more detail and a few examples of simple mechanical
systems subjected to a nonholonomic constraint are solved. However, these books
deal only with semiholonomic or linear nonholonomic constraints (constraints lin-
ear in components of velocities), arising for example in the connection with rolling

2010 MSC: 70G45, 70G75, 37J60, 70F25, 70H30
Key words: Lagrangian system, constraints, nonholonomic constraints, constraint sub-

manifold, canonical distribution, nonholonomic constraint structure, nonholonomic constrained
system, reduced equations of motion (without Lagrange multipliers), Chetaev equations of motion
(with Lagrange multipliers)
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of rigid bodies. Discussion is usually concluded by a remark that more compli-
cated nonholonomic constraints (when the dependence on velocities is nonlinear)
are not mastered by means of classical methods and motion equations of mechanical
systems subjected to such constraints are not known.

A significant contribution to the study of problems of nonholonomic mechanics
represents an extensive monograph [22] which contains various application prob-
lems, mostly problems concerning rolling of rigid bodies on a horizontal plane or
on an absolutely rough surface where typically nonholonomic constraints linear in
velocities occur. This monograph serves as a classical collection of solved prob-
lems of nonholonomic dynamics. However, it does not give a unified and consistent
approach applicable to arbitrary nonholonomic mechanical systems. Equations of
motion of the considered nonholonomic systems are mostly derived on the basis
of a heuristic analogy with holonomic systems. On the other hand their solutions
agree with experience and experiments.

During the last 20 years the problems of nonholonomic mechanics have been
intensively studied in many papers, e.g. [3], [4], [5], [7], [8], [9], [10], [13], [14], [20],
[21], [23] and there have been proposed several alternative geometric concepts,
appropriate in different situations, applicable to Lagrangian systems in tangent
bundles or in jet bundles. Equations of motion of nonholonomic systems are in-
vestigated also in the monographs [1], [6], where a number of concrete application
problems is discussed and numerical aspects of solutions are presented. However, it
should be stressed, that almost all the work on nonholonomic systems is concerned
with the case of constraints linear in components of velocities.

A geometric theory covering general nonholonomic systems has been proposed
and developed by Krupková in [14], [15], [16], [17] (see also [18] for review).
Her approach is suitable for study of all kinds of mechanical systems – with-
out restricting to Lagrangian, time-independent, or regular ones, and is appli-
cable to arbitrary constraints (holonomic, semiholonomic, linear, nonlinear or gen-
eral nonholonomic). The theory gives motion equations for constrained mechan-
ical systems in a form of reduced equations defined on the constraint submani-
fold (without Lagrange multipliers), provides a nonholonomic variational principle
[17], [24] from which one can obtain reduced equations as corresponding “non-
holonomic Euler-Lagrange equations”, enables one to study constraint symmetries
and the corresponding conservation laws, etc. In particular, a new treatment of
concrete examples of nonholonomic systems is at hand, suitable for either sys-
tems with linear constraints [11], [12], [25], [26], [27], or even with nonlinear
constraints [19], [25] and providing new methods for explicit studies and solu-
tions.

The aim of this paper is to apply Krupková’s geometric theory of nonholonomic
mechanical systems to study concrete problems in both linear and nonlinear non-
holonomic dynamics. In all the cases we analyse the given constraint conditions,
consider the corresponding constraint submanifold in the phase space, we construct
the corresponding constrained mechanical system on the constraint submanifold,
present the reduced equations of motion of this system, and finally discuss the solv-
ability of these equations. In most cases we are able to obtain general solutions in
an explicit form. It turns out that reduced equations indeed represent an effective
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method for solving concrete mechanical and engineering problems of nonholonomic
mechanics.

The paper contains complete and comprehensive solutions of seven problems
from the classical mechanics of particles and rigid bodies where nonholonomic con-
straints appear. Three of them (5.1, 5.4 and 5.5) concern dynamics of a free particle
or a particle in a homogeneous gravitational field subject to a nonlinear nonholo-
nomic constraint. We find general solutions in an explicit form, with respect to
appropriate initial conditions. Problem 5.2 (a dog pursues a man) is formulated
in [2]; we study it as a mechanical system modelled on a nonholonomic subman-
ifold and provide the reduced equation of motion. A solution in an explicit form
is found by eliminating the time parameter from Chetaev equations. The next
problem (5.3) is then a generalization of the previous one. The last two problems
belong to the mechanics of rigid bodies (a disc rolling without sliding on a horizon-
tal plane and a ball rolling without sliding on a horizontal plane) and as examples
of nonholonomic systems are discussed in the monograph [22]. We study them in
a different way, again using the geometric model leading to reduced equations. In
particular, compared with [22] where a solution of the last problem 5.7 for the case
of constant angular velocity of rotation of the horizontal plane is given, dealing
with reduced equations we provide a procedure of solution applicable in the case
of constant angular velocity as well as of nonconstant angular velocity.

2 Lagrangian systems on fibered manifolds
Throughout the paper we consider a fibered manifold π : Y → X with a one-
dimensional base space X and (m+ 1)-dimensional total space Y. We use jet pro-
longations π1 : J1Y → X and π2 : J2Y → X and jet projections π1,0 : J1Y → Y
and π2,1 : J2Y → J1Y. Configuration space at a fixed time is represented by a
fiber of the fibered manifold π and a corresponding phase space is then a fiber of
the fibered manifold π1. Local fibered coordinates on Y are denoted by (t, qσ),
where 1 ≤ σ ≤ m. The associated coordinates on J1Y and J2Y are denoted by
(t, qσ, q̇σ) and (t, qσ, q̇σ, q̈σ), respectively. In calculations we use either a canon-
ical basis of one forms on J1Y , (dt, dqσ, dq̇σ), or a basis adapted to the contact
structure, (dt, ωσ, dq̇σ), where

ωσ = dqσ − q̇σ dt, 1 ≤ σ ≤ m.

Whenever possible, the summation convention is used. If f(t, qσ, q̇σ) is a function
defined on an open set of J1Y we write

df

dt
=
∂f

∂t
+

∂f

∂qσ
q̇σ +

∂f

∂q̇σ
q̈σ,

d̄f

d̄t
=
∂f

∂t
+

∂f

∂qσ
q̇σ.

A (local) section δ of π1 is called holonomic if δ = J1γ for a section γ of π.
A vector field ξ defined on J1Y is called π1-vertical (or simply vertical) if

Tπ1 · ξ = 0, where T is the tangent functor. Similarly, a vector field ξ is called
π1,0-vertical if Tπ1,0 · ξ = 0.

A differential form ρ is called contact if J1γ∗ρ = 0 for every section γ of π. A
differential form ρ is called horizontal if iξρ = 0 for every vertical vector field ξ. We
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denote by h the operator assigning to ρ its horizontal part. Every 2-form on J1Y is
contact and admits a unique decomposition π∗2,1ρ = ρ1 +ρ2, where ρ1 is a 1-contact
form on J2Y (i.e. for every vertical vector field ξ, iξρ1 is a horizontal form), and ρ2

is a 2-contact form (i.e. for every vertical vector field ξ, iξρ2 is a 1-contact form).
We denote by p1, and p2 operators assigning to ρ its 1-contact and 2-contact part,
respectively.

By a distribution on J1Y we shall mean a mapping D assigning to every point
z ∈ J1Y a vector subspace D(z) of the vector space TzJ

1Y . A distribution can
be spanned by a system of (local) vector fields. If D is a distribution, we denote
by D0 its annihilator, i.e. the set of all 1-forms ηκ on J1Y such that iξιηκ = 0
for every vector field ξι belonging to D. In this sense, every distribution can be
defined by a system of (local) 1-forms. For a distributions of a constant rank,
i.e. that dimD(z) does not depend on z, the description by means of vector fields
is completely equivalent with that by means of 1-forms. Recall that a section δ of
π1 is called an integral section of D if δ∗η = 0 for every 1-form η belonging to D0.

If λ is a Lagrangian on J1Y , we denote by θλ its Lepage equivalent or Cartan
form and Eλ its Euler-Lagrange form, respectively. Recall that Eλ = p1 dθλ. In
fibered coordinates where λ = L(t, qσ, q̇σ) dt, we have

θλ = Ldt+
∂L

∂q̇σ
ωσ, (1)

and Eλ = Eσ(L)ωσ ∧ dt, where the components

Eσ(L) =
∂L

∂qσ
− d

dt

∂L

∂q̇σ
(2)

are the Euler-Lagrange expressions. Since the functions Eσ are affine in the second
derivatives we write

Eσ = Aσ +Bσν q̈
ν ,

where

Aσ =
∂L

∂qσ
− ∂2L

∂t∂q̇σ
− ∂2L

∂qν∂q̇σ
q̇ν , Bσν = − ∂2L

∂q̇σ∂q̇ν
. (3)

A section γ of π is called a path of the Euler-Lagrange form Eλ if

Eλ ◦ J2γ = 0. (4)

In fibered coordinates this equation represents a system of m second-order ordinary
differential equations

Aσ

(
t, γν ,

dγν

dt

)
+Bσρ

(
t, γν ,

dγν

dt

)d2γρ

dt2
= 0 (5)

for components γν(t) of a section γ, where 1 ≤ ν ≤ m. These equations are called
Euler-Lagrange equations or motion equations and their solutions are called paths.

Euler-Lagrange equations (4) or (5) can be written either in an intrinsic form
as follows

J1γ∗iξdθλ = 0,



Several examples of nonholonomic mechanical systems 31

where ξ runs over all π1-vertical vector fields on J1Y , or equivalently in the form

J1γ∗iξα = 0,

where α is any 2-form defined on an open subset W ⊂ J1Y, such that p1α = Eλ.
Apparently α = dθλ + F , where F runs over π1,0-horizontal 2-contact 2-forms. In
fibered coordinates we have F = Fσν ω

σ ∧ ων , where Fσν(t, qρ, q̇ρ) are arbitrary
functions. Recall from [14] that the family of all such (local) 2-forms:

α = dθλ + F = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + F

is called a first order Lagrangian system, and is denoted by [α].
It is important to note that motion equations (5) of a Lagrangian system [α]

need not be affine with respect to the second derivatives. If they posses this prop-
erty, i.e. if

det(Bσρ) = det

(
∂2L

∂q̇σ∂q̇ν

)
6= 0,

then the Lagrangian system [α] is called regular.

3 Constraints
From the physical point of view, constraints on a mechanical system are conditions
restricting possible geometrical positions of the mechanical system or limiting its
motion. We distinguish between geometric and kinematic constraints.

Constraints are called geometric or holonomic if they are expressed by equations
of the form

f i(t, q1, . . . , qm) = 0, 1 ≤ i ≤ k,

where m is a dimension of the configuration space and k is a given number (the
number of constraint equations). Functions f i are defined on the configuration
space. Holonomic constraints are called skleronomic if they do not depend explicitly
on time

f i(q1, . . . , qm) = 0, 1 ≤ i ≤ k.

From the geometric point of view holonomic constraints represent submanifolds in
the configuration space-time Y .

Constraints are called kinematic if they are expressed by

f i(t, q1, . . . , qm, q̇1, . . . , q̇m) = 0, 1 ≤ i ≤ k. (6)

Now f i are functions on the “phase space” J1Y . Kinematic constraints are said to
be integrable if the corresponding system of differential equations (6) is integrable.
Integrable kinematic constraints are geometric constraints, since after integration
they represent a restriction in the configuration space. Nonintegrable kinematic
constraints (6), which cannot be reduced to geometric ones are called nonholonomic
constraints.

Holonomic or nonholonomic constraints which depend explicitly on time are
called rheonomic.
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Nonholonomic constraints (6) are called affine or linear in velocities if they can
be expressed by

Ai(t, qν) + Biσ(t, qν) q̇σ = 0, 1 ≤ σ, ν ≤ m, 1 ≤ i ≤ k. (7)

In particular, if the left-hand sides of (7) can be written in the form of total time

derivatives of some functions defined on the configuration space, say dψi(t,qν)
dt = 0,

then instead of equations (7) we write

ψi(t, qν)− Ci = 0, 1 ≤ i ≤ k,

where Ci are constants determined by initial conditions. In this case constraints (7)
are called linear integrable or semiholonomic and the following identities hold

Ai =
∂ψi

∂t
, Biσ =

∂ψi

∂qσ
.

Nonholonomic constraints (6) are called affine of degree n in velocities if they
can be expressed by

f i ≡ Ai(t, qν) + Biσ(t, qν) (q̇σ)n = 0, 1 ≤ σ, ν ≤ m, 1 ≤ i ≤ k.

For example, a relativistic particle in space-time R4 with Minkowski metric can be
considered as mechanical system subjected to one nonholonomic constraint

−(q̇1)2 − (q̇2)2 − (q̇3)2 + (q̇4)2 − 1 = 0,

see [19], which is simple affine of degree 2 in velocities.
A geometric meaning of nonholonomic constraints is such that they represent

submanifolds in the jet space J1Y .

4 Nonholonomic Lagrangian systems
Following [14] we introduce general nonholonomic constraints (6) as submanifolds
of J1Y canonically endowed with a distribution.

Let k < m be an integer. By a constraint submanifold in J1Y we mean a fibered
submanifold π1,0|Q : Q → Y of the fibered manifold π1,0 : J1Y → Y . We denote
by ι the canonical embedding of Q into J1Y , and suppose codimQ = k < m (cf.
for example [14], [15], [21], [23]). Locally, Q can be given by equations

f i(t, q1, . . . , qm, q̇1, . . . , q̇m) = 0, 1 ≤ i ≤ k,

where

rank

(
∂f i

∂q̇σ

)
= k, (8)

or, equivalently in an explicit form

q̇m−k+i = gi(t, qσ, q̇1, q̇2, . . . , q̇m−k), 1 ≤ i ≤ k. (9)

Equations (9) are called a system of k nonholonomic constraints in normal form.
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The presence of a constraint submanifold in J1Y gives rise to a concept of
a constrained section as a local section δ̄ of the fibered manifold π1 such that
δ̄(x) ∈ Q for every x ∈ dom δ̄ and a Q-admissible section as a section γ̄ of the
fibered manifold π such that J1γ̄(x) ∈ Q for every x ∈ dom γ̄.

The submanifold Q is naturally endowed with a distribution, called the canon-
ical distribution [14], or Chetaev bundle [21], and denoted by C. It is annihilated
by a system of k linearly independent (local) 1-forms

ϕi = ι∗φi, where φi = f idt+
∂f i

∂q̇σ
ωσ, 1 ≤ i ≤ k,

called canonical constraint 1-forms. More frequently we shall use equations of a
constraint submanifold Q in the form (9), i.e. f i = q̇m−k+i − gi. In this case
canonical contact 1-forms ω̄σ = ι∗ωσ, 1 ≤ σ ≤ m, restricted on Q split into two
kinds of forms ω̄l = dql − q̇ldt, 1 ≤ l ≤ m − k, and ω̄m−k+i = dqm−k+i − gidt,
1 ≤ i ≤ k, and we obtain the following local coordinate representation of canonical
constraint 1-forms

ϕi = −
m−k∑
l=1

∂gi

∂q̇l
ω̄l + ω̄m−k+i, 1 ≤ i ≤ k. (10)

The ideal in the exterior algebra of forms on Q generated by canonical constraint
1-forms is called the constraint ideal, and denoted by I; its elements are called con-
straint forms. The pair (Q,C) is then called a (nonholonomic) constraint structure
on the fibered manifold π [14], [15].

Remark 1. From the point of view of physics, the rank of the canonical distribu-
tion C has the meaning of the number of (generalized, or “phase space”) degrees
of freedom of systems constrained to Q, and the canonical distribution itself repre-
sents possible (generalized) displacements. Its π1-vertical and π1,0-vertical subdis-
tribution then has the meaning of virtual (generalized) displacements and virtual
velocities, respectively.

