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Attila Bérczes, Institute of Mathematics, University of Debrecen, P.O. Box 12,
H-4010 Debrecen, Hungary, berczesa a©math.unideb.hu

Anthony Bloch, Department of Mathematics, University of Michigan, 2074 East
Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA, abloch a©umich.edu

George Bluman, Department of Mathematics, Room 121, The University of British
Columbia, 1984 Mathematics Road, Vancouver, B.C. V6T 1Z2, Canada,
bluman a©math.ubc.ca

Yong-Xin Guo, College of Physics, Liaoning University, No. 66 Chongshan Zhonglu,
Huanggu Dist. Shenyang 110036, China, yxguo a©lnu.edu.cn

Vilém Novák, Department of Mathematics, Faculty of Science, The University of
Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic, vilem.novak a©osu.cz
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Editorial

From the Editor-in-Chief

Welcome to the first issue of Communications in Mathematics!
Let me first introduce the journal. Despite a new name, Communications in

Mathematics is not a new publication – it has a 17 year tradition, being a contin-
uation of the journal Acta Mathematica et Informatica Universitatis Ostraviensis,
founded in 1993, and later published under the title Acta Mathematica Universi-
tatis Ostraviensis (2003–2009).

The journal is sponsored and published by the University of Ostrava on a non-
profit basis, and we are grateful to the Rector of the University, Jǐŕı Močkoř, for
his support. With his help the face of the journal has been changed. The aim
of these changes has been to transform the original university journal to a more
prestigious publication in mathematics and its applications. We have altered the
journal’s title, and appointed a new Editor-in-Chief and a completely new editorial
board. We are proud to have found Editors with established, high reputations in
their respective fields.

The scope of the journal has also changed to match its new mission. Com-
munications in Mathematics will publish articles in pure and applied mathematics,
preferably in the following areas belonging to the research interests of the individual
members of the editorial board:

• algebraic structures

• calculus of variations

• combinatorics

• control and optimization

• cryptography

• differential equations

• differential geometry

• fuzzy logic and fuzzy set theory

• global analysis

• mathematical physics

• number theory



2 From the Editor-in-Chief

The journal will publish original research articles which make a significant con-
tribution to one or more topics, mostly within the above areas, as well as high
quality survey papers. We encourage interdisciplinary papers and those developing
applications of mathematical methods. The journal will regularly present reviews
of recently published books and monographs for the interest of our readers.

This issue, co-edited by Geoff Prince and me, is devoted to geometric mechanics
and the global calculus of variations. It contains three original research papers, one
survey article and a book review.

From 2011 the journal will usually appear in two issues per year, both in printed
form and on-line. Our authors will benefit from constructive peer reviews, a distin-
guished editorial board ensuring high quality articles, easy electronic submission
and online progress tracking, and rapid publication - online within two months of
acceptance of the final version. The policy of the journal is to make it as free and
accessible as possible: as a matter of course there will be the benefit of full-text
access for readers, a free use of colour and multimedia in the online edition, and
no page charges for either authors or readers.

Communications in Mathematics will be reviewed in Mathematical Reviews
and Zentralblatt MATH, and the editors hope that the high quality of published
research will soon produce a high impact factor.

I would like to encourage our readers and potential authors to submit their
quality research to Communications in Mathematics. I believe that we shall succeed
in creating a high level mathematical journal and the open exchange of important
results in different branches of mathematics.

Enjoy your reading!
Olga Krupková
Editor-in-Chief
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Some geometric aspects of the calculus of variations

in several independent variables

David Saunders

Abstract. This paper describes some recent research on parametric prob-
lems in the calculus of variations. It explains the relationship between these
problems and the type of problem more usual in physics, where there is a
given space of independent variables, and it gives an interpretation of the
first variation formula in this context in terms of cohomology.

1 Introduction
In this paper we consider some geometrical aspects of those problems in the cal-
culus of variations which are known as ‘parametric’: see, for example, the classi-
cal work [9] for the difference between parametric and non-parametric variational
problems. To illustrate this difference in a simple way, consider the following, su-
perficially similar, examples of the two types of problem. For the first problem,
suppose we are asked to find the trajectory of a free unit-mass particle in three-
dimensional space with coordinates (u1, u2, u3). For the second, suppose we are
asked to find the shortest curve between two points in three-dimensional space
with differently-labelled coordinates (y1, y2, y3). A solution to the former prob-
lem is a map [0, T ] → R3, t 7→ (ait + bi), and a Lagrangian for the problem is
1
2

(
(u̇1)2 + (u̇2)2 + (u̇3)2

)
. In contrast, a solution to the latter problem is a straight

line segment [(pi), (qi)] ⊂ R3, and a Lagrangian is
√

(ẏ1)2 + (ẏ2)2 + (ẏ3)2: note
that this latter function is ‘positively homogeneous’.

More generally, variational problems in physics are commonly defined on fibred
manifolds π : E →M (for the free particle, this would be R×R3 → R). Extremals
are local sections of π, and the Lagrangian is a function (or, more properly, a
differential m-form, where m = dimM) defined on a jet bundle J1π (or Jkπ) of
jets of local sections of π. But in geometry, variational problems are commonly
defined on manifolds E without a given fibration. Extremals are then submanifolds

2010 MSC: 35A15, 58A10, 58A20
Key words: calculus of variations, parametric problems



4 David Saunders

of E, defined ‘parametrically’. To see where the Lagrangian might be defined, we
need to consider different types of jet bundle and the relationships between them.

We can illustrate this by examining the relationships between a vector space,
an affine space and a projective space. If V is a vector space with dimV = n+ 1, a
basis (e0, e1, . . . , en) and corresponding coordinate functions (ẏ0, ẏ1, . . . , ẏn), then
the set

A = {v ∈ V : ẏ0(v) = 1}

is an n-dimensional affine space, whereas the set

P = (V − {0})/(R− {0})

is an n-dimensional projective space; there is a natural injection A→ P .
Now let π : E → R be a fibred manifold, with dimE = n + 1 and coordinates

(y0 = t, y1, . . . , yn); we can apply the remark above to the fibres of the tangent
bundle to E. We write J1π for the manifold of jets of local sections of π, and
J1(E, 1) for the manifold of jets of immersed 1-dimensional submanifolds in E. The
bundle J1π → E is an affine bundle, and there is a canonical injection J1π → TE
whose image is given by ẏ0 = 1. On the other hand, the bundle J1(E, 1) → E
is isomorphic to the projective tangent bundle PTE → E, and we may identify
J1π with an open submanifold of J1(E, 1) by mapping the jet of a local section
to the jet of its image. Writing

o

TE for the slit tangent manifold, excluding the
zero section, we may see that the bundle

o

TE → J1(E, 1) is a principal bundle with
structure group R− {0}.

As an application of this structure, we mention the study of Finsler geometry
(see, for example, [2]), or of its special case, Riemannian geometry. Here, we take
a manifold E with local coordinates ya (0 ≤ a ≤ n). The Lagrangian (that is, the
Finsler function) L is defined on

o

TE, and the condition of positive homogeneity is
that ẏa∂L/∂ẏa = L. The variational problem is to find extremals γ of the integral∫

j1γ∗(L) dt

subject to suitable boundary conditions. If γ is an extremal then so is γ ◦ φ where

φ : R → R is a diffeomorphism , φ′ > 0

The problem may also be formulated on the quotient manifold PTE+ =
o

TE/R+,
which is a double cover of the projective tangent bundle PTE.

Our task in this paper will be to extend these structures to provide a frame-
work for the study of multiple-integral parametric variational problems, of first or
higher order. In Section 2 we shall describe a geometrical background which is
appropriate for a study of these problems, and in Section 3 we shall introduce a
particular class of vector forms which will turn out to useful tools for our inves-
tigation. Section 4 contains a brief reminder, for comparison, of an approach to
non-parametric problems defined on spaces of jets of fibred manifolds, and finally
in Section 5 we show how an analogous approach may be devised for parametric
problems with positively homogeneous Lagrangians.
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This paper is based upon a talk given first at the University of Ostrava, and
then subsequently at the Banach Center of the Polish Academy of Sciences. The
author is grateful to Olga Krupková, and to Janusz Grabowski and Pawe l Urbański,
for the opportunity to present these talks.

2 Geometrical background
In this section we shall describe a geometrical background which may be used for the
study of parametric variational problems. Convenient references here are [3], [4];
see also [7].

Finsler geometry, a single-integral problem, is defined on the slit tangent bun-
dle

o

TE; first-order multiple integral problems are defined on a sub-bundle of the
Whitney sum

⊕m
TE. The bundle of regular velocities on E is

o

T (m)E = {(ξ1, . . . , ξm) ∈
⊕m

TE : (ξi) linearly independent} ;

equivalently, we may say that
o

T (m)E is the bundle of ‘non-degenerate velocities’,
1-jets j10σ at 0 ∈ Rm of non-singular maps σ : Rm → E. If (ya) are local coordinates
on Y ⊂ E, then (ya, ya

i ) (1 ≤ i ≤ m) are local coordinates on Y 1 ⊂
o

T (m)E, where

ya
i (j10σ) =

∂σa

∂ti

∣∣∣∣
0

, ya
i (ξ1, . . . , ξm) = ẏa(ξi)

and where Y 1 = τ−1
m (Y ) with τm :

o

T (m)E → E the natural projection.
As with any manifold of jets, we may define contact forms and other related

structures on
o

T (m)E. We say that a differential form ω ∈ Ω(
o

T (m)E) is a con-

tact form if the pull-back (j1σ)∗ω by the prolongation of any non-singular map
σ : Rm → E always vanishes. In coordinates, contact 1-forms are linear combina-
tions of (m+ 1)× (m+ 1) determinants like∣∣∣∣∣∣∣∣∣∣∣

ya1
1 ya2

1 · · · y
am+1
1

ya1
2 ya2

2 · · · y
am+1
2

...
...

...
ya1

m ya2
m · · · y

am+1
m

dya1 dya2 · · · dyam+1

∣∣∣∣∣∣∣∣∣∣∣
and so have a more complicated expression than the contact 1-forms duα − uα

i dx
i

on a jet bundle.
Next, for each function f : E → R, define the functions dif :

o

T (m)E → R by

dif(j10σ) =
∂(f ◦ σ)
∂ti

where σ : Rm → E ;

the operator di is a globally-defined vector field along τm :
o

T (m)E → E, called a
total derivative. It is straightforward to check that a 1-form θ is a contact form
exactly when 〈di, θ〉 = 0 for 1 ≤ i ≤ m. In coordinates, we see that

di = ya
i

∂

∂ya
.



6 David Saunders

Finally, the Whitney sum
⊕m

TE → E is a vector bundle, and so supports
a vertical lift operation, arising from the canonical isomorphism between a vector
space and its tangent space at any point. Denote the vertical lift to (ηi) by⊕m

Tτm(ηi)E → T(ηi) (
⊕m

TE) , (ξi) 7→ (ξi)↑(ηi) .

Then, for each vector ζ ∈ T(ηi)

o

T (m)E, define the vector Siζ ∈ T(ηi)

o

T (m)E by

Siζ = (0, . . . , 0, T τm(ζ), 0, . . . , 0)↑(ηi) .

With this definition Si is a type (1, 1) tensor field on
o

T (m)E, called a vertical
endomorphism; in coordinates we have

Si = dya ⊗ ∂

∂ya
i

.

We may also relate the bundle of regular velocities
o

T (m)E with the Grass-

mannian bundle J1(E,m): the former is a manifold of equivalence classes of non-
degenerate maps Rm → E, whereas the latter is a manifold of equivalence classes
of images of such maps, namely of m-dimensional subspaces of TE. We see that
two regular velocities j10σ, j10 σ̂ represent the same subspace when

j10 σ̂ = j10(σ ◦ φ)

for some diffeomorphism φ : Rm → Rm with φ(0) = 0. We may also consider the
bundle J1(E,m)+ of oriented Grassmannians, where the diffeomorphism φ must
preserve the orientation on Rm. The natural projections give principal bundles

ρ :
o

T (m)E → J1(E,m) (group GL(m,R))

ρ+ :
o

T (m)E → J1(E,m)+ (group GL(m,R)+) ,

where a basis of fundamental vector fields is given by {∆i
j = Si(dj)}. In coordi-

nates, we therefore have

∆i
j = ya

j

∂

∂ya
i

.

Note that any fibration π : E →M defines open submanifolds J1π ⊂ J1(E,M) and
J1π ⊂ J1(E,M)+. If we take m = 1 we recover the special cases J1(E, 1) = PTE
and J1(E, 1)+ = PTE+.

We can finally, without too much conceptual difficulty although with increased
computational complexity, extend these definitions to the case of higher-order reg-
ular velocities. We shall take the manifold of k-th order regular velocities

o

T k
(m)E to

be the set of all k-jets (at the origin) of non-singular maps Rm → E, with local co-
ordinates ya

I on
o

T k
(m)E, where I ∈ Nm is a symmetric multi-index with 0 ≤ |I| ≤ k.

The total derivatives di and vertical endomorphisms Si have coordinate represen-
tations

di =
k−1∑
|I|=0

ya
I+1i

∂

∂ya
I

, Si =
k−1∑
|I|=0

(
I(i) + 1

)
dya

I ⊗
∂

∂ya
I+1i
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where different instances of each type of operator commute, so that we may use
multi-index notation dI , SI where appropriate. We may again construct principal
bundles

ρk :
o

T k
(m)E → Jk(E,m) , ρk+ :

o

T k
(m)E → Jk(E,m)+ ,

whose groups are the jet groups Lk
m, Lk+

m

Lk
m = {jk

0φ : Rm φ→ Rm is a diffeomorphism, φ(0) = 0}
Lk+

m = {jk
0φ ∈ Lk

m : |J (φ)| > 0}

A basis for the space of fundamental vector fields of the principal bundles is given
by

{∆I
j = SI(dj) : 1 ≤ |I| ≤ k} ;

we put iIj for the contraction with ∆I
j , and dI

j for the Lie derivative by ∆I
j .

3 Vector forms
In the study of the parametric calculus of variations we use vectors of operators di,
tensors Si, and forms ϑi. These fit into a framework of vector forms [12], and the
use of these forms will provide us with a convenient tool.