Now we will recall the concept of a nonholonomic Lagrangian system. Consider
on J1Y an unconstrained Lagrangian system [α] = [dθλ]. With help of the non-
holonomic constraint structure (Q,C) one can construct a new mechanical system
directly on the constraint submanifold Q of J1Y . In keeping with [14], [15], by a
related (nonholonomic) constrained system we shall mean an equivalence class of
2-forms on Q elements of which are of the form

αQ = ι∗dθλ + F̄ + ϕ(2),

where F̄ and ϕ(2) run over all 2-contact π1,0-horizontal 2-forms and constraint
2-forms defined on Q, respectively. For the constrained system we use notation
[αQ]. Equations of motion of the constrained system [αQ], then have the following
intrinsic form:

J1γ̄∗iξι
∗dθλ = 0 for every vertical vector field ξ ∈ C, (11)
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where γ̄ is a Q-admissible section of π. These equations are sometimes called re-
duced equations of motion of the constrained system [αQ], since they are restricted
to the constraint submanifold Q.

Let us find a coordinate expression of a representative of the class [αQ] and an
explicit expression of reduced equations of motion of the constrained system [αQ]
arising from the Lagrangian system [α] and a nonholonomic constraint structure
(Q,C). Let λ = L(t, qσ, q̇σ) dt be a (local) Lagrangian for an unconstrained La-
grangian system [α] = [dθλ], where θλ is its Cartan form coordinate representation
of which is given by (1), and consider the constraint submanifold Q locally given by
equations (9) in normal form. We introduce Lagrange function L̄ on the constraint
submanifold Q as the restriction of the original unconstrained Lagrange function L
on Q, i.e. L̄ = L ◦ ι, thus L̄(t, qσ, q̇l) = L

(
t, qσ, q̇l, gi(t, qσ, q̇l)

)
. Computing the

coordinate expression of ι∗dθλ we get that a representative of the class [αQ] takes
the form

αQ =

m−k∑
l=1

A′lω
l ∧ dt+

m−k∑
l,s=1

B′lsω
l ∧ dq̇s + F̄ + ϕ(2),

where the components A′l are given by

A′l =
∂L̄

∂ql
+

∂L̄

∂qm−k+i

∂gi

∂q̇l
− d̄c
dt

∂L̄

∂q̇l
+

+

(
∂L

∂q̇m−k+j

)
ι

[
d̄c
dt

(
∂gj

∂q̇l

)
− ∂gj

∂ql
− ∂gj

∂qm−k+i

∂gi

∂q̇l

]
, (12)

where
d̄c
dt

=
∂

∂t
+ q̇s

∂

∂qs
+ gi

∂

∂qm−k+i
.

Components B′l,s are of the form

B′ls = − ∂2L̄

∂q̇l∂q̇s
+

(
∂L

∂q̇m−k+i

)
ι

∂2gi

∂q̇l∂q̇s
. (13)

Finally, reduced equations of motion of the constrained system [αQ] (11) in fibered
coordinates take the form

∂L̄

∂ql
+

∂L̄

∂qm−k+i

∂gi

∂q̇l
− dc
dt

(
∂L̄

∂q̇l

)
+

+

(
∂L

∂q̇m−k+j

)
ι

[
dc
dt

(
∂gj

∂q̇l

)
− ∂gj

∂ql
− ∂gj

∂qm−k+i

∂gi

∂q̇l

]
= 0 ,

where
dc
dt

=
d̄c
dt

+ q̈s
∂

∂q̇s
.

Notice that the above system of equations can be viewed as 2nd order equations(
A′l +

m−k∑
s=1

B′lsq̈
s

)
◦ J2γ̄ = 0, (14)
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for components γ1(t), γ2(t), . . . , γm−k(t) of a Q-admissible section γ̄ dependent on
time t and parameters qm−k+1, qm−k+2, . . . , qm, which have to be determined as
functions γm−k+1(t), γm−k+2(t), . . . , γm(t) from the equations (9) of the constraint

dqm−k+i

dt
= gi

(
t, qσ,

dq1

dt
,
dq2

dt
, . . . ,

dqm−k

dt

)
, 1 ≤ i ≤ k.

A nonholonomic constraint system [αQ] is called regular if the matrix (B′l,s) is
regular, i.e.

det

(
∂L̄

∂q̇l∂q̇s
−
(

∂L

∂q̇m−k+i

)
ι

∂2gi

∂q̇l∂q̇s

)
6= 0.

For more details on concepts and results in this section the reader is referred
e.g. to the survey article [18].

5 Examples of nonholonomic mechanical systems
5.1 Decelerated motion of a free particle

Consider a “free particle” in R3 moving in such a way, that the square of its speed
decreases proportionally to the reciprocal value of time passed from the beginning
of the motion. (See [14], p. 5123, Example 1.)

We denote by (t) the coordinate on X = R, by (t, q1, q2, q3) fibered coordinates
on Y = R × R3, and (t, q1, q2, q3, q̇1, q̇2, q̇3) the associated coordinates on J1Y =
R× R3 × R3.

Lagrangian of a free particle has the standard form

λ = Ldt =
1

2
m
(
(q̇1)2 + (q̇2)2 + (q̇3)2

)
dt,

where m is the mass of the particle. We consider a first order mechanical system [α]

α = dθλ + F = −m
(
ω1 ∧ dq̇1 + ω2 ∧ dq̇2 + ω3 ∧ dq̇3

)
+ F (15)

on the fibered manifold R× R3 → R, related with the Euler–Lagrange form

E =

3∑
σ=1

−mq̈σ dqσ ∧ dt.

The motion of the mechanical system [α] is for t > 0 subject to the following
nonholonomic constraint Q

f(t, qσ, q̇σ) ≡
[(
q̇1
)2

+
(
q̇2
)2

+
(
q̇3
)2]− 1/t = 0, (16)

meaning that the particle’s speed decreases proportionally to 1/
√
t. This nonholo-

nomic constraint is rheonomic and is affine of degree 2 in components of velocity.
In a neighbourhood of the submanifold Q

rank

(
∂f i

∂q̇σ

)
= 2t(q̇1, q̇2, q̇3) = 1,

i.e. condition (8) is satisfied.
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Let U ⊂ J1Y be the set of all points, where q̇3 > 0, and consider on U canonical
coordinates and the adapted coordinates (t, q1, q2, q3, q̇1, q̇2, f̄), where f̄ = q̇3 − g,
g =

√
1/t− (q̇1)2 − (q̇2)2 is the equation of the constraint (16) in normal form.

Notice that g > 0 on U .

The constrained system [αQ] related to the mechanical system [α] (15) and the
constraint Q (16) is the equivalence class of the 2-form

αQ =
∑
l=1,2

A′l ω
l ∧ dt+

∑
l,s=1,2

B′ls ω
l ∧ dq̇s + F̄ + ϕ(2)

on Q, where

A′l =

[
− mq̇l

2t(q̇3)2

((
q̇1
)2

+
(
q̇2
)2

+
(
q̇3
)2)]

ι

= − mq̇l

2t2g2
, 1 ≤ l ≤ 2,

B′ls =

[
−m

(
δls +

q̇lq̇s

(q̇3)2

)]
ι

= −m
(
δls +

q̇lq̇s

g2

)
, 1 ≤ l, s ≤ 2,

and F̄ is any 2-contact 2-form and ϕ(2) is any constraint 2-form defined on Q. The
matrix (−B′ls) is on Q ∩ U equivalent to the matrix(

g2 + (q̇1)2 q̇1q̇2

q̇1q̇2 g2 + (q̇2)2

)
,

hence (
g2 + (q̇1)2 q̇1q̇2

0 g2

t

)
,

which is obviously regular at each point of Q∩U . This means that the constrained
system [αQ] is regular on Q ∩ U .

Reduced equations of motion of the constrained system are as follows[
mq̇1

2t2g2
+m

(
1 +

(q̇1)2

g2

)
q̈1 +m

q̇1q̇2

g2
q̈2

]
◦ J2γ̄ = 0 ,[

mq̇2

2t2g2
+m

(
1 +

(q̇2)2

g2

)
q̈2 +m

q̇1q̇2

g2
q̈1

]
◦ J2γ̄ = 0 ,

where γ̄ = (t, q1(t), q2(t), q3(t)) is a Q-admissible section, i.e. a section satisfying
the constraint equation f ◦ J1γ = 0. After arrangements we obtain equations of
motion of the constrained system in the following simple form:

q̈1(t) = − 1

2t
q̇1(t) ,

q̈2(t) = − 1

2t
q̇2(t) ,

q̇3(t) =

√
1

t
− (q̇1)

2 − (q̇2)
2
.
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Solution of these equations is

q1(t) = C1
1

√
t+ C1

2 ,

q2(t) = C2
1

√
t+ C2

2 ,

q3(t) = C3
1

√
t+ C3

2 ,

where Cij are constants connected by the relation C3
1 =

√
4− (C1

1 )2 + (C2
1 )2. Anal-

ogous results are obtained if one considers the other adapted charts belonging to
an atlas covering Q.

5.2 A dog pursuing a man

Consider a man and a dog moving in the plane. The man starts from the origin O of
the coordinate system Oxy and moves along the y-axis with a constant velocity c.
His dog starts at the same moment from the point [x0, y0], x0 ≥ 0, y0 6= 0 and runs
in such a way, that its velocity at each moment is given by the line connecting its
instantaneous position and the instantaneous position of the man. We shall find
the trajectory of the dog. (See [2], pp. 236–239.)

Figure 1

We denote by (t) the coordinate on X = R, by (t, x, y) the canonical coordinates
on Y = R×R2 and by (t, x, y, ẋ, ẏ) the associated coordinates on J1Y = R×R2×R2.

The Lagrangian of this problem is

λ = Ldt =
1

2
m(ẋ2 + ẏ2) dt

and defines a first order mechanical system [α] on the fibered manifold R×R2 → R
represented by the Lepage 2-form

α = dθλ + F = −mω1 ∧ dẋ−mω2 ∧ dẏ + F, (17)

where m denotes the mass of the dog, ω1 = dx − ẋ dt, ω2 = dy − ẏ dt are corre-
sponding contact 1-forms and F is any 2-contact 2-form. This mechanical system
is related to the dynamical form

E = −mẍ dx ∧ dt−mÿ dy ∧ dt.



38 Martin Swaczyna

The constraint is given by the requirement that at each moment the direction of
the motion of the dog is known. For the angular coefficient of the dog’s trajectory
it holds

dy

dx
= G(t, x, y). (18)

This equation can be written in the equivalent form

G(t, x, y) ẋ− ẏ = 0 (19)

which is a rheonomic nonholonomic constraint affine in components of velocity. On
the other hand, the instantaneous direction of the motion of the dog at a time t
and at a point [x, y] is given by the line connecting this point with the point [0, c t]
where the man is at this moment. Hence the angular coefficient of the trajectory
at a time t and at a point [x, y] is given by

G(t, x, y) =
y − c t
x

, x 6= 0. (20)

Consequently, the nonholonomic constraint (19) has the form

ẏ =
y − c t
x

ẋ. (21)

This equation defines a constraint submanifold Q ⊂ J1Y, since the rank condition
(8)

rank

(
y − c t
x

, −1

)
= 1

is satisfied. The canonical constraint 1-form (10) reads

ϕ = −(y − c t) dx+ x dy.

The constrained system [αQ] related to the mechanical system [α] (17) and the
constraint Q given by (21) is the equivalence class of the 2-form

αQ = A′1 ω
1 ∧ dt+B′11 ω

1 ∧ dẋ+ F̄ + ϕ(2),

where

A′1 =
mcẋ (y − c t)

x2
, B′11 = −m

(
1 +

(y − c t)2

x2

)
,

and F̄ is any 2-contact 2-form and ϕ(2) is any constraint 2-form defined on this
constraint submanifold Q. Since

det B′11 = −m
(
x2 + (y − c t)2

x2

)
6= 0,

the constrained system [αQ] is regular.
The reduced equation of motion of the constrained system is[

mc (y − c t)
x2

ẋ−m
(
x2 + (y − c t)2

x2

)
ẍ

]
◦ J2γ̄ = 0, (22)
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where γ̄ = (t, x(t), y(t)) is a Q-admissible section satisfying the constraint equation
(21).

In [2] the dynamics is obtained by solving Chetaev equations of motion (equa-
tions with Lagrange multipliers), which take a very simple form

ẍ = µ∗G(x, y, t) ,

ÿ = −µ∗ .

The symbol µ∗ = µ/m denotes a (reduced) Lagrange multiplier and G is the
function given by (20). Now, multiplying the first equation by ẋ and the second
one by ẏ and adding these equations we get

d

dt

[
1

2
m(ẋ2 + ẏ2)

]
= µ∗[G(x, y, t) ẋ− ẏ].

Since the constraint equation (19) holds we obtain a first integral

ẋ2 + ẏ2 = v2 = const. (23)

This means that the dog moves with a constant speed. This fact together with
equation (18) enables us to determine the trajectory of the dog in an explicit form,
i.e. y = y(x). To this end we eliminate time parameter from the equations. First
we notice that one can write

ẏ =
dy

dt
=
dy

dx

dx

dt
≡ ẋ y′. (24)

Substituting (20) into (18) we obtain

dy

dx
≡ y′ =

y − c t
x

resp. x y′ = y − c t,

and after differentiating this equation with respect to x,

x y′′ = −c dt
dx
.

Hence, under appropriate conditions,

ẋ = − c

x y′′
. (25)

Since the motion takes place in the first quadrant, relations x > 0, ẋ < 0 hold, and
subsequently y′′ > 0. Substituting identity (24) to the first integral (23) we get

ẋ2
(
1 + (y′)2

)
= v2,

and after extracting the square root we can write

−ẋ =
v√

1 + (y′)2
.
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Finally we compare the last equation with equation (25) and after separation of
variables we gain the desired differential equation for the curve of pursuit

y′′√
1 + (y′)2

=
c

v

1

x
. (26)

The fact that both sides of this equation can be written by means of total derivative
with respect to x in the following way

d

dx

[
ln
(
y′ +

√
1 + (y′)2

)]
=

d

dx

( c
v

lnx
)
,

enables one a reduction of equation (26) to the following first order implicit differ-
ential equation

ln
(
y′ +

√
1 + (y′)2

)
=
c

v
lnx+ lnA, (27)

where lnA is a constant which can be determined with help of initial conditions.
Equation (27) can be written in a simpler form

y′ +
√

1 + (y′)2 = Axα,

where α = c
v . Expressing y′

y′ =
1

2

(
Axα − 1

Axα

)
,

and after integration we obtain for α 6= 1 a general solution described by the
function

y =
1

2

[
A

1 + α
x1+α − 1

A(1− α)
x1−α

]
+ C,

where C is a constant to be determined with help of initial conditions. The final
explicit form of the desired curve of pursuit is

y = y0 +
1

2

[
A

1 + α
(x1+α − x1+α

0 )− 1

A(1− α)
(x1−α − x1−α

0 )

]
,

where

A =
y0 +

√
x2

0 + y2
0

x1+α
0

,

and x0, y0 are coordinates of the initial position of the dog.

5.3 Pursuit of a general motion in a plane

Consider an object moving in a plane along an a-priori given curve described by
parametric equations x = ξ(t), y = η(t), and consider a dog which starts from a
point [x0, y0], x0 ≥ 0, y0 6= 0, and pursues this object in the same way as above,
i.e. that its velocity at each moment is given by the line connecting its instantaneous
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position and the instantaneous position of the object. We shall find equations of
motion of the dog.

Figure 2

The configuration space Y , the Lagrangian λ and the mechanical system [α]
are the same as above, however, restriction of the motion of the dog now is given
by the corresponding generalization of the constraint (21) to

ẏ = G(t, x, y) ẋ =
y − η(t)

x− ξ(t)
ẋ. (28)

This is again a rheonomic nonholonomic constraint affine in components of velocity,
which defines a constraint submanifold Q in the phase space J1Y. The canonical
constraint 1-form (10) now reads

ϕ = −(y − η(t)) dx+ (x− ξ(t)) dy.