We consider forms on
o

T k
(m)E taking values in the vector space Rm∗ and its

exterior powers: put

Ωr,s
k =

(
Ωr o

T k
(m)E

)
⊗ (
∧sRm∗) .

Let the standard basis for Rm∗ be denoted by (dti); then a vector form Φ may be
written canonically as

Φ = φi1···is
⊗ dti1 ∧ . . . ∧ dtis ∈ Ωr,s

k

where the scalar forms φi1···is
are skew-symmetric in their indices. Although this

looks like a coordinate formula, in fact it is not: the indices i1, . . . , is refer to a
fixed basis of Rm∗, and so the formula is valid globally on

o

T k
(m)E.

We shall consider several operators on vector forms. First, obviously, we may
use the de Rham differential d : Ωr,s

k → Ωr+1,s
k , defined on decomposable forms by

d(φ⊗ η) = dφ⊗ η

and extended to arbitrary forms by linearity. But we may also use the total deriv-
atives di to define two further operators, a contraction and a Lie derivative, by

iT : Ωr,s
k → Ωr−1,s+1

k+1 , iT(φ⊗ η) = (di φ)⊗ (dti ∧ η)

and
dT : Ωr,s

k → Ωr,s+1
k+1 , dT(φ⊗ η) = diφ⊗ (dti ∧ η) .

It is immediate, from the definitions and the properties of contraction and Lie
derivative on scalar forms, that

ddT = dTd , d2
T = 0 , dT = diT + iTd .
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We may therefore construct a bicomplex, where in the first column it is convenient
to write Ω

0,s
to denote the quotient Ω0,s/

∧s Rm∗ of vector-valued functions modulo
constant functions. In the diagram we omit explicit mention of the order of the
velocity manifolds on which the spaces are defined; if the order of the spaces for a
given row is k then the order for the next row will be k + 1. For small values of k
of course only the lower part of the diagram will exist.

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0

0

0

0 0 0 0

0 - - - - -Ω
0,0 Ω1,0 Ω2,0 Ω3,0

. . . . . . . . . . . .

Ω
0,m−2 Ω1,m−2 Ω2,m−2 Ω3,m−2

Ω
0,m−1 Ω1,m−1 Ω2,m−1 Ω3,m−1

Ω
0,m Ω1,m Ω2,m Ω3,m

d

d

d

d

d

d

d

d

d

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT dT dT dT

d d d

The bicomplex described above might appear to have some relation to the
variational bicomplex for differential forms on the jet prolongations of fibred spaces,
and the latter, when defined in the usual way on the infinite jet manifold, is locally
exact: indeed, its interior columns are globally exact [1], [13], [14] (see [15] for
a useful summary). The present bicomplex is, however, defined on (a family of)
finite-order velocity manifolds, and the map dT : Ωr,s

k → Ωr,s+1
k+1 is not exact, even

locally. It is, however, globally exact modulo pull-backs (for r ≥ 1).
There are, perhaps surprisingly, two homotopy operators for dT which are sim-

ilar in formulation but subtly different in effect; the first was described in [12], and
the second is a version for velocity manifolds of an operator described in [6]. The
operators are P, P̃ : Ωr,s

k → Ωr,s−1
(r+1)k−1, defined by

P (Φ) = P j
(s)(φi1···is

)⊗
{
∂

∂tj
(
dti1 ∧ . . . ∧ dtis

)}
P̃ (Φ) = P̃ j

(s)(φi1···is)⊗
{
∂

∂tj
(
dti1 ∧ . . . ∧ dtis

)}
where P = P̃ when acting on vector 1-forms, or on first-order forms. The scalar
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operators P j
(s) and P̃ j

(s) are given by the formulæ

P j
(s) =

∑
J

(−1)|J|(m− s)!|J |!
r(m− s+ |J |+ 1)!J !

dJS
J+1j ,

P̃ j
(s) =

∑
J

(−1)|J|(m− s)!|J |!
r|J|+1(m− s+ |J |+ 1)!J !

dJ S̃
J+1j

where, for a scalar form θ,

S1j1+1j2+···+1jr θ = iSj1Sj2 ···Sjr θ

S̃1j1+1j2+···+1jr θ = iSj1 iSj2 · · · iSjr θ .

It is interesting to note that P̃ 2 = 0, but that P 2 6= 0. Proofs that these operators
really do act as homotopy operators modulo pullbacks may be found in the refer-
ences cited (the proof for P is given in [6] for the related operator on jet manifolds,
but the proof for velocity manifolds is essentially the same).

4 Variational problems on jet manifolds

For the purposes of comparison, we give a brief summary of the relevant part of
variational theory on jet manifolds.

Let π : E → M be a fibred manifold, with dimM = m and dimE = m + n,
where the base manifold M is orientable; we take local coordinates xi on M and
(xi, uα) on E. We let Jkπ denote the manifold of k-th order jets of local sections
of π [7], [10]. In this context a Lagrangian of order k is an m-form λ = Ldmx on
Jkπ, horizontal over M . The fixed-boundary variational problem defined by λ is
the search for submanifolds σ(C) ⊂ E satisfying∫

C

((jkσ)∗Xkλ) = 0

for every variation field X on E satisfying X|σ(∂C) = 0, where Xk denotes the
prolongation of X to Jkπ.

Such a variational problem may be expressed in terms of certain other m-forms
called Lepage forms [8]. The m-form θ on J lπ (where l ≥ k) is a Lepage form
if iY dθ is a contact form whenever the vector field Y is vertical over E. It is a
Lepage equivalent of λ if it is a Lepage form, and in addition π∗l,kλ− θ is a contact
form. Every Lagrangian m-form defined on Jkπ has a Lepage equivalent defined on
J2k−1π, although the question of whether there is a suitable geometric construction
depends on the values of m and k.

The simplest cases, as might be expected, are for single-integral problems where
m = 1. For a first-order Lagrangian λ = Ldx on J1π the 1-form

θ = Ldx+
∂L

∂u̇α
(duα − u̇αdx)



10 David Saunders

is the unique Lepage equivalent, the Poincaré-Cartan form; it is also defined on
J1π. For a higher-order Lagrangian λ = Ldx on Jkπ the 1-form

θ = Ldx+
k−1∑
p=0

( k−p−1∑
q=0

(−1)q d
q

dxq

∂L

∂uα
(p+q+1)

)
(duα

(p) − uα
(p+1)dx)

is the unique Lepage equivalent, and it is defined on J2k−1π.
For a multiple integral variational problem where m ≥ 2, a first-order La-

grangian λ = Ldmx defined on J1π gives rise to three distinct globally-defined
Lepage equivalents

θ1 = Ldmx+
∂L

∂uα
i

ωα ∧ dm−1xi

θ2 =
1

Lm−1

m∧
i=1

(
Ldxi +

∂L

∂uα
i

ωα

)

θ3 =
min{m,n}∑

r=0

1
(r!)2

∂rL

∂uα1
i1
· · · ∂uαr

ir

ωα1 ∧ · · · ∧ ωαr ∧ dm−rxi1···ir

where ωα = duα−uα
j dx

j (of course θ2 is defined only where the Lagrangian does not
vanish). For a second-order Lagrangian, Lepage equivalents similar to θ1 and θ2
may again be found; it is not known whether there is a Lepage equivalent sim-
ilar to θ3. If m ≥ 3 then it is known that global Lepage equivalents cannot
be constructed in a canonical way without the use of additional data such as
a connection. A list of references for these various constructions may be found
in [11].