The constrained system [αQ] related to the mechanical system [α] (17) and the
constraint Q given by (28) is again an equivalence class as follows,

αQ = A′1 ω
1 ∧ dt+B′11 ω

1 ∧ dẋ+ F̄ + ϕ(2),

where

A′1 = mẋ
η̇ (y − η)(x− ξ)− ξ̇ (y − η)2

(x− ξ)3
, B′11 = −m

(
1 +

(y − η)2

(x− ξ)2

)
,

and F̄ is any 2-contact 2-form and ϕ(2) is any constraint 2-form on Q. Since

det B′11 = −m (x− ξ)2 + (y − η)2

(x− ξ)2
6= 0,

the constrained system [αQ] is again regular.
The reduced equation of motion of the constrained system is

m

[
ẋ

(y − η)

(x− ξ)2
η̇ − ẋ (y − η)2

(x− ξ)3
ξ̇ − ẍ

(
1 +

(y − η)2

(x− ξ)2

)]
◦ J2γ̄ = 0,
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where γ̄ = (t, x(t), y(t)) is aQ-admissible section satisfying constraint equation (28).
In particular, if we put ξ(t) = 0, η(t) = c t, i.e. we consider the motion along the
y-axis with a constant speed c, we obtain motion equation (22).

In the same way as in the previous example we can write down Chetaev equa-
tions of motion, which have the same form as above,

ẍ = µ∗G(x, y, t) ,

ÿ = −µ∗,

but now the function G is given by formula

G(x, y, t) =
y − η(t)

x− ξ(t)
.

Repeating the same procedure we obtain a first integral

ẋ2 + ẏ2 = v2 = const.

However, now we cannot eliminate the time parameter from the equations because
of the fact that the pursuing object moves along a curve determined by parametric
equations x = ξ(t), y = η(t), which need not represent a straight motion with a
constant velocity as in the previous example.

5.4 Motion of a particle in a homogeneous gravitational field with constant
velocity

Consider a particle of mass m moving in a homogeneous gravitational field (the
gravitational acceleration is denoted by G) from a point (q1(0), q2(0), q3(0)),
q3(0) > 0, with the initial velocity given by a vector (p1(0), p2(0), p3(0)), where
all the components are non-zero and positive. The motion is restricted by the con-
dition that the speed of the particle remains constant. (See [9], pp. 991, Example
4.2.)

This is a problem originally formulated by Leibnitz in 1689 as follows: find a
curve along which a particle moves in a homogeneous gravitational field with a
constant speed. A solution of the problem was found by Jacob Bernoulli in 1694 as
a curve called the paracentric isochrone. However the problem was solved only from
the kinematic point of view in the framework of differential geometry of curves. For
a complete description of dynamics of the problem it is necessary to understand
the requirement of the constant speed as a nonholonomic, so called isotachystonic
constraint, which is nonlinear.

Our aim is to study the dynamics of the Leibnitz particle.
The configuration space is again Y = R × R3, (t, qσ), 1 ≤ σ ≤ 3, are fibered

coordinates on Y . The Lagrangian has the form

λ = Ldt =

[
1

2
m
(
(q̇1)2 + (q̇2)2 + (q̇3)2

)
−mGq3

]
dt.

The mechanical system [α] is represented by a Lepage 2-form

α = −mGω3 ∧ dt−m
(
ω1 ∧ dq̇1 + ω2 ∧ dq̇2 + ω3 ∧ dq̇3

)
+ F, (29)
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where F is a 2-contact 2-form. The corresponding dynamical form is then

E = −mGdq3 ∧ dt−
3∑

σ=1

mq̈σ dqσ ∧ dt .

The constraint on the motion is given by equation

f ≡ (q̇1)2 + (q̇2)2 + (q̇3)2 − C = 0, (30)

where C =
(
p1(0)

)2
+
(
p2(0)

)2
+
(
p3(0)

)2
is the square of the initial speed of

the particle. Equation (30) defines a constraint submanifold Q in J1Y . It is a
skleronomic nonholonomic constraint, affine of degree 2 in components of velocity.
Let U ⊂ J1Y be the set of all points where q̇3 > 0 and consider on U the adapted
coordinates (t, q1, q2, q3, q̇1, q̇2, f̄), where f̄ = q̇3 − g, g =

√
C − (q̇1)2 − (q̇2)2 is

equation of the constraint (30) in normal form.
The constrained system [αQ] related to the mechanical system [α] (29) and the

constraint Q (30) is the equivalence class of 2-forms

αQ =
∑
l=1,2

A′l ω
l ∧ dt+

∑
l,s=1,2

B′ls ω
l ∧ dq̇s + F̄ + ϕ(2) (31)

on Q, where

A′l =

[
−mG

q̇l

q̇3

]
ι

= −mG
q̇l

g
, 1 ≤ l ≤ 2,

B′ls =

[
−m

(
δls +

q̇lq̇s

(q̇3)2

)]
ι

= −m
(
δls +

q̇lq̇s

g2

)
, 1 ≤ l, s ≤ 2,

and F̄ is a 2-contact 2-form and ϕ(2) is a constraint 2-form defined on the constraint
submanifold Q. The constrained system [αQ] is regular since the matrix (−B′ls) is
the same in the second example above. The motion of this constrained system is
described by two reduced equations[

mG
q̇1

g
+m

(
1 +

(q̇1)2

g2

)
q̈1 +m

q̇1q̇2

g2
q̈2

]
◦ J2γ̄ = 0 ,[

mG
q̇2

g
+m

(
1 +

(q̇2)2

g2

)
q̈2 +m

q̇1q̇2

g2
q̈1

]
◦ J2γ̄ = 0 ,

where γ̄ = (t, x(t), y(t)) is a Q-admissible section satisfying the constraint equation

q̇3 =
√
C − (q̇1)2 − (q̇2)2.

After simple computations equations of motion of the constrained system take the
form

q̈1(t) =
G

C
q̇1
√
C − (q̇1)2 − (q̇2)2 ,

q̈2(t) =
G

C
q̇2
√
C − (q̇1)2 − (q̇2)2 ,

q̇3(t) =
√
C − (q̇1)2 − (q̇2)2 .
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The same equations were obtained in [9] by a different method.
The above system of differential equations can be reduced to the first order

system

ṗ1(t) = Dp1
√
C − (p1)2 − (p2)2 ,

ṗ2(t) = Dp2
√
C − (p1)2 − (p2)2 ,

q̇3(t) =
√
C − (p1)2 − (p2)2 ,

where we denoted D = G/C. Since ṗ1p2 − p1ṗ2 = 0, and if moreover p2 6= 0,
then p1/p2 = κ is a first integral of these equations, which has the positive value
κ = p1(0)/p2(0) determined by the given components of the initial velocity. If we
suppose that in a certain interval of time the components p1, p2 of the instantaneous
velocity are not zero, we can separate equations for p1 and p2 and integrate∫

dp1

p1
√
C −

(
1 + 1

κ2

)
(p1)2

=

∫
Ddt

∫
dp2

p2
√
C − (1 + κ2) (p2)2

=

∫
Ddt .

After integration we can write

√
C ln


√

C κ2

1+κ2 −
√

C κ2

1+κ2 − (p1)2

p1

 =
G

C
t+ b1 ,

√
C ln


√

C
1+κ2 −

√
C

1+κ2 − (p2)2

p2

 =
G

C
t+ b2 ,

where

κ2

1 + κ2
=

(
p1(0)

)2
(p1(0))

2
+ (p2(0))

2 ,
1

1 + κ2
=

(
p2(0)

)2
(p1(0))

2
+ (p2(0))

2 ,

and b1, b2 are some integration constants. Expressing variables p1, p2 we obtain

p1 =
dq1

dt
=

√
C κ2

1 + κ2

2B1e
G√
C
t

B2
1e

2G√
C
t

+ 1
,

p2 =
dq2

dt
=

√
C

1 + κ2

2B2e
G√
C
t

B2
2e

2G√
C
t

+ 1
,

(32)

where B1, B2 are constants determined by means of b1, b2 by the following relations

B1 = e
√
C b1 , B2 = e

√
C b2 . If we take into account given components of the initial

velocity p1(0), p2(0), p3(0) which are positive as we assumed, and with respect to
the value of the first integral κ = p1(0)/p2(0) we obtain that

B1 = B2 = B =

√
C − p3(0)√

(p1(0))
2

+ (p2(0))
2
.
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We find the primitive function∫
eα t

B2e2α t + 1
=

1

αB
arctan

(
B eα t

)
,

where α = G/
√
C. Hence the desired functions q1(t), q2(t) are

q1(t) =
2C

G

√
κ2

1 + κ2
arctan

(
B e

G√
C
t
)

+A1 ,

q2(t) =
2C

G

√
1

1 + κ2
arctan

(
B e

G√
C
t
)

+A2 ,

and A1, A2 are constants, which are determined by the initial position of the par-
ticle. After elimination of the parameter t from the last equations we can see, that
the particle moves in the plane q1 − κq2 − A1 + κA2 = 0, which is parallel to the
q3-axis.

Now we can substitute the functions p1(t), p2(t) given by (32) into the constraint
condition q̇3 =

√
C − (p1)2 − (p2)2:

q̇3 =
√
C
|B2 e

2G√
C
t − 1|

B2 e
2G√
C
t

+ 1
. (33)

Indeed, for t = 0 we obtain q̇3(0) = p3(0).
We notice the fact that

B2 = 1−
2 p3(0)

(√
C − p3(0)

)
(p1(0))

2
+ (p2(0))

2 < 1,

since all the components of the initial velocity are non-zero.
As a consequence of the above property and due to the physical reason that

potential energy of a homogeneous gravitational field increases proportionally to q3,

it turns out that in some time T = −
√
C
G lnB the motion in the vertical direction

stops, i.e. q̇3(T ) = 0, and then it proceeds with q̇3(t) < 0. Hence for the time t > T
one has to consider the constraint condition in the form q̇3 = −

√
C − (p1)2 − (p2)2.

Integrating equation (33) we get that in the time interval (0, T ) the solution
q3(t) is described by the function

q3(t) =
C

2G
ln

 B2 e
2G√
C
t(

B2 e
2G√
C
t

+ 1
)2

+A3 = −C
G

ln

[
2 cosh

(
Gt+ bC√

C

)]
+A3,

where the relationship between constants B and b is given by b = 1/
√
C lnB, and

A3 is a constant, which can be determined by means of q3(0).
It is worth notice properties of the “nonholonomic fall” in a homogeneous grav-

itational field: One could expect that the motion will turn to the vertical direction
and the particle will fall down with increasing acceleration. However, the con-
straint condition keeps the speed constant, therefore the components q̇1(t), q̇2(t) of
the instantaneous velocity have to decrease proportionally, and after some time the
motion will proceed in the vertical direction with a constant velocity determined
by the vector (0, 0,

√
C).



46 Martin Swaczyna

5.5 Motion of a particle in a homogeneous gravitational field subject to a
nonlinear constraint

Consider a particle of mass m in a homogeneous gravitational field (the same as
in the previous example). The motion of the particle is now subjected to a non-
holonomic condition b2

(
(q̇1)2 + (q̇2)2

)
− (q̇3)2 = 0, where b is a constant. (See [9],

pp. 992, Example 4.3.)

This mechanical system is the same as above, i.e. it is represented by the Lepage
form (29). However the constraint condition

f ≡ b2
(
(q̇1)2 + (q̇2)2

)
− (q̇3)2 = 0, (34)

or equivalently in normal form

q̇3 = g = b
√

(q̇1)2 + (q̇2)2 (35)

is different. The constraint (34) is again a skleronomic nonholonomic constraint,
which is affine of degree 2 in components of velocity.

The corresponding constrained mechanical system is given by the equivalence
class [αQ] of 2-forms (31), where

A′l =

[
−mG

b2q̇l

q̇3

]
ι

= −mG
b q̇l√

(q̇1)2 + (q̇2)2
1 ≤ l ≤ 2,

B′ls =

[
−m

(
δls + b4

q̇lq̇s

(q̇3)2

)]
ι

= −m
(
δls + b2

q̇lq̇s

(q̇1)2 + (q̇2)2

)
1 ≤ l, s ≤ 2.

Reduced equations of motion become the following system of second order ODE’s[
Gb q̇1√

(q̇1)2 + (q̇2)2
+

(
1 + b2

(q̇1)2

(q̇1)2 + (q̇2)2

)
q̈1 + b2

q̇1q̇2

(q̇1)2 + (q̇2)2
q̈2

]
◦ J2γ̄ = 0 ,[

Gb q̇2√
(q̇1)2 + (q̇2)2

+

(
1 + b2

(q̇2)2

(q̇1)2 + (q̇2)2

)
q̈2 + b2

q̇1q̇2

(q̇1)2 + (q̇2)2
q̈1

]
◦ J2γ̄ = 0 ,

where γ̄ = (t, x(t), y(t)) is aQ-admissible section satisfying constraint equation (35).
Expressing the second derivatives we obtain

q̈1(t) = − bG q̇1

(1 + b2)
√

(q̇1)2 + (q̇2)2
,

q̈2(t) = − bG q̇2

(1 + b2)
√

(q̇1)2 + (q̇2)2
.

(36)

The same equations are derived in [9] by a different method.
We shall solve the reduced equations. First we differentiate constraint equa-

tion (35)

q̈3 =
b2

q̇3
(q̇1 q̈1 + q̇2 q̈2).
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Substituting reduced equations (36) we obtain the equality

q̈3 = − Gb2

1 + b2
,

which can be simply integrated

q̇3 ≡ b
√

(q̇1)2 + (q̇2)2 = − Gb2

1 + b2
t+K3

1 .

Finally we substitute the last equality back to (36), and we obtain simple differential
equations, which can be reduced to first order equations with separable variables.
A complete solution of the problem is obtained in the form

q1(t) = −1

2

Gb2

1 + b2
K1

1 t
2 +K1

1K
3
1 t+K1

2 ,

q2(t) = −1

2

Gb2

1 + b2
K2

1 t
2 +K2

1K
3
1 t+K2

2 ,

q3(t) = −1

2

Gb2

1 + b2
t2 +K3

1 t+K3
2 ,

where Ki
j are constants, and the identity (K1

1 )2 + (K2
1 )2 = 1/b2 holds true.

5.6 A rolling disc on a horizontal plane

Consider a disc of radius R rolling without sliding on a horizontal plane. Let Oxyz
be a fixed orthogonal system of coordinates with the x and y-axis in the horizontal
plane and the z-axis directed vertically upwards. Then the position of the disc on
the plane may be given by five generalized coordinates x, y, ψ, ϕ, ϑ, where x and y
are the coordinates of the point P of contact of the disc and the horizontal plane,
ψ is the angle of proper rotation of the disc, ϕ is the angle between the tangent to
the disc at the point P and the x-axis, and ϑ is the angle between the rotating axis
of the disc and the parallel line to the z-axis which is going through the point P
(i.e. π/2 − ϑ is the angle of inclination between the plane of the disc and the
horizontal plane). (See [22], pp. 55.)

x

y

z

P

Tϕ

ψϑ

O

Figure 3

So the base space X = R, the configuration space is Y = R×R2×S1×S1×S1

and phase space is J1Y = R×R2×S1×S1×S1×R2×S1×S1×S1. Hence fibered
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coordinates on Y are (t, x, y, ψ, ϕ, ϑ) and the associated coordinates on J1Y are
(t, x, y, ψ, ϕ, ϑ, ẋ, ẏ, ψ̇, ϕ̇, ϑ̇).

The Lagrange function of this mechanical system is given by relation L = T−V .
The kinetic energy T is given by the sum of the energy of translation and rotation
of the disc:

T =
1

2
m
(
ẋ2 + ẏ2 +R2ϑ̇2 +R2ϕ̇2 sin2 ϑ

)
−

−mR
(
ϑ̇ cosϑ (ẋ sinϕ− ẏ cosϕ) + ϕ̇ sinϑ (ẋ cosϕ+ ẏ sinϕ)

)
+

+
1

2
I1

(
ϑ̇2 + ϕ̇2 cos2 ϑ

)
+

1

2
I2

(
ψ̇ + ϕ̇ sinϑ

)2

,

(37)

where m is the mass, and I1, I2 are the principal moments of inertia of the disc.
The potential energy of the disc is V = mgR cosϑ. Formula (37) for kinetic energy
of this problem is presented in [22] and is derived in detail in [27].