5 Homogeneous problems
We now consider m-dimensional variational problems on E, with fixed bound-
ary conditions. For our purposes it is sufficient to consider submanifolds of the
form σ(C), where σ : Rm → E and C ⊂ Rm is a compact m-dimensional sub-
manifold: this is because variational problems are local, in the sense that an
m-dimensional submanifold of E is extremal with fixed boundary conditions if,
and only if, every small piece of it is extremal with fixed boundary conditions.

A vector function Λ = Ldmt ∈ Ω0,m is called a Lagrangian for a parametric
variational problem. It is called positively homogeneous if it is equivariant with
respect to the action of the jet group Lk+

m , where k is the order of the Lagrangian.
If Λ is positively homogeneous then the scalar function L satisfies

di
jL = δi

jL , dI
jL = 0 for |I| ≥ 2 .

The fixed-boundary variational problem defined by Λ is the search for subman-
ifolds σ(C) ⊂ E satisfying ∫

C

((jσ)∗XkL)dmt = 0
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for every variation field X on E satisfying X|σ(∂C) = 0, where Xk denotes the pro-
longation of X to

o

T k
(m)E. We may study this problem by looking for ‘equivalents’

of Lagrangians.

Definition 1. Let Λ ∈ Ω0,m be a positively homogeneous Lagrangian. A scalar
m-form Θm ∈ Ωm,0 is called an integral equivalent of Λ if

Λ =
(

(−1)m(m−1)/2

m!

)
imT Θm .

A vector r-form Θr ∈ Ωr,m−r is called an intermediate equivalent if

Λ =
(−1)r(r−1)/2(m− r)!

m!
irTΘr 0 ≤ r ≤ m− 1 .

It is clear that if Θr+1 is an equivalent of Λ then

Θr =
(−1)r

m− r
iTΘr+1

is also an equivalent. We use the terminology ‘integral equivalent’ because if
σ : Rm → E then (jσ)∗Λ = (jσ)∗Θm, where by jσ we mean the prolongation
of σ to a map Rm →

o

T l
(m)E for l sufficiently large, so that∫

C

(jσ)∗Λ =
∫

C

(jσ)∗Θm ,

from which we see that Λ = Θ0 and Θm have the same extremals.
We may also define some related forms which are used to obtain the Euler-

-Lagrange equations for the problem.

Definition 2. Let Θm be an integral equivalent of Λ; define the scalar (m+1)-form
Em ∈ Ωm+1,0 by

Em = dΘm .

Now let Θr be an intermediate equivalent of Λ for 0 ≤ r ≤ m− 1; define the vector
form Er ∈ Ωr+1,m−r by

Er = dΘr − (−1)rdTΘr+1 .

By a straightforward calculation we see that, corresponding to the relationships
describing a family of intermediate equivalents, we have

Er =
(−1)r+1

m− r
iTEr+1 0 ≤ r ≤ m− 1 ;

the form E0 is called the Euler form of Θm. The various forms we have defined
inhabit two diagonals of our bicomplex.

We shall now impose an additional property on the equivalents of a Lagrangian.
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dT
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�
�
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�
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�+

�
�
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�
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�+

�
�

�+

�
�

�+

��+Θr =
(−1)r

m− r
iTΘr+1, Θ0 = Λ

Er = dΘr − (−1)rdTΘr+1

Definition 3. Let Λ be a positively homogeneous Lagrangian, and let Θr be an
equivalent of Λ (1 ≤ r ≤ m). We say that Θr is Lepagian if the corresponding
Euler form E0 = ε0 ⊗ dmt ∈ Ω1,m satisfies

SE0 = (Siε0)⊗ dm−1ti = 0 ,

so that E0 is horizontal over E.

So far, we have described conditions which integral (or intermediate) equivalents
and their Euler forms must satisfy, but we have not yet indicated whether such
forms exist. We shall now remedy that deficiency.

Theorem 1. The vector 1-form

Θ1 = PdΛ

defined on
o

T 2k−1
(m) E is an integral equivalent of Λ (m = 1) or an intermediate

equivalent (m ≥ 2), and is Lepagian. It is called the Hilbert equivalent of Λ.

Proof. From the definition of P ,

PΦ = P jφ⊗ dm−1tj , where P j =
∑

J

(−1)|J|

(|J |+ 1)J !
dJS

J+1j ,

so that

iTPdΛ = iTP (dL⊗ dmt)

= iT(P jdL⊗ dm−1tj)

= ikP
jdL⊗ dtk ∧ dm−1tj

= ijP
jdL⊗ dmt .
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Then

ijP
jdL = ij

(∑
J

(−1)|J|

(|J |+ 1)J !
dJS

J+1jdL

)

=
∑

J

(−1)|J|

(|J |+ 1)J !
dJ ijS

J+1jdL

because [ik, dj ] = 0; next

ijP
jdL =

∑
J

(−1)|J|

(|J |+ 1)J !
dJ(SJ+1j ij + SJ+1j−1k ikj )dL

because [ij , Sk] = ikj and [iJj , S
k] = iJ+1k

j , but by homogeneity iJj dL = dJ
j L = 0 for

(|J | ≥ 2); consequently

ijP
jdL = ijjdL

because, when |K| ≥ 1, SK vanishes on functions and hence on ijdL and ikj dL;
and so, finally,

ijP
jdL = mL ,

giving iTPdΛ = mΛ, so that Θ1 is indeed an equivalent (integral or intermediate,
as appropriate).

To show that Θ1 is Lepagian, note that

SdTΘ1 = SdTPdΛ

= SdT(P jdL⊗ dm−1tj)

= S
(
diP

jdL⊗ (dti ∧ dm−1tj)
)

= S
(
djP

jdL⊗ dmt
)

= Si(djP
jdL)⊗ dm−1ti

= Si

( ∑
|J|≥0

(−1)|J|

(|J |+ 1)J !
dJ+1jS

J+1jdL

)
⊗ dm−1ti

= Si

( ∑
|K|≥1

(−1)|K|−1

K!
dKS

KdL

)
⊗ dm−1ti ;

but [Si, dk] = δi
k, giving [Si, dK ] = K(i)dK−1i

, so that

SdTΘ1 =
∑
|K|≥1

(−1)|K|−1

K!
(dKS

K+1i +K(i)dK−1i
SK)dL⊗ dm−1ti

= SidL⊗ dm−1ti

= S(dL⊗ dmt) = SdΛ

as the two parts of the sum over the multi-index K combine to give a collapsing
sum. It it then immediate that SE0 = 0, as required. �
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Theorem 2. Let Λ be a homogeneous Lagrangian, with Hilbert equivalent Θ1 and
Euler form E0. If Θ̃1 is any other Lepagian vector 1-form equivalent to Λ, with
corresponding Euler form Ẽ0, then

Ẽ0 = E0 and Θ̃1 −Θ1 = dTΦ

for some Φ ∈ Ωr,m−2, so that if m = 1 then Θ̃1 = Θ1.

Proof. It follows straightforwardly from the Lepagian condition SẼ0 = 0 that
P Ẽ0 = 0, so that

0 = P Ẽ0

= P (dΛ− dTΘ̃1)

= Θ1 − PdTΘ̃1

= Θ1 − (1− dTP )Θ̃1 ,

giving Θ̃1 −Θ1 = dTP Θ̃1 (or Θ̃1 = Θ1 if m = 1). Thus

Ẽ0 − E0 = (dΛ− dTΘ̃1)− (dΛ− dTΘ1)

= −d2
TP Θ̃1

= 0 . �

In coordinates, if Λ = Ldmt then the Hilbert equivalent and the Euler form are
given by

Θ1 =
∑

I

∑
J

(−1)|I|(I + J + 1i)!|I|!|J |!
(|I|+ |J |+ 1)!I!J !

dI

(
∂L

∂ya
I+J+1i

)
dya

J ⊗ dm−1ti ,

E0 =
∑

I

(−1)|I|dI

(
∂L

∂ya
I

)
dya ⊗ dmt .

If m ≥ 2 then there can indeed be Lepagian vector 1-forms which are equiva-
lent to a given Lagrangian but differ from its Hilbert equivalent. To see this, let
Φ ∈ Ω0,m−2, so that dTdΦ ∈ Ω1,m−1. Then

iT(Θ1 + dTdΦ) = iTΘ1 − dTiTdΦ = Λ− d2
TΦ = Λ

and
dΛ− dT(Θ1 + dTdΦ) = dΛ− dTΘ1 − d2

TdΦ = E0 ,

although there is no reason why we should have dTdΦ = 0. For instance, when
m = 2 we could take Φ = y1 ∈ Ω0,0 and then dTdΦ = dy1

i ⊗ dti 6= 0.
We can now construct a version of the first variation formula for homogeneous

variational problems, using the Hilbert equivalent Θ1 of a Lagrangian Λ. Given
a variation field X on E with X|σ(∂C) = 0, and its prolongation X̂ on

o

T l
(m)E
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with l sufficiently large, we may use the standard formula d
bX = di

bX + i
bXd, Stokes’

Theorem, and the formula dΛ = E0 + dTΘ1 to obtain∫
C

(jσ)∗d
bXΛ =

∫
C

(jσ)∗di
bXΛ +

∫
C

(jσ)∗i
bXdΛ

=
∫

∂C

(jσ)∗i
bXΛ +

∫
C

(jσ)∗i
bXdΛ

=
∫

C

(jσ)∗i
bX(E0 + dTΘ1) .

But∫
C

(jσ)∗i
bXdTΘ1 =

∫
C

(jσ)∗dTi bXΘ1 =
∫

C

d
(
(jσ)∗i

bXΘ1

)
=
∫

∂C

(jσ)∗i
bXΘ1 = 0

because prolongations commute with total derivatives, and the pull-back of dT

to Rm is d; thus ∫
C

(jσ)∗d
bXΛ =

∫
C

(jσ)∗i
bXE0 =

∫
C

(jσ)∗iXE0

because E0 is horizontal over E.
Now if m = 1 then the Hilbert equivalent is an integral equivalent of Λ. But if

m ≥ 2 then this is no longer true, and we need some further work to find integral
equivalents. Let Λ = Ldmt be a positively homogeneous Lagrangian with m ≥ 2,
and write its Hilbert equivalent Θ1 as

Θ1 = ϑi ⊗ dm−1ti ;

the scalar 1-forms ϑi are called the Hilbert forms of Λ.

Definition 4. If Λ never vanishes, define the Carathéodory equivalent Θm ∈ Ωm,0

by

Θm =
1

Lm−1

m∧
i=1

ϑi .

Theorem 3. The Carathéodory equivalent Θm is an integral equivalent of Λ.

Proof. We must show that imT Θm = (−1)m(m−1)/2m!Λ, so rewrite Θm as

Θm =
1

m!Lm−1

∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m) ,

where Sm is the permutation group, and use induction. The calculation uses
dj ϑi = δi

jL, the proof of which is similar to that used to show that iTΘ1 = mΛ;
we also define τr,s ∈ Sm by

τr,s(i) =


m− s (i = r)
i− 1 (r + 1 ≤ i ≤ m− s)
i otherwise .
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Now

iT

( ∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m−s) ⊗ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

)
=
∑

σ∈Sm

(−1)σdj

(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s)

)
⊗ dtj ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

=
m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1
(
ϑσ(1) ∧ · · · ∧ (dj ϑσ(r)) ∧ · · · ∧ ϑσ(m−s)

)
⊗

⊗ dtj ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= L

m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1
(
ϑσ(1) ∧ · · · ∧ ϑσ(r−1) ∧ ϑσ(r+1) ∧ · · · ∧ ϑσ(m−s)

)
⊗

⊗ dtσ(r) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= L
m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1(−1)m−r−s

{
(
ϑστr,s(1) ∧ · · · ∧ ϑστr,s(r−1) ∧ ϑστr,s(r+1) ∧ · · · ∧ ϑστr,s(m−s)

)
⊗

⊗ dtστr,s(r) ∧ dtστr,s(m−s+1) ∧ · · · ∧ dtστr,s(m)

}
= (−1)m−s−1L

m−s∑
r=1

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= (−1)m−s−1(m− s)L
∑

σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m) ,

so if

isTΘm =
(−1)s(2m−s−1)/2

(m− s)!Lm−s−1

{
∑

σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m−s) ⊗ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

}
then

is+1
T Θm =

(−1)s(2m−s−1)/2

(m− s)!Lm−s−1

{
(−1)m−s−1(m− s)L

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

}
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=
(−1)(s+1)(2m−s−2)/2

(m− s− 1)!Lm−s−2

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

as required. Hence

imT Θm =
(−1)m(m−1)/2

L−1

∑
σ∈Sm

(−1)σdtσ(1) ∧ · · · ∧ dtσ(m)

= (−1)m(m−1)/2m!Ldt1 ∧ · · · ∧ dtm

= (−1)m(m−1)/2m!Λ . �

We see also from the induction formula that

im−1
T Θm = (−1)m(m−1)/2 (m− 1)!Θ1

where Θ1 is the Hilbert equivalent; consequently Θm is Lepagian. The Carathéo-
dory equivalent of a nonvanishing homogeneous Lagrangian is the ‘parametric’
version of the Lepage equivalent θ2 for a variational problem on a jet manifold,
with the difference that there is no longer a restriction to first or second order
Lagrangians.