If we compute motion equation (5) of this Lagrangian system according to (2)
and (3), where 1 ≤ σ, ρ ≤ 5 and coordinates (q1, q2, q3, q4, q5) are substituted
by corresponding coordinates (x, y, ψ, ϕ, ϑ), we obtain the following five Euler-
-Lagrange equations:

−mẍ+mR
(

(cosϕ sinϑ)ϕ̈+ (sinϕ cosϑ)ϑ̈
)
−

−mR
(

(sinϕ sinϑ)(ϕ̇2 + ϑ̇2)− (2 cosϕ cosϑ)ϕ̇ϑ̇
)

= 0 ,

−mÿ +mR
(

(sinϕ sinϑ)ϕ̈− (cosϕ cosϑ)ϑ̈
)

+

+mR
(

(cosϕ sinϑ)(ϕ̇2 + ϑ̇2) + (2 sinϕ cosϑ)ϕ̇ϑ̇
)

= 0 ,

I2(ψ̈ + sinϑϕ̈) + (I2 cosϑ)ϕ̇ϑ̇ = 0 ,

mR ((cosϕ sinϑ)ẍ+ (sinϕ sinϑ)ÿ)− (I2 sinϑ)ψ̈ −
−
(
(mR2 + I2) sin2 ϑ+ I1 cos2 ϑ

)
ϕ̈−

− (I2 cosϑ)ψ̇ϑ̇− 2(mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇ϑ̇ = 0 ,

mR ((sinϕ cosϑ)ẍ− (cosϕ cosϑ)ÿ)− (mR2 + I1)ϑ̈+

+ (mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇2 + (I2 cosϑ)ψ̇ϕ̇+mgR sinϑ = 0 .

The condition that the disc rolls without sliding on the horizontal plane means,
that the instantaneous velocity of the point of contact of the disc is equal to zero
at all times. This gives rise to the following nonholonomic constraints

f1 ≡ ẋ−R cosϕψ̇ = 0, f2 ≡ ẏ −R sinϕψ̇ = 0, (38)

or in normal form

ẋ = g1 ≡ R cosϕψ̇, ẏ = g2 ≡ R sinϕψ̇.

One can see that constraints above are linear, or more precisely affine in components
of velocities. Equations (38) define a constraint submanifold Q ⊂ J1Y , since the
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condition (8) is satisfied, i.e.

rank

(
∂f i

∂q̇σ

)
= rank

(
1 0 −R cosϕ 0 0
0 1 −R sinϕ 0 0

)
= 2.

Thus dimQ = dim J1Y − 2 = 9. Constraint 1-forms (10) are in this case the
following two forms

ϕ1 = dx−R cosϕdψ, ϕ2 = dy −R sinϕdψ.

Now one can construct the constrained system [αQ] related to the mechanical
system [α] and the constraint Q as the equivalence class of the 2-form

αQ = A′1 ω
1 ∧ dt+A′2 ω

2 ∧ dt+A′3 ω
3 ∧ dt+

+

3∑
l=1

B′l1 ω
l ∧ dψ̇ +B′l2 ω

l ∧ dφ̇+B′l3 ω
l ∧ dϑ̇+ F̄ + ϕ(2)

on Q, where ω1 = dψ − ψ̇dt, ω2 = dϕ− ϕ̇dt, ω3 = dϑ− ϑ̇dt are the corresponding
contact 1-forms, and where F̄ is a 2-contact 2-form and ϕ(2) is a constraint 2-form
defined on Q. Computing the coefficients A′l according to (12) we obtain the
following expressions:

A′1 = (2mR2 − I2)(cosϑ)ϕ̇ϑ̇ ,

A′2 = −I2 cosϑψ̇ϑ̇− 2(mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇ϑ̇ ,

A′3 = (I2 −mR2) cosϑψ̇ϕ̇+ (mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇2 +mgR sinϑ ,

and coefficients B′ls according to (13) are

B′11 = −(mR2 + I2) , B′12 = B′21 = (mR2 − I2) sinϑ ,

B′22 = −(mR2 + I2) sin2 ϑ− I1 cos2 ϑ , B′23 = B′32 = 0 ,

B′33 = −(mR2 + I1) , B′31 = B′13 = 0 .

Hence, reduced equations of motion (14) of the constrained system [αQ] take the
form (see also [26]):

(mR2 + I2)ψ̈ + (I2 −mR2)(sinϑ)ϕ̈+ (I2 − 2mR2)(cosϑ)ϕ̇ϑ̇ = 0 ,

(mR2 − I2)(sinϑ)ψ̈ −
(
(mR2 + I2) sin2 ϑ+ I1 cos2 ϑ

)
ϕ̈−

− I2(cosϑ)ψ̇ϑ̇− 2(mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇ϑ̇ = 0 ,

−(mR2 + I1)ϑ̈+ (mR2 − I1 + I2)(sinϑ cosϑ)ϕ̇2 +

+ (I2 −mR2)(cosϑ)ψ̇ϕ̇+mgR sinϑ = 0 .

These equations can be solved numerically; it turns out that solutions are unstable
with respect to a small change of initial conditions.
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5.7 A homogeneous ball on a rotating table

Consider a homogeneous ball of radius R rolling without sliding on a horizontal
plane which rotates with a nonconstant angular velocity Ω(t) around the vertical
axis. We assume that except the constant gravitational force, no other external
forces act on the ball. (See [22], pp. 131, Example 3.)

Figure 4

Let the z-axis of the fixed system of coordinates Oxyz coincide with the axis
of rotation. Let (x, y) denote the position of contact of the ball with the plane
and ϑ, ϕ, ψ denote Euler angles of the rotating ball. The angle ϑ is the angle of
inclination, the ϕ is the rotating angle and ψ is the angle of precession. Hence
(t, x, y, ϑ, ϕ, ψ) are fibered coordinates on the configuration space Y = R × R2 ×
SO(3), where SO(3) is the special orthogonal group parametrized by Euler angles,
and (t, x, y, ϑ, ϕ, ψ, ẋ, ẏ, ϑ̇, ϕ̇, ψ̇) are associated coordinates on J1Y = R × R2 ×
SO(2)× R2 × SO(2).

The potential energy is constant, so without loss of generality we put V = 0. In
addition, since we do not consider external forces, the Lagrange function is given
by the kinetic energy of the rotating ball

L = T =
1

2

(
ẋ2 + ẏ2 + k2(ϑ̇2 + ϕ̇2 + ψ̇2 + 2ϕ̇ψ̇ cosϑ)

)
, (39)

where k is the radius of gyration and the mass of the ball is m = 1.
The motion equations of this Lagrangian system in coordinates (q1, . . . , q5) =

(x, y, ϑ, ϕ, ψ) become:

ẍ = 0 ,

ÿ = 0 ,

k2(ϑ̈+ sinϑ ϕ̇ψ̇) = 0 ,

k2(ϕ̈+ cosϑ ψ̈ − sinϑ ϑ̇ψ̇) = 0 ,

k2(cosϑ ϕ̈+ ψ̈ − sinϑ ϑ̇ϕ̇) = 0 .

Denoting by ω the instantaneous angular velocity of the ball, we write down
the condition of rolling without sliding of the ball on the rotating plane

ẋ−Rωy + Ω(t) y = 0, ẏ +Rωx − Ω(t)x = 0, (40)
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or, using the Euler angles we obtain the following two equations

f1 ≡ ẋ−R sinψ ϑ̇+R sinϑ cosψ ϕ̇+ Ω(t) y = 0 ,

f2 ≡ ẏ +R cosψ ϑ̇+R sinϑ sinψ ϕ̇− Ω(t)x = 0 ,

which represent two nonholonomic constraints affine in components of velocities.
These equations evidently satisfy condition (8),

rank

(
∂f i

∂q̇σ

)
= rank

(
1 0 −R sinψ R sinϑ cosψ 0
0 1 −R sinϕ R sinϑ cosψ 0

)
= 2,

thus dimQ = dim J1Y − 2 = 9. Constraint 1-forms (10) take the form

ϕ1 = dx+ Ω(t)ydt−R sinψdϑ+R sinϑ cosψdϕ ,

ϕ2 = dy − Ω(t)xdt+R cosψdϑ+R sinϑ sinψdϕ .

The constrained system [αQ] is in this case represented by the equivalence class of
a 2-form

αQ = A′1 ω
1 ∧ dt+A′2 ω

2 ∧ dt+A′3 ω
3 ∧ dt+

+

3∑
l=1

B′l1 ω
l ∧ dϑ̇+B′l2 ω

l ∧ dϕ̇+B′l3 ω
l ∧ dψ̇ + F̄ + ϕ(2)

on Q, where ω1 = dϑ − ϑ̇dt, ω2 = dϕ − ϕ̇dt, ω3 = dψ − ψ̇dt, and where for the
coefficients A′l we obtain

A′1 = −(R2 + k2)ϕ̇ψ̇ sinϑ+

+RΩ(t)(ẋ cosψ + ẏ sinψ) +RΩ̇(t)(x cosψ + y sinψ) ,

A′2 = −R2ϑ̇ϕ̇ sinϑ cosϑ+ (R2 + k2)ϑ̇ψ̇ sinϑ+

+RΩ̇(t) sinϑ(x sinψ − y cosψ) +RΩ(t) sinϑ(ẋ sinψ − ẏ cosψ) ,

A′3 = k2ϑ̇ϕ̇ sinϑ ,

and for the coefficients B′ls we have

B′11 = − (R2 + k2) , B′12 = 0 , B′13 = 0 ,

B′21 = 0 , B′22 = −(R2 sin2 ϑ+ k2) , B′23 = −k2 cosϑ ,

B′31 = 0 , B′32 = −k2 cosϑ , B′33 = − k2 .

The motion of this constrained system is described by the following three reduced
equations (see [26]):

(R2 + k2) ϑ̈+ (R2 + k2) ϕ̇ ψ̇ sinϑ−
−RΩ(t)(ẋ cosψ + ẏ sinψ)−R Ω̇(t)(x cosψ + y sinψ) = 0 ,

(R2 sin2 ϑ+ k2) ϕ̈+ k2 cosϑ ψ̈ +

+R2ϑ̇ ϕ̇ sinϑ cosϑ− (R2 + k2) ϑ̇ ψ̇ sinϑ−
−RΩ(t) sinϑ (ẋ sinψ − ẏ cosψ)−R Ω̇(t) sinϑ (x sinψ − y cosψ) = 0 ,

k2 cosϑφ̈+ k2ψ̈ − k2ϑ̇ ϕ̇ sinϑ = 0 .
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To simplify these equations we can use other coordinates, so called quasicoordi-
nates. Recall that ωx, ωy, ωz denote the components of the instantaneous angular
velocity, which are determined by means of the Euler angles

ωx = ϑ̇ cosψ + ϕ̇ sinϑ sinψ ,

ωy = ϑ̇ sinψ − ϕ̇ sinϑ cosψ ,

ωz = ψ̇ + ϕ̇ cosϑ .

(41)

Consider now “quasicoordinates” q1, q2, q3 on the configuration space defined byt
q̇1 = ωx, q̇

2 = ωy, q̇
3 = ωz. Denote by (t, x, y, q1, q2, q3, ẋ, ẏ, ωx, ωy, ωz) associated

coordinates on J1Y . Then the expression of Lagrangian (39) in quasicoordinates
is as follows:

L =
1

2

(
ẋ2 + ẏ2 + k2(ω2

x + ω2
y + ω2

z)
)
,

and equations of the constrained submanifold take the form (40). Reduced equa-
tions of motion of the constrained mechanical system in the quasicoordinates have
the form (

R2 + k2
)
q̈1 −R2Ω(t) q̇2 −RΩ̇(t)x+RΩ2(t) y = 0 ,(

R2 + k2
)
q̈2 +R2Ω(t) q̇1 −RΩ̇(t) y −RΩ2(t)x = 0 ,

− k q̈3 = 0 .

(42)

Using the definition of the quasicoordinates q1, q2, q3 we obtain that

q̇3 = ωz = C3 = const,

and the first two equations of the system (42) can be reduced to a system of first
order linear differential equations(

R2 + k2
)
ω̇x −R2Ω(t)ωy −R Ω̇(t)x+RΩ2(t) y = 0 ,(

R2 + k2
)
ω̇y +R2Ω(t)ωx −R Ω̇(t) y −RΩ2(t)x = 0 .

(43)

Substituting constraint equations (40) into equations (42) we get two first in-
tegrals: (

R2 + k2
)
ωx −RΩ(t)x = D1

(
R2 + k2

)
,(

R2 + k2
)
ωy −RΩ(t) y = D2

(
R2 + k2

)
,

(44)

where D1, D2 are arbitrary constants. Comparing the expressions for ωx, ωy from
the constraint equations (40) and from (44) we obtain

ẋ+
k2Ω(t)

R2 + k2
y +RD1 = 0, ẏ − k2Ω(t)

R2 + k2
x−RD2 = 0. (45)

Differentiating the last two equations we get the following system of second order
differential equations

ẍ+
k2Ω(t)

R2 + k2
ẏ +

k2Ω̇(t)

R2 + k2
y = 0, ÿ − k2Ω(t)

R2 + k2
ẋ+

k2Ω̇(t)

R2 + k2
x = 0 (46)
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for unknown functions x(t), y(t), which describe the motion of the point of contact
of the ball with the plane.

Let us suppose, that for a given function Ω(t) of the angular velocity of the
rotating plane we have found a solution x(t), y(t) of (46). If we put

A =
(
R2 + k2

)
, b(t) = R2 Ω(t),

and denote

F1 (t, x(t), y(t)) = R Ω̇(t)x−RΩ2(t) y ,

F2 (t, x(t), y(t)) = R Ω̇(t) y +RΩ2(t)x ,

then the system (43) can be written in the form

A ω̇x − b(t)ωy = F1 (t, x(t), y(t)) ,

A ω̇y + b(t)ωx = F2 (t, x(t), y(t)) .
(47)

This is a system of two first order linear non-homogeneous differential equations
with nonconstant coefficients. First, we solve the corresponding homogeneous sys-
tem

ω̇x =
B(t)

A
ωy, ω̇y = −B(t)

A
ωx

and obtain the following result

ωHx (t) = C1 sin

(
B(t)

A

)
+ C2 cos

(
B(t)

A

)
,

ωHy (t) = −C2 sin

(
B(t)

A

)
+ C1 cos

(
B(t)

A

)
,

where B(t) =
∫
b(t) dt. Next we are looking for a particular solution by the stan-

dard procedure of variation of constants

ωPx (t) = C1(t) sin

(
B(t)

A

)
+ C2(t) cos

(
B(t)

A

)
,

ωPy (t) = C1(t) cos

(
B(t)

A

)
− C2(t) sin

(
B(t)

A

)
,

where C1(t), C2(t) are obtained by integrating the following equations

Ċ1(t) = F1 (t, x(t), y(t)) sin

(
B(t)

A

)
+ F2 (t, x(t), y(t)) cos

(
B(t)

A

)
,

Ċ2(t) = F1 (t, x(t), y(t)) cos

(
B(t)

A

)
− F2 (t, x(t), y(t)) sin

(
B(t)

A

)
.

A general solution of equations (47) is then of the form(
ωx(t)
ωy(t)

)
=

(
ωHx (t)
ωHy (t)

)
+

(
ωPx (t)
ωPy (t)

)
.



54 Martin Swaczyna

The solution in terms of quasicoordinates is then determined by elementary quadra-
tures

q1(t) =

∫
ωx(t) dt, q2(t) =

∫
ωy(t) dt, q3(t) =

∫
C3 dt,

and the solution in terms of Euler angles is described by differential equations (41).
In a particular case, when Ω(t) = Ω0 = const., (see [22]) the system (46) takes

the form

ẍ+
k2Ω0

R2 + k2
ẏ = 0, ÿ − k2Ω0

R2 + k2
ẋ = 0.

Using first integrals (45) we write:

ẍ+

(
k2Ω0

R2 + k2

)2

x = − k2RΩ0

R2 + k2
D2 ,

ÿ +

(
k2Ω0

R2 + k2

)2

y = − k2RΩ0

R2 + k2
D1 .

A solution of the corresponding homogeneous system is:

xH(t) = A1 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A2 cos

[(
k2Ω0

R2 + k2

)2

t

]
,

yH(t) = A3 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A4 cos

[(
k2Ω0

R2 + k2

)2

t

]
,

where A1, A2, A3, A4 are arbitrary constants. Using the procedure of variation of
constants we get a particular solution:

xP (t) = −RD2
R2 + k2

k2Ω0
, yP (t) = −RD1

R2 + k2

k2Ω0
.