We can now create a ‘variation formula’ for Θm. For a variation field X on E
with X|σ(∂C) = 0,∫

C

(jσ)∗d
bXΘm =

∫
C

(jσ)∗i
bXdΘm +

∫
C

(jσ)∗di
bXΘm

=
∫

C

(jσ)∗i
bXEm +

∫
C

d(jσ)∗i
bXΘm

=
∫

C

(jσ)∗i
bXEm +

∫
∂C

(jσ)∗i
bXΘm

=
∫

C

(jσ)∗i
bXEm

=
∫

C

(jσ)∗imT i bXEm

= (−1)m

∫
C

(jσ)∗i
bX i

m
T Em

= (−1)m(m−1)/2m!
∫

C

(jσ)∗i
bXE0

= (−1)m(m−1)/2m!
∫

C

(jσ)∗iXE0

which is independent of the ‘prolonged’ part of X̂.
Finally, we consider the possibility of other integral equivalents of a Lagran-

gian Λ. We can, of course, obtain such an equivalent by adding any contact form
to Θm; but it is of greater interest to see if we can obtain equivalents which have
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particular desirable properties. The analogy of Lepage equivalents for variational
problems on jet manifolds suggests that there might be other possibilities in the
parametric case, and there is indeed a version of θ3 for first-order homogeneous
Lagrangians. Let Λ be such a Lagrangian, and put

Θ̂r+1 = (−1)rPdΘ̂r (1 ≤ r < m) ,

so that each Θ̂r is a first-order vector form. Using commutator relations as before,
we obtain

Θ̂r =
(−1)r

m− r
iTΘ̂r+1

so that Θ̂m is a Lepagian integral equivalent of Λ, the fundamental equivalent of Λ.
Thus dΘ̂m = Êm = 0 if, and only if, Ê0 = E0 = 0, the same property satisfied by θ3
in the jet manifold case [5].

6 Conclusions
Parametric variational problems are often studied on Grassmannian bundles. There
is, however, some interest in considering the versions of the problem defined on ve-
locity manifolds, subject to the homogeneity condition. The bicomplex of vector
forms performs a similar rôle to the variational bicomplex in the jet bundle theory,
but the intermediate and integral equivalents corresponding to the Lepage equiva-
lents may be defined globally for forms of arbitrary order. It seems reasonable to
expect that further study of the subject in this context would produce useful re-
sults concerning related concepts such as regularity, symmetry and the Helmholtz
equations for the inverse problem of the calculus of variations.
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Generalized Birkhoffian realization of nonholonomic
systems

Yong-Xin Guo, Chang Liu and Shi-Xing Liu

Abstract. Based on the Cauchy-Kowalevski theorem for a system of par-
tial differential equations to be integrable, a kind of generalized Birkhoffian
systems (GBSs) with local, analytic properties are put forward, whose man-
ifold admits a presymplectic structure described by a closed 2-form which
is equivalent to the self-adjointness of the GBSs. Their relations with Birk-
hoffian systems, generalized Hamiltonian systems are investigated in detail.
Analytic, algebraic and geometric properties of GBSs are formulated, to-
gether with their integration methods induced from the Birkhoffian systems.
As an important example, nonholonomic systems are reduced into GBSs,
which gives a new approach to some open problems of nonholonomic me-
chanics.

1 Introduction
As it is well known, making use of the calculus of variations, any analytic, regu-
lar, holonomic, conservative mechanical systems can be formulated by Lagrange’s
equations or Hamilton’s equations, which are basis of establishing, simplifying and
integrating the equations of motion. Thus it is important to find out the solutions
of inverse problems of the calculus of variations for different dynamical systems so
as to make the most of the Lagrange’s equations and Hamilton’s equations. How-
ever, the Lagrangian or Hamiltonian formulation for a dynamical system, limited
by the conditions of self-adjointness, such as the Helmholtz’s conditions [10], [13],
[15], [18], is not directly universal if the physical variables remain without use of
Darboux transformations. Based on the Cauchy-Kowalevski theorem of the integra-
bility conditions for partial differential equations and the converse of the Poincaré
lemma, it can be proved that there exists a direct universality of Birkhoff’s equa-
tions for local Newtonian systems by means of reduction of Newton’s equations
to a first-order form, which means all local, analytic, regular, finite-dimensional,

2010 MSC: 70F17, 70F25, 70G45
Key words: Birkhoff’s equations, generalized Birkhoffian Systems, Cauchy-Kowalevski theo-

rem, Nonholonomic constraints, inverse problem, conditions of self-adjointness
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unconstrained or holonomic, conservative or non-conservative, and self-adjoint or
non-self-adjoint systems always admit, in a star-shaped neighborhood of a regular
point of their variables, a representation in terms of first-order Birkhoff’s equations
in the coordinate and time variables of the experimenter [11], [14]. The systems
whose equations of motion are represented by the first-order Birkhoff’s equations
on a symplectic or a contact manifold spanned by the physical variables are called
Birkhoffian systems, which are self-adjoint. The self-adjointness of local, analytic,
regular, holonomic mechanical systems means the existence of symplectic or con-
tact structure of the manifold. The Lie algebraic structure only exists for the
autonomous Birkhoffian systems.

The inverse problem of the calculus of variations for nonholonomic systems is
very complicated [7], [12]. Only some special nonholonomic systems, such as some
Chaplygin’s systems, can admit a homogenous Lagrangian or Hamiltonian formu-
lation. Since the Chaplygin’s systems can be reduced into a kind of holonomic
nonconservative systems, it is suitable to formulate such nonholonomic systems
in Birkhoffian mechanics [9], [11]. For a general nonholonomic system, i.e. a
n-dimensional mechanical system constrained by l nonlinear nonholonomic con-
straints which is a coupled dynamical system, whose equations of motion are n+ l
fixed first- and second-order ordinary differential equations, their inverse problem of
the calculus of variations can be geometrically analyzed in a singular Lagrangian [6]
or represented in Birkhoffian framework on an 2n-dimensional phase space [4], [11].
For the latter case, the nonholonomic systems are reduced into the conditional holo-
nomic systems on a 2n-dimensional phase space, whose initial conditions are not
arbitrary but confined by the nonholonomic constraints. Because the conditional
holonomic systems are of symmetry determined by the constraints, it is necessary
to reduce the Birkhoff’s equations on the 2n-dimensional phase space to those on
its constraint submanifold of minimal dimension 2n − l. Such a symmetry reduc-
tion strongly relies on the dimension 2n − l of the constraint submanifold or the
number l of the constraints acted upon the system. Therefore, in order to directly
universally analyze the inverse problem of the calculus of variations for general non-
holonomic systems, we need to generalize the Birkhoffian mechanics. This problem
can arise in other coupled dynamical systems, such as control theory for systems,
supermechanics, etc.

In section 2, we will review Birkhoffian formulation of Newtonian Systems,
emphasizing its analytic, algebraic and geometric properties. Its relation with gen-
eralized Hamiltonian mechanics is pointed out. In section 3, generalized Birkhoff’s
equations for all analytic, regular first-order dynamical systems are constructed
based on the Cauchy-Kowalevski theorem for existence theory of partial differen-
tial equations. The integration methods induced from Birkhoffian mechanics are
listed in section 4. In section 5, general nonholonomic systems are reduced into
generalized Birkhoffian systems(GBSs), whose equations of motion are represented
by the generalized Birkhoff’s equations.