Finally, the general solution takes the form

x(t) = A1 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A2 cos

[(
k2Ω0

R2 + k2

)2

t

]
−RD2

R2 + k2

k2Ω0
,

y(t) = A3 sin

[(
k2Ω0

R2 + k2

)2

t

]
+A4 cos

[(
k2Ω0

R2 + k2

)2

t

]
−RD1

R2 + k2

k2Ω0
,

where D1, D2 are constants, which occur in the first integrals (44). Hence the ball
on the rotating table moves along ellipses parameters of which depend on initial
conditions.
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On D’Alembert’s Principle

Larry M. Bates, James M. Nester

Abstract. A formulation of the D’Alembert principle as the orthogonal pro-
jection of the acceleration onto an affine plane determined by nonlinear
nonholonomic constraints is given. Consequences of this formulation for
the equations of motion are discussed in the context of several examples,
together with the attendant singular reduction theory.

1 D’Alembert’s principle
Let us suppose that we have a Lagrangian or Hamiltonian mechanical system and
we wish to impose a constraint. The system has an n-dimensional configuration
space Q with local coordinates {qa}, velocity phase space TQ with the natural chart
{qa, va}, and momentum phase space P = T ∗Q with local coordinates (qa, pa). To
start, suppose we have a Lagrangian of the classical form kinetic energy minus
potential energy,

l =
1

2
g(v, v)− u(q).

We want to write down the equations of motion if we impose a (possibly time
dependent and nonholonomic) constraint of the form

c(q, v, t) = 0.

Later on we will discuss what happens if we have Lagrangians not of this simple
form, or more constraints, but for now it suffices to just to consider this case.

Differentiating the constraint with respect to the time t gives

d

dt
c = cav

a + cȧv̇
a + ct = 0

where ca = ∂c/∂qa, cȧ = ∂c/∂va, and ct = ∂c/∂t. The acceleration a is given by

ab = v̇b + Γbklv
kvl

2010 MSC: 70H33, 70H45, 37J60, 70F25
Key words: Nonholonomic constraints, d’Alembert’s principle.
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where the Γbkl are the Christoffel symbols of the Levi-Civita connection of the
metric. Substituting the acceleration into the differentiated constraint yields

ck̇a
k + (ckv

k − cȧΓaklv
kvl + ct) = 0.

The important point here is that for fixed (q, v, t) this equation represents an affine
relation for the accelerations in the tangent space TqQ, where we have used the
connection to identify the vertical space V(q,v)TQ with TqQ.

Given the acceleration a of the unconstrained problem, it must be modified so
that it lies in the affine plane. This is done by subtracting the component a⊥ of
a orthogonal to the plane, so the acceleration of the constrained problem is the
difference

aconstrained = a− a⊥

and lies in the affine plane. Observe that the vector a⊥ has components

a⊥
k = −λgkrcṙ

for some real number λ because of the form of the affine equation. Since we already
have a Lagrangian description of the unconstrained problem, the force covector for
the constrained problem may be written in the form

d

dt

(
∂l

∂va

)
− ∂l

∂qa
= λcȧ.

Observe that the specific form of the Lagrangian was not essential, one can
equally well work with the velocity Hessian gab := lȧḃ as long as the Lagrangian
is regular, i.e., the velocity Hessian defines an invertible metric. Furthermore, the
argument generalizes to the case of more than one constraint function, say c1 = 0,
. . . , cK = 0, yielding the constrained Euler-Lagrange equations

d

dt

(
∂l

∂va

)
− ∂l

∂qa
= λAc

A
ȧ

involving the Lagrange multipliers λ1, . . . , λK .

2 Other formulations
Assuming the regularity of the Lagrangian, we may push everything over to the
cotangent bundle and give a Hamiltonian description as well. This may be written
in a coordinate free manner for the vector field

X = q̇a∂qa + ṗb∂
pb

by using ϑ0, the canonical one-form on T ∗Q, the symplectic form ω = −dϑ0, the
Legendre transform L , as well as ϑA := FcA

∗
ϑ0, where FcA is the fiber derivative

of cA. Set φA = L∗ϑA. Then the constrained Hamilton’s equations may be written
in the form

X ω = dh+ λAφ
A
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The time derivative of a function f (with Hamiltonian vector field Xf ) along
an integral curve of the constrained vector field X is

df

dt
= 〈df,X〉 = ω(Xf , X) = −Xf (X ω) = −Xf (dh+ λAφ

A).

Setting ψ := dh+ λAφ
A, we may write this derivative in Poisson bracket form as

ḟ = {f, ψ}

where we are taking the Poisson bracket of the function f and the one form ψ to
be Λ(df, ψ), where Λ = ω−1 is the structure tensor of the Poisson bracket.

3 Easy consequences
The following is a partial list of easy consequences of the nonlinear formulation so
that one may see the similarities and differences with the affine theory. Some of
these are known and may be found in earlier work by de Leon et al [5].

3.1 Conservation of energy

Suppose that we have a time independent Lagrangian and impose the constraint
of constant energy. Then the Lagrange multiplier is zero, and the problem reduces
to Hamilton’s equations on a constant energy surface. We may view this as a
consistency check for the nonlinear constraint theory.

3.2 Nonconservation of energy

Suppose that we have a time independent Lagrangian and impose a time indepen-
dent constraint c. Then, letting the energy e be e = pv − l = lvv − l as usual, we
find

ė =

(
d

dt

(
∂l

∂va

)
− ∂l

∂qa

)
va,

and so by the equation of motion for the constrained problem

ė = λA
∂cA

∂va
va.

In general we do not expect this term to vanish, so unlike the case of linear nonholo-
nomic constraints, we do not have energy conservation even in the time independent
situation. Since this is not what one would expect from the usual Noether theory,
it only goes to show that such problems are really not variational problems in the
usual way, even though we have a Lagrangian. However, if the Lagrange multi-
pliers are not zero, there is an important case where this term will vanish, and
that is when the constraint functions are each homogeneous of some degree in the
velocities. For then, by Euler’s theorem on homogeneous functions,

∂cA

∂va
va ∝ cA = 0

by the constraint equation. Note that this is the case for linear constraints.
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3.3 The Lagrange multiplier

Suppose we have just one constraint. The Lagrange multiplier λ is chosen so that
the constrained vector field X is tangent to the constraint surface: 〈dc,X〉 = 0.
Since the constrained vector field X satisfies

X ω = dh+ λφ,

we have by symplectic inversion

〈dc,Xh + λφ#〉 = 0,

so that

λ = −〈dc,Xh〉
〈dc, φ#〉

= − {c, h}
〈dc, φ#〉

where Xh is the Hamiltonian vector field of h, and {c, h} is the Poisson bracket of
c and h. Note that the solvability of the Lagrange multiplier assumes the indepen-
dence condition dc ∧ φ 6= 0.

An immediate corollary is that if the constraint function is a first integral of
the Hamiltonian, then imposing the integral as a constraint is really no constraint
at all, since the multiplier is zero.

If we have multiple constraints, say c1, c2, . . . , cK = 0, then the equations of
motion take the form

X ω = dh+ λAφ
A.

The Lagrange multipliers λA may be found from the K equations

〈dcA, Xh〉+ λB〈dcA, φB#〉 = 0.

An evaluation of 〈dcA, φB#〉 gives −MAB = −gabcAȧ cBḃ , a contravariant metric on

the subspace spanned by the one forms cAȧ . As long as this metric is invertible one
can uniquely find the λA. If gab has a Euclidean signature this will be the case as
long as the one forms cAȧ are linearly independent. This is not sufficient, however,
for Lorentz signature metrics, such as those appearing in our relativistic particle
examples below.

4 Examples (1)
4.1 The brachystochrone

A good place to begin is with the brachystochrone. The brachystochrone is the
problem where a bead slides down a frictionless wire from rest at (x, y) = (0, 0) to
the point (x, y) = (a, b). Here we take the positive y direction to point vertically
downwards. The problem is to determine the shape of the wire so as to have a
minimum time of descent. For a falling body, from conservation of energy one
obtains v2 = 2gy. This can be viewed as a nonholomic constraint. In section 3.1
above we noted that such a constraint does no work—the associated constraint
force vanishes. But we can exploit this nonholonomic constraint in another way.
Using dl2 = dx2 + dy2 we may write the time T of descent to be

T =

∫
dt =

∫
dl

v
=

∫
1√
2gy

√(dx
dσ

)2

+
( dy
dσ

)2

dσ.
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where σ is any path parameter. The parameter invariance is connected with the fact
that this Lagrangian is degenerate. Consequently a proper Hamiltonian analysis
requires the Dirac algorithm. We will develop that shortly and include a description
of the results it yields when applied to this problem. But first let us note that for
this problem one can avoid the degeneracy of the Legendre transformation. Observe
that our Lagrangian can be viewed as the arc length due to the metric

ds2 =
1

2gy
(dx2 + dy2).

And so the objective is just to find a certain geodesic path of this metric. Now it
well known that there is an “equivalent” alternative to the arc length Lagrangian
for geodesics, namely its square:

L =
1

2gy

[(dx
ds

)2

+
(dy
ds

)2
]
.

This will give the same path, but with a uniform speed parameterization. Moreover,
for our problem it is apparent that we specifically want the unit speed geodesics of
this metric. Then the parameter is actually the physical time. A virtue of this new
Lagrangian is that it is non-degenerate, so there is no complication in passing to the
Hamiltonian. The Hamiltonian equations of motion for the associated Hamiltonian
h = gy(p2

x + p2
y)/2 are (upon setting g = 1)

ẋ = ypx, ṗx = 0, ẏ = ypy, ṗy = −h
y
.

The translational invariance of the metric in the x direction implies the conservation
of px, so we may reduce at µ = px along with h = 1 to get the reduced equation

ẏ = ypy =
√
y − µ2y2.

This separates and integrates to s = 1
µ arccos(2µ2y − 1). Inverting yields y =

1
2µ2 (1 − cosµs), and hence x = 1

2µ (s − 1
µ sinµs), from which we recognize the

familiar cycloidal solutions. In this example we have finessed the degeneracy of the
Legendre transformation. Further on we will reconsider that issue. Other aspects
of this problem are discussed in [6].

4.2 Dirac constraints

To deal with the proper dynamical formulation for relativistic particles, which
also involves finding an appropriate parametrization (the proper time) we first
sketch the Dirac Hamiltonian theory. In order to pass from the Lagrange equations
together with the undetermined constraint forces λA∂c

A/∂vk, to the Hamiltonian
description, one uses the Legendre transformation. If the Lagrangian is not regular,
so the momenta are not independent, then they satisfy some primary constraints
Φα(q, p) = 0. Following Dirac, one includes these constraints in the Hamiltonian
with Lagrange multipliers, so the total Hamiltonian takes the form h = h0 +uαΦα.
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The Hamiltonian evolution equations, including the velocity constraint forces, take
the form

dqk

dt
=
∂h0

∂pk
+ uα

∂Φα
∂pk

,

dpk
dt

= −∂h0

∂pk
− uα ∂Φα

∂pk
+ λAφ

A
k .

These differential equations are to be considered along with the two sets of con-
straint equations

Φα = 0, cA = 0.

The first possible obstruction is whether the constraint functions cA can be chosen
so that there exist one-forms on phase space φAk which are related by the degenerate
Legendre transform to cA

k̇
. Since the dynamical equations are required to preserve

the constraints, this leads to additional conditions which may yield new constraints
or fix the multipliers. In general, in attempting to determine the unknown multi-
pliers one can expect similar outcomes to the usual Dirac procedure:

1. there may be no solution,

2. there may be additional constraints,

3. the solution may not be unique.

Observe that the constraints Φα = 0 are well defined on phase space and their time
derivatives are linear in the unknown multipliers. In this case we know from Dirac
how to proceed. However, the constraints cA = 0 are velocity constraints, they are
not defined on phase space. In general there are no phase space functions which
are related to cA. Fortunately, from the Hamiltonian perspective there is a natural
“inverse” to the Legendre transformation, given by the first half of the Hamiltonian
evolution equations. Hence the velocity constraint function can be given in terms
of the phase space variables as

cA(qk, vk) = cA
(
qk,

∂h0

∂pk
+ uα

∂Φα
∂pk

)
= 0.

If cA is linear in v this expression will be linear in the multipliers, and there is
no insurmountable difficulty. In the general case the velocity constraints could
be nonlinear functions of the unknown multipliers. Moreover, preserving these
constraints could lead to expressions involving the derivatives of the multipliers.
This is the second obstruction.

In the relativistic examples below the velocity constraints are linear in an ex-
pression which is homogeneous of degree one in velocity, so they turn out to be
linear in the multiplier, so there is no difficulty.

4.3 The relativistic particle

We apply the above procedure to the following relativistic particle Lagrangians
with their associated proper time-constant magnitude velocity constraints (see for
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example Gràcia [8] or Krupková [10])

l1 = −mc
√
−gµνvµvν − V (x) + qvµAµ, C1 = c−

√
−gµνvµvν ,

l2 =
1

2
mgµνv

µvν − V (x) + qvµAµ, C2 =
1

2c

[
gµνv

µvν = c2
]
.

Here vµ = dxµ/dσ, where σ is an a priori arbitrary time parameter. Just for this
example we have changed our notation for the constraints in order to avoid any
possible confusion with the speed of light c. In both cases the dynamical equation
of motion can be rearranged to be in the form

d

dσ
(mgµνu

ν) = qvν(∂µAν − ∂νAµ)− ∂µV + λgµνu
ν ,

with uµ = dxµ/dτ with τ being the proper time. Contracting the equation of
motion with the 4-velocity gives the value of the multiplier: −uµ∂µV − λc2 = 0.
The final form of the equation of motion is then

d

dτ
(mgµνu

ν) = qFµνu
ν − (δνµ + c−2uνgµγu

γ)∂νV,

where, as usual, Fµν = ∂µAν − ∂νAµ is the Maxwell field. The authors know of
no textbook that gives a proper treatment of the relativistic velocity constraint.
Typically, the equations of motion are obtained and then the constraint is imposed
(see for example [7]) without any consideration of the force of constraint. This
happens to work if the the dynamics is compatible with the constraint, as is the
case of a charged particle interacting with the Maxwell field. Then the velocity
constraint does no work, so the multiplier λ vanishes. This is not the case for
the scalar potential, where the force must be Lorentz orthogonal to the 4-velocity.
There does not seem to be any way to get the proper relativistic force due to a
scalar potential directly from a Lagrangian. Nonholonomic constraints play an
essential role.

It is also of interest to give the Hamiltonian formulation of these examples. For
the Lagrangian l1, the Legendre transformation is degenerate, and so there is a
primary constraint. From

pµ =
∂l1
∂vµ

= mc
gµνv

ν√
−gαβvαvβ

+ qAµ,

set pµ := pµ − qAµ so the primary constraint has the form

gµνpµpν = −(mc)2.

The Hamiltonian h0 = pµv
µ − l1 = V (x) and so

h = V +
N

2m

[
gµνpµpν + (mc)2

]
,



64 Larry M. Bates, James M. Nester

where the primary Dirac constraint Lagrange multiplier N is called the lapse.
Hamilton’s equations take the form

dxµ

dσ
=
N

m
gµνpν ,

dpµ
dσ

= −∂µV +
N

m
pαg

αν(q∂µAν) + λ
pµ
mc

.

The velocity constraint 0 = c −
√
−N2

m2pµpµ determines that the Dirac mul-

tiplier N = 1. The preservation of the primary Dirac constraint determines
the velocity constraint multiplier since 0 = −pµ∂µV − λpµpµ/(mc) implies that
λ = (mc)−1pµ∂µV .

4.4 The brachystochrone as a constrained system

Now we can briefly return to the brachystochrone as a constrained system. The
Lagrangian has a general curve parameter σ and thus a gauge freedom type degen-
eracy, which leads to a primary constraint

2gy(p2
x + p2

y)− 1 = 0.

The Lagrangian is homogeneous of degree one in the velocities. Consequently by
Euler’s theorem the energy function vanishes. Then the Dirac Hamiltonian is just
given by a Lagrange multiplier multiple of the primary constraint:

H =
u

4

[
2gy(p2

x + p2
y)− 1

]
.