2 Review of Birkhoffian formulation of Newtonian systems
Consider a holonomic dynamical system on a contact manifold R × TQ with lo-
cal coordinates {qi, q̇i} (i = 1, 2, . . . , n) where Q is a n-dimensional configuration
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manifold. Let a regular Lagrangian be denoted by L(t, q, q̇). Suppose the system
is subject to non-conservative forces fi(t, q, q̇) which are analytic. The equations
of motion for the system can be represented by non-homogeneous Euler-Lagrange
equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= fi (1)

The regularity condition Lij = det( ∂2L
∂qi∂q̇j ) 6= 0 guarantees that these n second-

order differential equations for qi on the contact manifold R× TQ can be reduced
into 2n first-order non-homogeneous Hamilton’s equations on the contact manifold
R× T ∗Q with local coordinates {t, aµ} (µ = 1, 2, . . . , 2n):

ωµν ȧ
ν − ∂H(t, a)

∂aµ
= Fµ(t, a) (2)

where {aµ} = {qi, pi}, pi = ∂L
∂q̇i , H = ∂L

∂q̇i q̇
i − L is the Hamiltonian for the system

and simple symplectic matrix is

ω = (ωµν)2n×2n =
(

0n×n −1n×n

+1n×n 0n×n

)
2n×2n

(3)

In general, equations (2) are non-self-adjoint. By means of the Cauchy-Kowalevski
theorem, it can be proved that there exist integrating factors {hµ

λ} for the equa-
tions (2) to become self-adjoint equations

Ωµν ȧ
ν −

[
∂B (t, a)
∂aµ

+
∂Rµ (t, a)

∂t

]
= 0 (4)

in a star-shaped region of a regular point (t, a), where B is a Birkhoffian usually
taken as the energy function of the system, Rµ are a set of Birkhoffian functions
usually related with the function Fµ and Ωµν is the covariant Birkhoff’s tensor
defined by

Ωµν (t, a) =
∂Rν (t, a)
∂aµ

− ∂Rµ (t, a)
∂aν

(5)

is symplectic. The regularity condition det (Ωµν) 6= 0 means that the 2n equations
(4) are independent and can be transformed into the contravariant form

ȧµ = Ωµν

[
∂B (t, a)
∂aν

+
∂Rν (t, a)

∂t

]
(6)

where Ωµν = Ω−1
µν .

The Birkhoff’s equations (4) are analytic in the sense that they are derivable
from the most general possible linear first-order action functional, the Pfaffian
action

A(Ẽ) =
∫ t2

t1

dt [Rν (t, a) ȧν −B (t, a)] (Ẽ) (7)

where Ẽ is a possible pass in the contact manifold. The discussion of gauge freedom
and some methods for integrating the Birkhoff’s equations can be found in [11], [14].
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The conditions of self-adjointness of Birkhoff’s Equations (4)

Ωµν + Ωνµ = 0 (8a)
∂Ωµν

∂aτ
+
∂Ωντ

∂aµ
+
∂Ωτµ

∂aν
= 0 (8b)

∂Ωµν

∂t
=

∂

∂aν

[
∂B (t, a)
∂aµ

+
∂Rµ (t, a)

∂t

]
− ∂

∂aµ

[
∂B (t, a)
∂aν

+
∂Rν (t, a)

∂t

]
(8c)

are equivalent to the the integrability conditions for the 2-form on the contact
manifold R× T ∗Q

Ω̂ =
1
2

Ω̂µν (â) dâµ ∧ dâν ; µ = 0, 1, 2, . . . , 2n (9)

to be closed, i.e.,
dΩ̂ = 0 (10)

where Ω̂µν = Ωµν , Ω̂0ν = −Ω̂ν0 = ∂B
∂aν + ∂Rν

∂t (µ, ν = 1, 2, . . . , 2n). The above
nonautonomous Birkhoff’s equations (4) can be globally represented by a general,
local, Birkhoffian vector field X̃ on R× T ∗Q verifying the properties

iX̃Ω̂ = 0, dt(X̃) = 1 (11)

Locally the vector field admits

X̃ =
∂

∂t
+ Ωµν

(
∂B

∂aν
+
∂Rν

∂t

)
∂

∂aµ
(12)

Evidently the universality of the Birkhoff’s equations is not only direct but also
global.

For the autonomous Birkhoffian systems where1 ∂Rµ

∂t = 0, the Birkhoff’s equa-
tions are equivalent to the generalized Hamilton’s equations [8] on an even-dimen-
sional Poisson manifold

ȧµ = Ωµν ∂B (t, a)
∂aν

(13)

In these cases the Poisson brackets can be defined by time evolution

Ȧ (a) =
∂A

∂aµ
ȧµ =

∂A

∂aµ
Ωµν ∂B

∂aν

def= [A,B] (14)

verifying the Lie algebra axioms

[A,B] + [B,A] = 0 (15a)
[[A,B] , C] + [[B,C] , A] + [[C,A] , B] = 0 (15b)

It should be pointed out that the Lie algebraic structure does not exist for a non-
autonomous Birkhoffian system for the dependence of R(t, a) on time t if we take
Birkhoffian B to be total energy of the system.

1As will be seen in section 3, the so-called semi-autonomous Birkhoffian systems mentioned
in [11], [14] are really autonomous ones. So the Birkhoffian systems can be classified into au-
tonomous ones and non-autonomous ones.
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3 Generalized Birkhoff’s equations
In order to generalize the theory of Birkhoffian systems, it is necessary to analyze
the fundamental conditions for the second-order dynamical systems to be capable
of reduction to first-order self-adjoint Birkhoffian formulation, especially their role
in the course of reduction to first-order systems.

(1) Locality. By locality we mean that the systems considered can be formu-
lated by ordinary or partial differential equations, in which the interactions are
independent of integro-differential type. This condition is necessary for the Lie
algebra and symplectic geometry to be suitable to analyze the theories of some
dynamical systems.

(2) Analyticity. Analyticity of a function means that it admits a convergent,
multiple, power series expansion in a neighborhood of a point. The analyticity can
be remained for a second-order dynamical system to be reduced into a first-order
system. Evidently analyticity is based on locality. Analyticity does not depend on
the self-adjointness of a dynamical system.

(3) Regularity. A system is called regular when it is of full rank or maximal
rank, i.e., its functional Jacobi determinant is everywhere non-null in the region of
a point, with the possible exception of finite number of isolated points. Regular-
ity means maximal independency and invertibility. Thus a regular system can be
recovered from its non-degenerately transformed form. Regularity is not an invari-
ant character with respect to symmetry reduction, e.g., the canonical and Eulerian
representations for the rotation of a rigid body with respect to a fixed point.

(4) Holonomicity. By a holonomic system we mean that constraints the sys-
tem is subject to are integrable in the sense of Frobenius theorem. A holonomically
constrained system can be reduced into a constraint-free system of lower dimen-
sions. Therefore, holonomicity ensures the phase space for the first-order systems
reduced from the second-order regular dynamical systems are even dimensional.

The universality of analytic/Lie/symplectic formulation in the most general
possible form, i.e., Birkhoffian realization, does not depend on whether or not the
original systems are conservative or self-adjoint. It should be pointed out that this
symbiosis among analytic, Lie and symplectic techniques is comparatively flimsy
because any one of the four legs under the symbiosis may be possibly broken.
For example, the nonlocal type of interactions often occurs in several branches of
physics, whose dynamical equations are integro-differential equations. Moreover,
nonholonomic systems largely exist in the fields of physics, mechanics and engineer-
ing. Therefore it should be encouraged to generalize the Birkhoffian formulation
to a new symbiosis among analytic, algebraic, geometric form in order to keep up
with the process of mathematical and physical advances.