The primary constraint is preserved, and it is first class; the multiplier is an un-
determined gauge parameter. The simple choice u = 1 gives the same Hamilto-
nian equations found earlier. One might also consider including the gauge fixing
condition ẋ2 + ẏ2 = 2gy as a non-holonomic constraint along with its attendant
constraint force. This is essentially just imposing the constant energy as a non-
holonomic constraint, and, as mentioned, such a constraint does no work and has
vanishing constraint force. This is representative of what happens for other time
parameter gauge invariant actions (e.g., Jacobi), and their gauge fixing options.

5 The distributional splitting
In this section we derive the key distributional splitting and look at the special
case of homogeneous constraints. A consequence of homogeneity is that there is a
distributional formulation of the constrained Hamiltonian equations. The proofs of
these results are little changed from the earlier work of Bates and Śniatycki [2] who
treated the linear case, but we reproduce them here for the sake of completeness.

Let M be the manifold given by the common zeroes of the constraint functions
{c1, . . . , cK}, and let F be the distribution consisting of vectors in the kernel of the
forms {φ1, . . . , φK},

F = {v ∈ TP | 〈φA, v〉 = 0, a = 1, . . . ,K}.
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Set H to be the distribution formed by the intersection

H = F ∩ TM.

So far the only assumption needed on the metric was that it was nondegenerate.
However, in order to progress with the theory for indefinite metrics, we need an
additional assumption.

Definition 1. The constraint manifold M is said to be g-nondegenerate if the
restriction of the metric g to the distribution π∗TM

ω is nondegenerate. Here
π : P → Q is the cotangent bundle projection.1

It is easy to check that this if M is given locally by the common zeroes of constraint
functions c1, . . . , cK , then the condition is equivalent to the nondegeneracy of the
matrix MAB of section 3.3 whose AB component is g(π∗XcA , π∗XcB ).

Theorem 1. On a g-nondegenerate constraint manifold M , the restriction of ω to
the distribution H, denoted ωH , is nondegenerate.

Proof. Since the forms φA are assumed independent and semi-basic (since they
annihilate the vertical space V TP ), we may assert the existence of n−K additional
independent semi-basic one-forms φK+1, . . . , φn. In the local chart {q1, . . . , pn},
φa = φai dq

i. Let φ be the matrix with ab component φab . Our assumption implies
that the matrix φ is invertible. Define forms χa by

χa = (φ−1)jadpj , a = 1, . . . , n.

It then follows that {φ1, . . . , φn, χ1, . . . , χn} is a symplectic coframe as

φa ∧ χa = φai (φ−1)jadq
i ∧ dpj = dqa ∧ dpa = ω.

Since the restriction of ω to F is

ω|F = φK+1 ∧ χK+1 + · · ·+ φn ∧ χn,

it follows that the symplectic perpendicular Fω is

Fω = ker{φ1, . . . , φn, χK+1, . . . , χn},

and this implies that F is coisotropic. Since M is defined by the common zeroes
of c1, . . . , cK , tangent vectors to M are defined by the kernel of the forms

ψA = dcA = cA,mdq
m + cA,rdpr A = 1, . . . ,K.

It follows that the intersection of Fω and TM is given by

Fω ∩ TM = ker{φ1, . . . , φn, χK+1, . . . , χn, ψ
1, . . . , ψK}.

1That Fω could intersect the constraint manifold M nontransversally was overlooked in the
original proof for linear constraints found in [2], where I thought that the determinental multiplier
was always 1.
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The conclusion will follow if we can show that

φ1 ∧ · · · ∧ φn ∧ χK+1 ∧ · · · ∧ χn ∧ ψ1 ∧ · · · ∧ ψK

is a volume, since then it follows that Fω ∩ TM = 0, and so Fω ∩ H = 0. Since
Fω ⊕H = F by dimension count, and F is coisotropic, we may conclude that ωH
is nondegenerate.

To actually show that the 2n form is a volume, first observe that since the result
is a pointwise result, we may choose, for a fixed point z, a local symplectic chart
such that

φ1(z) = dq1, . . . , φn(z) = dqn, χ1(z) = dp1, . . . , χn(z) = dpn.

In other words, φab (z) = δab . This means that the wedge product

φ1 ∧ · · · ∧ φn ∧ χK+1 ∧ · · · ∧ χn ∧ ψ1 ∧ · · · ∧ ψK

will equal det(gK)dq1∧ · · ·∧dqn∧dp1∧ · · ·∧dpn where det(gK) is the determinant
of the upper left K × K block of the metric gab in this frame (this is just the
earlier defined MAB). This is immediate once one realizes that the only part of the
forms ψa that survive the wedge product with all of the φa are the terms φarg

rsdps,
and all the terms involving dpK+1, . . . , dpn are annihilated by being wedged with
χK+1 ∧ · · · ∧ χn. Observe that the inequality det(gK) 6= 0 is exactly the condition
of g-nondegeneracy in our special frame. �

Define the distribution K by K = TM ∩ Hω. Since TM = H ⊕ K, the
constrained vector field X may be decomposed as X = XH + XK . Two extreme
cases of this are when the constraint is the Hamiltonian itself, so the Lagrange
multiplier vanishes and X = XK , and when the constraints are homogeneous, and
then X = XH . To see this, observe that for A = 1, . . . ,K, the pairing

〈φA, X〉 = 〈φA, q̇〉 = 0

by homogeneity, which implies that X is in H. Evaluating the constrained equation
of motion

X ω = dh+ λAφ
A

on the distribution H annihilates the terms involving the Lagrange multipliers, and
we obtain

X ωH = dhH .

The expression dhH denotes the restriction of dh to the distribution H, and we may
think of the constrained Hamiltonian equations as being in distributional form.

6 Conservation laws
In Hamiltonian mechanics symmetry (and the closely related reduction theory)
are usually studied together with conservation laws because of their equivalence,
which is the content of the first Noether theorem. In nonholonomic systems, this
equivalence is in general broken, so not all symmetries yield conservation laws, and
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not all conservation laws yield symmetries (see [2] for a simple example.) Looking
ahead to the reduction theory, we will say that a vector is horizontal if it lies in
the distribution H.

Suppose that we have a Lie group G acting in a Hamiltonian way on the phase
space P such that it possesses a momentum map j : P → g∗. In other words, for
each ζ ∈ g∗, the momentum jζ corresponding to ζ

jζ = 〈j, ζ〉

has a Hamiltonian vector field Xζ satisfying

Xζ ω = djζ .

If we further assume that G leaves the constraint manifold M , the constraint
forms φa and the Hamiltonian h invariant, then it also leaves the Lagrange multi-
pliers invariant, and thus the structure of the equations of motion

X ω = dh+ λAφ
A

is invariant as well. The vector field Xζ is called an infinitesimal symmetry.

Lemma 1. The momentum jζ associated to ζ is conserved if the vector field Xζ is
horizontal.

Proof. This is a simple calculation:

〈djζ , X〉 = X (Xζ ω〉 = −Xζ (dh+ λAφ
A) = −Xζ λAφ

A = 0. �

Observe that the invariance of the constraint manifold M was never used in the
proof of the lemma. This implies that the following more general theorem is true.

Theorem 2. Let f be a function with Hamiltonian vector field Xf with the prop-
erty that it preserves the Hamiltonian h and lies in the distribution F consisting
of the kernel of the constraint forms φA. Then f is a constant of motion.

7 Symmetry and reduction
So far the nonlinear constraint theory looks virtually identical to the linear theory.
It is in the reduction by symmetry that the nonlinear case differs, and this is
because the constrained vector field does not have to lie in the distribution H.

Recall that the time derivative of a function f along an integral curve of the
constrained vector field X is

df

dt
= 〈df,X〉 = −Xf (dh+ λAφ

A).

Set ψ := dh+ λAφ
A, write this derivative in Poisson bracket form as

ḟ = {f, ψ}

where we are taking the Poisson bracket of the function f and the one form ψ to
be Λ(df, ψ), where Λ = ω−1 is the structure tensor of the Poisson bracket.
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In specific problems it is often more convenient to solve for the Lagrange mul-
tipliers explicitly and then use a Dirac bracket-like formulation in which the mul-
tipliers are eliminated. Since our bracket convention implies

{f, dh+ λAφ
A} = {f, h}+ λA{f, φA}

and the preservation of the constraints by the dynamics implies

0 = ċA = XcA (X ω) = ω(Xh, XcA)− λB{cA, φB},

and we already have the matrixMBD := −{cB , φD} with assumed inverseMEFM
FD =

δDE from which the Lagrange multiplier λA may be found as

λA = −MAB{h, cB}.

This implies that the bracket formulation of the equations of motion may be given
as

ḟ = {f, h}+ {f, φA}MAB{cB , h}.

It is important to note that this dynamical equation is only defined on the image of
the constraint manifold under the Legendre transformation, and not on the entire
phase space. In practice however, keeping track of this is not an issue, and we will
continue to ignore it as it makes no essential conceptual difference in what follows.

Let G be a symmetry group of the dynamical system, by which we mean that the
group G acts symplectically on the phase space, preserves the constraint manifold
and constraint forms, and leaves the Hamiltonian invariant. These assumptions
imply that the group action also preserves the Poisson bracket, the constraint
distributions H and K as well as the Lagrange multipliers.

Now, if f is a function invariant under the action of the symmetry group G,
f ∈ C∞(P )G, then the Poisson bracket {f, ψ} is invariant as well, since both Λ
and ψ are. This implies that the map

{·, ψ} : C∞(P )G → C∞(P )G : f → {f, ψ}

is an outer Poisson derivation2 (it is an outer derivation since it involves an invariant
one-form and not an invariant function) on the ring of invariant functions, and so if
f ∈ C∞(P )G, ḟ = {f, ψ} may be viewed as a differential equation on the reduced
space P/G. In this way a vector field X̄ is defined on the reduced space, and this is
the projection of X by the quotient map P → P/G when restricted to the quotient
of the constraint manifold M/G. A key benefit to considering reduction in this
formulation is that the construction is well-defined even when the quotient space is
not a manifold, as long as we assume that the group action is proper, for then the
quotient space is a subcartesian differential space, and the invariant functions still
separate points on the quotient (a good reference for this material may be found
in Śniatycki [13]). In this sense we may view the Poisson bracket-like formulation
as providing the singular reduction of nonlinear nonholonomic constraints simply
by restriction to the invariant functions.

2It is important to note here that there is no statement that the dynamical flow preserves the
Poisson bracket, even on the constraint manifold.
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8 Examples (2)
8.1 The central force problem with a speed constraint

Consider the motion of a particle in space subject to the action of a central force
and and the constraint of constant speed. Then the Hamiltonian may be written
as

h =
1

2
|p|2 + V (r)

with r = |q|. Take the constraint to be c = 1
2 |p|

2. The equations of motion are

q̇a = pa

ṗa = −q
a

r
V ′(r)− λpa

Solving for the Lagrange multiplier yields

λ = − 1

2c

q · p
r
V ′(r).

Since the problem is rotationally invariant, we introduce the three independent
rotation invariants σ1 = r2 = |q|2, σ2 = q · p, and σ3 = |p|2 = 2c. The singularly
reduced problem in σ1-σ2 space (with the semi-algebraic constraint σ1 ≥ 0) has
equation of motion

σ̇1 = 2σ2,

σ̇2 = 2

(
c−

(
σ1 −

1

2c
σ2

2

)
dV

dσ1

)
.

The dynamical interest here is in the destabilization of the circular orbits in Ke-
plerian like potentials with the imposition of the constant speed constraint. If
this seems counterintuitive, one may think of it as the imposition of the constant
speed constraint, even though it is rotationally invariant, means that the angular
momentum is no longer conserved.

8.2 A classical particle with spin

The reduction by symmetry required that the bracket map the invariant functions
to invariant functions:

{·, ψ} : C∞(P )G → C∞(P )G.

However, and this is the crucial point, there is no requirement that the form ψ
actually be invariant as well in order to have reduced dynamics3. Thus, it is possible
to have reduction to invariant functions without the full problem being invariant.
From a distributional point of view, this says that reduction exists in the case when
the constrained vector field varies under the group action, but only in directions
that are parallel to the tangents to the group action. A nontrivial example of this

3There is such a requirement if one wants to have the reduced dynamics still in Poisson like
form, with a corresponding reduced form ψ̄.
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behaviour may be found in the reduction of a classical spinning rigid body to the
classical particle with spin. Consider a uniformly charged symmetric rigid body
with moment of inertia I, total charge q, mass m and gyromagnetic ratio g in the
presence of a magnetic field B. The equations of motion are

ẋ = v,

v̇ =
q

m
(v ×B) +

gI

m
DB∗(x)(k(AdAX))

Ȧ = A(X − gAdA−1 B(x)),

Ẋ = 0.

Here x ∈ R3 is the position of the centre of mass, v ∈ R3 is the velocity of the
centre of mass, A ∈ SO(3) is the orientation of the rigid body, and X ∈ so(3) is
the angular velocity. k is the Killing metric on the rotation group. We have also
employed the identification of antisymmetric matrices and 3-vectors as appropriate.
The nonlinear nonholonomic constraint of constant length of angular momentum
is applied, and the problem is reduced with respect to the action of the rotation
group to get Souriau’s model of a classical particle with spin

ẋ = v,

v̇ =
q

m
(v ×B) +

g

m
DB∗(x)(S)

Ṡ = g[S,B]

The details of this calculation, but not this point of view, may be found in [4].

9 Notes
1. In the mechanics literature there are differing definitions of just what consti-

tutes D’Alembert’s principle, the virtual work of perfect constraints, etc. It
seems to us that the D’Alembert principle is at heart the choice to pick the
orthogonal projection of the acceleration of the unconstrained problem onto
the affine plane. One could pick a different projection, but it would in general
result in different constrained equations of motion. In coming to this under-
standing we profited greatly from the thoughtful discussions in Marle [11]
and Rosenberg [12], as well as many insightful comments from J. Śniatycki.

2. One may observe a superficial analogy between the constructions of various
authors computing a nonholonomic bracket (van der Schaft and Maschke [14],
Bates [1], de Leon [5], Koon and Marsden [9] etc) and this paper. However,
there is a fundamental difference in that we are using the standard Poisson
bracket and putting all of the nonholonomic information into the one-form
that drives the dynamics.

3. In various examples one may of course consider what happens to the image
of the various distributions H, K under reduction. This is of interest in the
special case where the reduced distribution K̄ = 0, so the invariant part of
the dynamics satisfies the distributional Hamiltonian equations. Our results
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would indicate that this is not the most fundamental way to view these prob-
lems, and this is why we have stressed that the fundamental structure that
enables reduction by symmetry is the action of the outer Poisson derivation
on the invariant functions. Compare the discussion in Cantrijn et al [3].
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[10] O. Krupková, J. Musilová: The relativistic particle as a mechanical system with
non-holonomic constraints. J. Phys. A: Math. Gen. 34 (2001) 3859–3875.

[11] C.-M. Marle: Various approaches to conservative and nonconservative nonholonomic
systems. Reports on mathematical physics 42 (1998) 211–229.

[12] R. Rosenberg: Analytical dynamics of discrete systems. Plenum press (1997).
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Communications in Mathematics 19 (2011) 73–84
Copyright c© 2011 The University of Ostrava 73

Gradient estimates for a nonlinear equation

∆fu+ cu−α = 0 on complete noncompact manifolds

Jing Zhang, Bingqing Ma

Abstract. Let (M, g) be a complete noncompact Riemannian manifold. We
consider gradient estimates on positive solutions to the following nonlinear
equation

∆fu+ cu−α = 0 in M,

where α, c are two real constants and α > 0, f is a smooth real valued func-
tion on M and ∆f = ∆−∇f∇. When N is finite and the N -Bakry-Emery
Ricci tensor is bounded from below, we obtain a gradient estimate for pos-
itive solutions of the above equation. Moreover, under the assumption that
∞-Bakry-Emery Ricci tensor is bounded from below and |∇f | is bounded
from above, we also obtain a gradient estimate for positive solutions of the
above equation. It extends the results of Yang [16].

1 Introduction
Let (M, g) be a complete noncompact n-dimensional Riemannian manifold. For
a smooth real-valued function f on M , the drifting Laplacian (see [11], [12]) is
defined by ∆f = ∆−∇f∇. There is a naturally associated measure dµ = e−fdV
on M , which makes the operator ∆f self-adjoint. The N -Bakry-Emery Ricci tensor
is defined by

RicNf = Ric +∇2f − 1

N
df ⊗ df

for 0 ≤ N ≤ ∞ and N = 0 if and only if f = 0. Here ∇2 is the Hessian and Ric is
the Ricci tensor. In particular, the ∞-Bakry-Emery Ricci tensor is denoted by

Ricf := Ric∞f = Ric +∇2f

with Ricf = λg is called a gradient Ricci soliton which is extensively studied in
Ricci flow.

2010 MSC: Primary 58J05, Secondary 35J60.
Key words: Gradient estimates, Positive solution, Bakry-Emery Ricci tensor.
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The author in [16] obtained interesting gradient estimates for positive solutions
to the following elliptic equation with singular nonlinearity

∆u+ cu−α = 0 in M, (1)

where α, c are two real constants and α > 0. For the importance of equation (1),
the authors who are interested in it see [5], [8]. In this paper, we consider the
following equation

∆fu+ cu−α = 0 in M, (2)

where f is a smooth real-valued function on M . For some interesting gradient
estimates in this direction, for example, we refer to [2], [3], [6], [7], [9], [10], [15].
When N is finite and the N -Bakry-Emery Ricci tensor is bounded from below, we
obtain a gradient estimate for positive solutions of the above equation. Moreover,
under the assumption that ∞-Bakry-Emery Ricci tensor is bounded from below
and |∇f | is bounded from above, we also obtain a gradient estimate for positive
solutions of the above equation. Main results of this paper are stated as follows:

Theorem 1. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with N -Bakry-Emery Ricci tensor bounded from below by the constant
−K := −K(2R), where R > 0 and K(2R) ≥ 0, in the metric ball Bp(2R) with
radius 2R around p ∈ M . Let u be a positive solution of (2) with α, c two real
constants and α > 0. Then

(1) If c > 0, we have

|∇u|2

u2
+ cu−α−1 ≤ (n+N)(n+N + 2)c1

2

R2
+

(n+N)[(n+N − 1)c1 + c2]

R2

+
(n+N)

√
(n+N)Kc1
R

+ 2(n+N)K.

(3)

(2) If c < 0, we have

|∇u|2

u2
+ cu−α−1 ≤ (A+

√
A)|c|( inf

Bp(2R)
u)
−α−1

+
(n+N)[(n+N − 1)c1 + c2]

R2

+
(n+N)c21

R2

(
n+N + 2 +

n+N

2
√
A

)
+

(n+N)
√

(n+N)Kc1
R

+
(

2 +
1√
A

)
(n+N)K, (4)

where A = (n+N)(α+ 1)(α+ 2).

Theorem 2. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold and f ∈ C2(M) be a function satisfying |∇f | ≤ θ. Assume that
∞-Bakry-Emery Ricci tensor bounded from below by the constant−K := −K(2R),
where R > 0 and K(2R) ≥ 0, in the metric ball Bp(2R) with radius 2R around
p ∈M . Let u be a positive solution of (2) with α, c two real constants and α > 0.
Then
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(1) If c > 0, we have

|∇u|2

u2
+ cu−α−1 ≤ n[(n+ 2)c21 + (n− 1)c1 + c2]

R2
+

5nc1θ

R
+ 4θ2

+
nc1
√

(n− 1)K

R
+ 2nK.

(5)

(2) If c < 0, we have

|∇u|2

u2
+ cu−α−1 ≤ (B +

√
B)|c|( inf

Bp(2R)
u)
−α−1

+
n

R2

(
(2 + 2n+

n√
B

)c21

+ (n− 1)c1 + c2

)
+
nc1θ

R
+
(

1 +
1

2
√
B

)
8θ2

+
nc1
√

(n− 1)K

R
+
(

2 +
1√
B

)
nK,

(6)

where B = n(α+ 1)(α+ 2).

From (1) in Theorem 1, we obtain the following result immediately:

Corollary 1. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with nonnegative N -Bakry-Emery Ricci tensor. Assume that two real
constants α, c in (2) are positive. Then the equation (2) does not have a positive
smooth solution.

2 Proof of Theorem 1
Let h = log u. Then one has from (2) that

∆fh =
1

u
∆fu− |∇h|2 = −cu−α−1 − |∇h|2.

Define F = cu−α−1 + |∇h|2, then we have ∆fh = −F . It is well known that for
the N -Bakry-Emery Ricci tensor, we have the Bochner formula (see [14]):

∆f |∇h|2 ≥
2

n+N
|∆fh|2 + 2〈∇h,∇(∆fh)〉 − 2K|∇h|2

=
2

n+N
F 2 − 2〈∇h,∇F 〉 − 2K|∇h|2.

Hence, one gets

∆fF = c∆fu
−α−1 + ∆f |∇h|2

≥ c(α+ 1)(α+ 2)u−α−1|∇h|2 − c(α+ 1)u−α−2∆fu

+
2

n+N
F 2 − 2〈∇h,∇F 〉 − 2K|∇h|2.

(7)

Let ξ be a cut-off function such that ξ(r) = 1 for r ≤ 1, ξ(r) = 0 for r ≥ 2,
0 ≤ ξ(r) ≤ 1, and

0 ≥ ξ− 1
2 (r)ξ

′
(r) ≥ −c1

ξ′′(r) ≥ −c2
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for positive constants c1 and c2. Denote φ by ρ(x) = d(x, ρ) the distance between
x and p in M . Let

φ(x) = ξ

(
ρ(x)

R

)
.

Using an argument of Calabi [1] (see also Cheng and Yau [4]), we can assume
without loss of generality that the function φ is smooth in Bp(2R). Then, we have

|∇φ|2

φ
≤ c21
R2

. (8)

It has been shown by Qian[13] that

∆f (ρ2) ≤ (n+N)
(

1 +

√
1 +

4Kρ2

n+N

)
.

Hence, we have

∆fρ =
1

2ρ
[∆f (ρ2)− 2|∇ρ|2]

≤ n+N − 2

2ρ
+
n+N

2ρ

(
1 +

√
4Kρ2

n+N

)
=
n+N − 1

ρ
+
√

(n+N)K.

It follows that

∆fφ =
ξ′′(r)|∇ρ|2

R2
+
ξ′(r)∆fρ

R

≥ −
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

.

(9)

Define G = φF . We may assume that G achieves its maximal value Q at the
point x ∈ Bp(2R) and assume that Q is positive (otherwise the proof is trivial).
Then at the point x,

0 = ∇G = φ∇F + F∇φ

and ∆fG ≤ 0. Therefore, at the point x, it holds that

0 ≥ ∆fG = ∆G− 〈∇f,∇G〉
= φ∆fF + F∆fφ+ 2〈∇φ,∇F 〉

= φ∆fF + F∆fφ− 2F
|∇φ|2

φ

≥ 2

n+N
φF 2 − 2φ〈∇h,∇F 〉 − 2Kφ|∇h|2

−
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

F

− 2c21
R2

F + c(α+ 1)(α+ 2)u−α−1φ|∇h|2 − c(α+ 1)u−α−2φ∆fu,
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which shows that

0 ≥ 2

n+N
G2 + 2G〈∇h,∇φ〉 − 2Kφ2|∇h|2

−
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

G

− 2c21
R2

G+ c(α+ 1)(α+ 2)u−α−1φ2|∇h|2 − c(α+ 1)u−α−2φ2∆fu.

(10)

Next, we consider the following two cases: (1) c > 0; (2) c < 0.

(1) When c > 0, then we have F = |∇h|2 + cu−α−1 > 0 and |∇h| < F
1
2 . Since

〈∇h,∇φ〉 ≤ |∇h||∇φ| ≤ c1
R
F

1
2φ

1
2 ,

2c1
R
G

3
2 ≤ (n+N)c21

R2
G+

1

n+N
G2,

then (10) yields

0 ≥ 2

n+N
G2 − 2c1

R
G

3
2 − 2Kφ|∇h|2

−
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

G

− 2c21
R2

G+ c(α+ 1)2u−α−1φ2|∇h|2 + c(α+ 1)u−α−1φ2F

≥ 1

n+N
G2 − (n+N + 2)c21

R2
G− 2KG

−
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

G.

(11)

From (11), we obtain

G ≤ (n+N)(n+N + 2)c21
R2

+
(n+N)[(n+N − 1)c1 + c2]

R2

+
(n+N)c1

R

√
(n+N)K + 2(n+N)K

and hence

sup
Bp(2R)

F ≤ G ≤ (n+N)(n+N + 2)c21
R2

+
(n+N)[(n+N − 1)c1 + c2]

R2

+
(n+N)c1

R

√
(n+N)K + 2(n+N)K.

(12)

Now (1) of Theorem 1 follows easily from the inequality above.
(2) When c < 0, if F ≤ 0, then the estimate in (2) of Theorem 1 is trivial.

Hence we assume F > 0. Under the assumption that F > 0, one gets |∇h| > F
1
2 .

Since

2G〈∇h,∇φ〉 ≤ 1

n+N
G2 +

(n+N)c21
R2

φ|∇h|2,
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then (10) yields

0 ≥ 1

n+N
G2 − (n+N)c21

R2
φ|∇h|2 − 2Kφ2|∇h|2

−
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

G

− 2c21
R2

G+ c(α+ 1)(α+ 2)( inf
Bp(2R)

u)
−α−1

φ2|∇h|2

+ c2(α+ 1)( sup
Bp(2R)

u)
−2α−2

φ2

≥ 1

n+N
G2 − (n+N)c21

R2
φF − (n+N)c21

R2
φ|c|( inf

Bp(2R)
u)
−α−1

−
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

G

− 2c21
R2

G− J(2R)φ2F − L(2R)φ2,

where

J(2R) = 2K − c(α+ 1)(α+ 2)( inf
Bp(2R)

u)
−α−1

,

L(2R) = |c|J(2R)( inf
Bp(2R)

u)
−α−1 − c2(α+ 1)( sup

Bp(2R)

u)
−2α−2

.

This shows that

0 ≥ 1

n+N
G2

−
( (n+N + 2)c21

R2
+

(n+N − 1 +
√

(n+N)KR)c1 + c2
R2

+ J(2R)
)
G

− (n+N)c21
R2

|c|( inf
Bp(2R)

u)
−α−1 − L(2R).

Hence

G ≤ b+
√
b2 + 4d

2
≤ b+

√
d, (13)

where

b = (n+N)J(2R) +
(n+N)[(n+N − 1 +

√
(n+N)KR)c1 + c2]

R2

+
(n+N)(n+N + 2)c21

R2
,

d = (n+N)L(2R) +
(n+N)2c21

R2
|c|( inf

Bp(2R)
u)
−α−1

.
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Let m = (infBp(2R) u)
−α−1

, M = (supBp(2R) u)
−α−1

. We have

√
d =

√
(n+N)c2(α+ 1)[(α+ 2)m2 −M2] + [

(n+N)c21
R2

|c|+ 2(n+N)|c|K]m

≤
√

(n+N)c2(α+ 1)(α+ 2)m2 + [
(n+N)c21

R2
|c|+ 2(n+N)|c|K]m

≤
√

(n+N)(α+ 1)(α+ 2)|c|m+
(n+N)c21

R2 + 2(n+N)K

2
√

(n+N)(α+ 1)(α+ 2)
.

It follows from (13) that

G ≤ 2(n+N)K +A|c|m+
(n+N)[(n+N − 1 +

√
(n+N)KR)c1 + c2]

R2

+
(n+N)(n+N + 2)c21

R2
+
√
A|c|m+

(n+N)2c21
R2 + 2(n+N)K

2
√
A

= (A+
√
A)|c|m+

(n+N)[(n+N − 1)c1 + c2]

R2

+
(n+N)c21

R2

(
n+N + 2 +

n+N

2
√
A

)
+

(n+N)
√

(n+N)Kc1
R

+
(

2 +
1√
A

)
(n+N)K,

(14)

where
A = (n+N)(α+ 1)(α+ 2).

Therefore, we obtain (2) of Theorem 1. �

3 Proof of Theorem 2
Let h = log u. Then we have

∆fh = −cu−α−1 − |∇h|2.

Denote by F = cu−α−1 + |∇h|2, then we have ∆fh = −F . Applying the Bochner
formula to h, we get (see [14]):

∆f |∇h|2 = 2|D2h|2 + 2〈∇h,∇(∆fh)〉+ 2Ricf (∇h,∇h). (15)

Since

|D2h|2 ≥ 1

n
(∆h)2

=
1

n
[F − 〈∇h,∇f〉]2

≥ 1

n
F 2 − 2

n
F 〈∇h,∇f〉,

then we derive from (15)

∆f |∇h|2 ≥
2

n
F 2 − 4

n
F 〈∇h,∇f〉 − 2〈∇h,∇F 〉 − 2K|∇h|2. (16)
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Thus we have

∆fF = c∆fu
−α−1 + ∆f |∇h|2

≥ c(α+ 1)(α+ 2)u−α−1|∇h|2 − c(α+ 1)u−α−2∆fu

+
2

n
F 2 − 4

n
F 〈∇h,∇f〉 − 2〈∇h,∇F 〉 − 2K|∇h|2.

(17)

Let ξ be a cut-off function such that ξ(r) = 1 for r ≤ 1, ξ(r) = 0 for r ≥ 2,
0 ≤ ξ(r) ≤ 1, and

0 ≥ ξ− 1
2 (r)ξ

′
(r) ≥ −c1

ξ′′(r) ≥ −c2

for positive constants c1 and c2. Denote φ by ρ(x) = d(x, ρ) the distance between
x and p in M . Let

φ(x) = ξ

(
ρ(x)

R

)
.

Using an argument of Calabi [1] (see also Cheng and Yau [4]), we can assume
without loss of generality that the function φ is smooth in B2R(p). Then, we have

|∇φ|2

φ
≤ c21
R2

. (18)

Since Ricf ≥ −K and |∇f | ≤ θ, we have from the Theorem 1.1 in [14]:

∆fρ ≤
√

(n− 1)K coth
(√ K

n− 1
ρ
)

+ θ

≤ (n− 1)
(1

ρ
+

√
K

n− 1

)
+ θ.

Therefore, we obtain

∆fφ =
ξ′′(r)|∇ρ|2

R2
+
ξ′(r)∆fρ

R

≥ −
(n− 1 +

√
(n− 1)KR+ θR)c1 + c2

R2
.

(19)

Define G = φF . We assume that G achieves its maximal value Q at the point
x ∈ Bp(2R) and assume that Q is positive (otherwise the proof is trivial). Then at
the point x,

0 = ∇G = φ∇F + F∇φ

and ∆fG ≤ 0. This shows that

∇F = −F
φ
∇φ.
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Therefore, at the point x, it holds that

0 ≥ ∆fG = φ∆fF + F∆fφ+ 2〈∇φ,∇F 〉

= φ∆fF + F∆fφ− 2F
|∇φ|2

φ

≥ 2

n
φF 2 − 4

n
φF 〈∇h,∇f〉 − 2φ〈∇h,∇F 〉 − 2Kφ|∇h|2

−
(n− 1 +

√
(n− 1)KR+ θR)c1 + c2

R2
F − 2c21

R2
F

+ c(α+ 1)(α+ 2)u−α−1φ|∇h|2 − c(α+ 1)u−α−2φ∆fu,

which means that

0 ≥ 2

n
G2 − 4

n
φG〈∇h,∇f〉+ 2G〈∇h,∇φ〉 − 2Kφ2|∇h|2

− 2c21 + (n− 1)c1 + c2
R2

G−
(
√

(n− 1)K + θ)c1
R

G

+ c(α+ 1)(α+ 2)u−α−1φ2|∇h|2 − c(α+ 1)u−α−2φ2∆fu.

(20)

Next, we consider two cases: (1) c > 0; (2)c < 0.

(1) When c > 0, we have F = |∇h|2 + cu−α−1 > 0 and |∇h| < F
1
2 . Since

|〈∇h,∇φ〉| ≤ |∇h||∇φ| ≤ c1
R
F

1
2φ

1
2 ,

|〈∇h,∇f〉| ≤ |∇h||∇f | ≤ F 1
2 |∇f |,

then from (20) we obtain

0 ≥ 2

n
G2 − 4

n
|∇f |G 3

2 − 2c1
R
G

3
2 − 2Kφ|∇h|2 − 2c21 + (n− 1)c1 + c2

R2
G

−
(
√

(n− 1)K + θ)c1
R

G+ c(α+ 1)2u−α−1φ2|∇h|2

+ c(α+ 1)u−α−1φ2F

≥ 2

n
G2 − 4

n
|∇f |G 3

2 − 2c1
R
G

3
2 − 2KG− 2c21 + (n− 1)c1 + c2

R2
G

−
(
√

(n− 1)K + θ)c1
R

G.

(21)

Using the Schwarz inequality, one has( 4

n
|∇f |+ 2c1

R

)
G

3
2 ≤ n

( 2

n
|∇f |+ c1

R

)2

G+
1

n
G2

=
( 4

n
|∇f |2 +

4c1
R
|∇f |+ nc21

R2

)
G+

1

n
G2.

(22)

Inserting (22) into (21) yields

0 ≥ 1

n
G2 −

( 4

n
|∇f |2 +

4c1
R
|∇f |

)
G− 2KG

− (n+ 2)c21 + (n− 1)c1 + c2
R2

G−
(
√

(n− 1)K + θ)c1
R

G.
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Hence

G ≤ n[(n+ 2)c21 + (n− 1)c1 + c2]

R2
+

5nc1θ

R
+ 4θ2 +

nc1
√

(n− 1)K

R
+ 2nK, (23)

and

sup
Bp(2R)

F ≤ G ≤ n[(n+ 2)c21 + (n− 1)c1 + c2]

R2

+
5nc1θ

R
+ 4θ2 +

nc1
√

(n− 1)K

R
+ 2nK.

We complete the proof of (1) in Theorem 2.
(2) When c < 0, if F ≤ 0, then the estimate in (2) of Theorem 2 is trivial.

Hence we assume F > 0 and hence |∇h| > F
1
2 . Noticing

2G〈∇h,∇φ〉 ≤ 2
c1
R
Gφ

1
2 |∇h| ≤ 1

2n
G2 +

2nc21
R2

φ|∇h|2,

4

n
φG〈∇h,∇f〉 ≤ 4

n
φG|∇h||∇f | ≤ 1

2n
G2 +

8

n
|∇f |2φ2|∇h|2,

we have from (20)

0 ≥ 1

n
G2 − 8

n
|∇f |2φ2|∇h|2 − 2nc21

R2
φ|∇h|2 − 2Kφ2|∇h|2 − 2c21 + (n− 1)c1 + c2

R2
G

−
(
√

(n− 1)K + θ)c1
R

G+ c(α+ 1)(α+ 2)( inf
Bp(2R)

u)
−α−1

φ2|∇h|2

+ c2(α+ 1)( sup
Bp(2R)

u)
−2α−2

φ2

≥ 1

n
G2 −

( 8

n
|∇f |2 +

2nc21
R2

)
φF −

( 8

n
|∇f |2 +

2nc21
R2

)
φ|c|( inf

Bp(2R)
u)
−α−1

− 2c21 + (n− 1)c1 + c2
R2

G−
(
√

(n− 1)K + θ)c1
R

G− J(2R)φ2F − L(2R)φ2,

where

J(2R) = 2K − c(α+ 1)(α+ 2)( inf
Bp(2R)

u)
−α−1

,

L(2R) = |c|J(2R)( inf
Bp(2R)

u)
−α−1 − c2(α+ 1)( sup

Bp(2R)

u)
−2α−2

.

This shows that

0 ≥ 1

n
G2

−
( 8

n
|∇f |2 +

(2n+ 2)c21 + (n− 1)c1 + c2
R2

+
(
√

(n− 1)K + θ)c1
R

+ J(2R)
)
G

−
( 8

n
|∇f |2 +

2nc21
R2

)
|c|( inf

Bp(2R)
u)
−α−1 − L(2R).
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Hence one has

G ≤ b+
√
b2 + 4d

2
≤ b+

√
d, (24)

where

b = nJ(2R) + 8|∇f |2 +
n[(2n+ 2)c21 + (n− 1)c1 + c2]

R2
+
nc1(

√
(n− 1)K + θ)

R
,

d = nL(2R) +
(

8|∇f |2 +
2n2c21
R2

)
|c|( inf

Bp(2R)
u)
−α−1

.

Let m = (infBp(2R) u)
−α−1

, M = (supBp(2R) u)
−α−1

. We have

√
d =

√
nc2(α+ 1)[(α+ 2)m2 −M2] + (2nK + 8|∇f |2 +

2n2c21
R2

)|c|m

≤
√
nc2(α+ 1)(α+ 2)m2 + (2nK + 8|∇f |2 +

2n2c21
R2

)|c|m

≤
√
n(α+ 1)(α+ 2)|c|m+

nK + 4|∇f |2 +
n2c21
R2√

n(α+ 1)(α+ 2)
.

It follows from (24) and |∇f | ≤ θ that

G ≤ 2nK +B|c|m+ 8θ2 +
n[(2n+ 2)c21 + (n− 1)c1 + c2]

R2

+
nc1(

√
(n− 1)K + θ)

R
+
√
B|c|m+

nK + 4θ2 +
n2c21
R2√

B

= (B +
√
B)|c|m+

n

R2

(
(2 + 2n+

n√
B

)c21 + (n− 1)c1 + c2

)
+
nc1θ

R

+
(

1 +
1

2
√
B

)
8θ2 +

nc1
√

(n− 1)K

R
+
(

2 +
1√
B

)
nK,

where
B = n(α+ 1)(α+ 2).

The proof of (2) in Theorem 2 is completed finally. �

Acknowledgement
This research is supported by NSFC of China (No. 11001076) and NSF of Henan
Provincial Education department (No. 2010A110008).

References

[1] E. Calabi: An extension of E.Hopf’s maximum principle with application to Riemannian
geometry. Duke Math. J. 25 (1957) 45–46.

[2] L. Chen, W.Y. Chen: Gradient estimates for a nonlinear parabolic equation on complete
non-compact Riemannian manifolds. Ann. Glob. Anal. Geom. 35 (2009) 397–404.



84 Jing Zhang, Bingqing Ma

[3] L. Chen, W.Y. Chen: Gradient estimates for positive smooth f -harmonic functions.
Acta Math. Sci. 30(B) (2010) 1614–1618.

[4] S.Y. Cheng, S.T. Yau: Differential equations on Riemannian manifolds and their
geometric applications. Commun. Pure. Appl. Math. 28 (1975) 333–354.

[5] Z.M. Guo, J.C. Wei: Hausdorff dimension of ruptures for solutions of a semilinear
equation with singular nonlinearity. Manuscripta Math. 120 (2006) 193–209.

[6] S.Y. Hsu: Gradient estimates for a nonlinear parabolic equation under Ricci. arXiv:
0806.4004.

[7] G.Y. Huang, B.Q. Ma: Gradient estimates for a nonlinear parabolic equation on
Riemannian manifolds. Arch. Math. (Basel) 94 (2010) 265–275.

[8] J.Y. Li: Gradient estimates and Harnack inequalities for nonlinear parabolic and
nonlinear elliptic equations on Riemannian manifolds. J. Funct. Anal. 100 (1991)
233–256.

[9] X.D. Li: Liouville theorems for symmetric diffusion operators on complete Riemannian
manifolds. J. Math. Pures Appl. 84 (2005) 1295–1361.

[10] L. Ma: Gradient estimates for a simple elliptic equation on complete non-compact
Riemannian manifolds. J. Funct. Anal. 241 (2006) 374–382.

[11] L. Ma, B.Y. Liu: Convexity of the first eigenfunction of the drifting Laplacian operator
and its applications. New York J. Math. 14 (2008) 393–401.

[12] L. Ma, B.Y. Liu: Convex eigenfunction of a drifting Laplacian operator and the
fundamental gap. Pacific J. Math. 240 (2009) 343–361.

[13] Z.M. Qian: A comparison theorem for an elliptic operator. Potential Analysis 8 (1998)
137–142.

[14] G.F. Wei, W. Wylie: Comparison geometry for the Bakry-Emery Ricci tensor.
J. Differential Geometry 83 (2009) 377–405.

[15] Y.Y. Yang: Gradient estimates for a nonlinear parabolic equation on Riemannian
manifolds. Proc. Amer. Math. Soc. 136 (2008) 4095–4102.

[16] Y.Y. Yang: Gradient estimates for the equation ∆u+ cu−α = 0 on Riemannian
manifolds. Acta. Math. Sin. 26(B) (2010) 1177–1182.

Authors’ address:
Department of Mathematics, Henan Normal University, Xinxiang 453007, Henan, P.R. China

E-mail: bqma a©henannu.edu.cn

Received: 6 March, 2011
Accepted for publication: 13 September, 2011
Communicated by: Geoff Prince



Communications in Mathematics 19 (2011) 85–88
Copyright c© 2011 The University of Ostrava 85

Book Review

Tom Mestdag

Geometry of Nonholonomically Constrained Systems by R. Cushman, H. Duister-
maat and J. Śniatycki. Advanced Series in Nonlinear Dynamics, Vol 26, World
Scientific, 2010.

The admissible configurations and velocities of point masses or rigid bodies in
a mechanical system are often observed to be restricted. In many cases these lim-
itations can be handled by introducing constraint equations into the framework.
One usually distinguishes between two types of such constraints. Holonomic con-
straints are restrictions on the position of the system only. A constraint is said to
be nonholonomic if the restriction depends also on the velocities of the system, and
if by no means it can be integrated to a holonomic constraint. Typical engineer-
ing problems that involve nonholonomic constraints arise for example in robotics,
where the wheels of a mobile robot are often required to roll without slipping, or
where one is interested in guiding the motion of a cutting tool or a skate. Some
of the well-studied textbook examples of nonholonomic systems include the rolling
disk, the rattleback, the rolling ball in a cylindrical tube, the problem of pursuit
and the snakeboard. A classical reference for nonholonomic systems is the book by
Nĕımark and Fufaev [3].

Since the second half of last century, tools and techniques from differential
geometry (Riemann geometry, contact geometry, symplectic and Poisson geometry,
Lie groups, fibre bundles, jet bundles, connections, distributions, etc.) have had
an ever growing impact on the analysis of problems in mechanics. The discipline
that emerged from the contact between geometry and mechanics is now commonly
called ‘Geometric Mechanics’. Two fairly recent books that deal specifically with
geometric approaches to nonholonomic mechanical systems are e.g. the monographs
by Bloch [1] and Cortés [2], and the book under review can be thought off as an
new addition to this category. The book can be divided in two parts: while the first
four chapters contain the theoretical material, the last three chapters concentrate
on three specific examples.

Chapter 1 introduces the category of nonholonomically constrained mechanical
systems. As in the bigger part of the literature, only non-holonomic constraints that

Postdoctoral Fellow of the Research Foundation – Flanders (FWO).
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are time-independent and that depend linearly on velocities are considered. The
advantage is that they can geometrically be represented in the form of a distribution
D on the configuration space Q. The authors only consider Lagrangians of so-called
‘mechanical type’, that is of the form k − V , where k is a kinetic energy function
associated to a Riemannian metric on Q, and V is a potential function on Q. The
authors work in what they call the ‘distributional Hamiltonian formalism’. One
should not think here of the adjective ‘Hamiltonian’ as meaning ‘set in (a part of)
phase space’, but one should rather interpret it as ‘set in a symplectic framework’.
That is to say, one can pullback, by means of the Legendre transformation, the
canonical symplectic two-form on T ∗Q to a symplectic two-form on TQ, the so-
called Poincaré-Cartan two-form. It can then be shown that the distribution D
gives rise to a certain distribution H on the submanifold of TQ determined by D,
and that the restriction $ of the Poincaré-Cartan form to H is non-degenerate. The
object $ can therefore be thought off as playing the role of a symplectic form for
nonholonomic systems. Analogously, if one assigns to the energy function h = k+V
on TQ the role of Hamiltonian, the symplectic-type equation Yh $ = ∂Hh defines
a unique vector field Yh on D whose base integral curves are solutions of the
nonholonomic dynamics. After a few basic properties of Yh, the rest of the first
chapter deals mainly with the Dirac bracket and the almost Poisson structure
that one can define in this context, with the projection principle (which states
that the nonholonomic dynamical vector field Yh is a certain projection of the free
dynamical vector field) and with a nonholonomic version of Noether’s Theorem (on
the relation between infinitesimal symmetries and constants of motion).

A large part of the book deals with the theory of Lie group symmetry reduction
for nonholonomic systems. The benefits of exploiting symmetry are self-evident:
if a dynamical system exhibits a symmetry, one may hope to reduce the system
to one with fewer variables, possibly easier to solve. Throughout Chapters 2, 3
and 4 a special emphasis is put on the singular case, where the action is not
necessarily free and proper, and this is precisely what sets this part of the book
apart from the existing literature. In Chapter 2 the basic concepts related to
Lie group actions on manifolds are reviewed. A free and proper action defines a
principal fibre bundle structure on the orbit space, which in particular becomes a
smooth manifold. The authors show that even in the singular case it is possible
to define a kind of differential structure on the orbit space, by introducing the
concept of a differential space. It is clear that when one works with spaces that
do not necessarily possess a smooth manifold structure, one needs to rethink a
lot of concepts, such as e.g. the definition of a tangent space and a vector field.
Chapter 2 therefore mainly deals with re-inventing, in the more general set-up of
differential spaces, familiar concepts known for manifolds. Chapter 3 contains the
actual descriptions of the reduced distributional Hamiltonian systems, both for
singular and regular Lie group symmetry reduction. Special attention is given to
the subclass of Chaplygin nonholonomic systems (where the constraint distribution
is the horizontal space of a principal connection, and where the reduced equations
are of pure second-order type). Further, given that for nonholonomic systems the
usual interplay between symmetries and conserved momenta is no longer valid, the
authors situate the so-called momentum equations within the context of the reduced



Book Review 87

equations. Chapter 4 is about reconstruction equations (whose solutions enable
one to reconstruct a complete solution from a solution of the reduced equations),
about relative equilibria (i.e. equilibria of the reduced equations) and about relative
periodic orbits. Again, we find in this chapter a careful analysis of the situation
when the action is not necessarily free.

The following citation, taken from the introduction of Chapter 5, fully captures
the spirit of the second part of the book: “In this chapter we will discuss the classical
nonholonomically constrained system known as Carathéodory’s sleigh. In order to
illustrate the theory given in chapters 1,2 and 4, we will derive the equations
of motion in five different ways, construct the reduced system in three different
ways, and carry out reconstruction explicitly.”. Indeed, the following three chapters
contain a very comprehensive analysis of three famous examples of nonholonomic
systems: Carathéodory’s sleigh (which is a planar rigid body with a sharp edge
in a vertical plane that makes contact with a horizontal plane in its lowest point),
the example of a smooth, strongly convex rigid body rolling without slipping on a
horizontal plane (under the influence of a constant vertical gravitational force), and
the example of the rolling disk (which is not necessarily confined to roll vertically).
These chapters do not only contain explicit formulae of reduced equations in many
different forms and fashions, but, in particular in the chapter on the rolling disk,
also contain a lot of information on the qualitative behaviour of particular solutions
to the problems, such as e.g. a stability analysis for the relative equilibria and a
study of the limiting behaviour of the disk when it nearly falls flat and then rises
up again.

I believe that the book under review will become a standard reference work for
people working in the field of geometric mechanics. I enjoyed the clear writing style
of the main body of the text and I also appreciated the background information in
the ‘Notes’ section at the end of each chapter. More importantly, in my opinion
the book contains a lot of interesting research paths which makes it distinct from
other books on this topic. One of them is the analysis of singular actions in the
theoretical part, which is barely touched upon in e.g. [1] and [2]. An other major
feat is that concrete simple examples are stripped down naked in an instructive
manner and that they are shown to be the source of a very rich variety of interesting
geometric problems. The new methods and techniques developed in the last three
chapters for the specific examples may even become inspiration for future research
on nonholonomic systems in general. A bit disappointingly, however, is that, as
far as I could check, none of the Lie group actions involved in the last chapters
were actually not-free, and that the singular tools from the first chapters were left
unused in the last chapters. To my mind, this is a bit a missed opportunity.
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