In this section, we consider a kind of GBSs from which the nonholonomic sys-
tems may be recovered if the second-order dynamical systems are reconstructed.
Consider a dynamical system described by first-order differential equations

ȧI = ΞI(t, aJ), I, J = 1, 2, . . . ,m (16)

on an m-dimensional manifold M with local coordinates {t, a} where ΞI(t, a) are
analytic on the regular points. It can be proved that the equations (16) admit
an analytic and presymplectic structure whether they are self-adjoint or not. Two
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methods can be utilized to realize this goal. The first one is to find out an inte-
grating factor matrix with the help of Cauchy-Kowalevski theorem for the partial
differential equations to be integrable, so as to obtain a self-adjoint genotopic trans-
formed covariant form of the equations (16) or a presymplectic form on the manifold
M . Then the converse of Poincaré lemma is used to get the final result. The second
method is a direct use of the following Cauchy-Kowalevski theorem.

Theorem 1. Consider an initial problem consisting of n+ 1 first-order partial dif-
ferential equations of the Cauchy-Kowalevski form

∂Rα(t, a)
∂t

=
n∑

β=0

m∑
I=1

ΞIβ
α (t, a)

∂Rβ(t, a)
∂aI

+
n∑

β=0

Πβ
α(t, a)Rβ(t, a) + Θ(t, a) (17)

in n + 1 unknown functions Rα (α = 0, 1, 2, . . . , n) and in m + 1 independent
variables {t, aI} (I = 1, 2, . . . ,m), and the n+ 1 initial conditions

Rα(0, a1, a2, . . . , am) = Rα(a1, a2, . . . , am) (18)

If the functions ΞIβ
α (t, a), Πβ

α(t, a), Θ(t, a) and Rα(a) are real analytic functions at
the regular point A(a), then a unique analytic solution R0, R1, . . . , Rn of the initial
problem (17) and (18) exists in a neighborhood of the point A(a).

Considering the need of analytic and presymplectic structure, we set n = m,
Πβ

α = 0, Θ = 0, R0 = −B, a0 = t, ΞIβ
J = 2δ[IJ Ξβ] = δI

JΞβ − δβ
J ΞI (where Ξ0 = 1, so

ΞI0
J = δI

J). Then equations (17) become

∂RI(t, a)
∂t

=
[
∂RJ (t, a)

∂aI
− ∂RI (t, a)

∂aJ

]
ΞJ(t, a)− ∂B(t, a)

∂aI
(19a)

∂B(t, a)
∂t

= ΞI0
0

∂B(t, a)
∂aI

− ΞIJ
0

∂RJ(t, a)
∂aI

(19b)

The solution for {RI ,−B} is uniquely determined by known functions ΞJ ,ΞI0
0 ,Ξ

IJ
0

due to the Cauchy-Kowalevski theorem. However, for the definite functions ΞI ,
different choices of functions ΞI0

0 ,Ξ
IJ
0 can produce different solutions {RI ,−B},

which is not of physical meaning in general. Evidently there exist infinite solutions
for the equations (19a). If the quantity B in the equations (19a) is given, the
equations (19a) are complete and the theorem ensures unique existence of the
functions RI . In this case the equation (19b) for the functions ΞI0

0 ,Ξ
IJ
0 , which is

in fact algebraic, is not complete.
This analysis may be useful to easily find out the solution {RI ,−B} based

on a suitable choice of functions ΞI0
0 ,Ξ

IJ
0 . For example, we can suppose that

ΞI0
0 = 0,ΞIJ

0 = δIJ . Then the equation (19b) becomes

∂B(t, a)
∂t

+
∂RI(t, a)
∂aI

= 0 (20)

Now we will observe the analytic, algebraic and geometric characteristic of the
following generalized Birkhoff’s equations[

∂RJ

∂aI
− ∂RI

∂aJ

]
ȧJ −

(
∂B

∂aI
+
∂RI

∂t

)
= 0, I, J = 1, 2, . . . ,m (21)
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from which it is easy to infer that

dB

dt
=
∂B

∂t
− ∂RI

∂t
ȧI (22)

The equations (21) are analytic because they are derivable from the Pfaffian action

A(Ẽ) =
∫ t2

t1

dt [Rν (t, a) ȧν −B (t, a)] (Ẽ) (23)

with the end points condition,where Ẽ is a possible pass in the contact manifold M .
We can define 1-form Θ(t, a) = RI(t, a)daI − B(t, a)dt on the manifold M

subject to the condition that its exterior derivative

Ω = d(RI da
I−B dt) =

1
2

(
∂RJ

∂aI
− ∂RI

∂aJ

)
daI∧daJ +

(
∂B

∂aI
+
∂RI

∂t

)
dt∧daI (24)

is of maximal rank. Making use of the notation ΩIJ = ∂RJ

∂aI − ∂RI

∂aJ , ΓI = ∂B
∂aI + ∂RI

∂t ,
it is easy to verify the equivalence relation between the closure of the 2-form Ω and
self-adjointness of equations (21), i.e.,

dΩ = 0 ⇐⇒


ΩIJ + ΩJI = 0
∂ΩIJ

∂aK
+
∂ΩJK

∂aI
+
∂ΩKI

∂aJ
= 0

∂ΩIJ

∂t
=
∂ΓI

∂aI
− ∂ΓJ

∂aI

(25)

It inferred that the self-adjointness of the systems is independent of the non-
degeneracy of 2-form Ω.

Definition 1. A presymplectic structure on a manifold M can be defined by a
closed 2-form Ω, which may be degenerate in the sense that for all vector fields
V ∈ Γ(M), ∃X 6= 0, X ∈ Γ(M), such that Ω(X,V ) = 0. The pair (M,Ω) is called
a presymplectic manifold.

Because a 2-form on the manifold M with odd dimension is degenerate,2 such a
closed 2-form can not define a one-to-one and onto map between the tangent space
T{t,a}M and the cotangent space T ∗{t,a}M unless the dimension of the manifold
M is even, i.e., m = 2n and det(ΩIJ) 6= 0, which is the case of a Birkhoffian
system. Therefore, if we denote the set of smooth real-valued functions on M
by F(M), there does not, in general, exist the unique Hamiltonian vector field
Xf on M such that iXf

Ω = df , f ∈ F(M). Although the dynamical vector field

2Denote the transpose of the matrix (ΩIJ ) by (ΩIJ )T = (ΩJI), then det(ΩIJ )T =
det(ΩIJ ). Since the matrix (ΩIJ ) is antisymmetric, i.e., ΩIJ = −ΩJI , we have det(−ΩIJ ) =
det(ΩIJ ). It can be referred that det(−ΩIJ ) = (−1)m det(ΩIJ ) from the relation det(ΩIJ ) =
εIJ...KΩ1IΩ2J · · ·ΩmK where εIJ...K is the totally antisymmetric Levi-Civita symbol. Thus
det(ΩIj) = 0 if m is odd.
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X = ∂
∂t +ΞI(t, a) ∂

∂aI cannot locally represented by the Birkhoffian as equation (12),
we fortunately still have a global formulation of the equations (21), i.e.,

iXΩ = 0, iX dt = 1. (26)

which also include the time variation of the generalized Birkhoffian function B,
i.e, the equation (22). It is interesting that the global form (26) is not only suit-
able to formulate Hamiltonian or Birkhoffian systems with contact (symplectic)
structure but also enables to represent GBSs and other systems as nonholonomic
systems [2], [3] of non-symplectic structure.

If the closed 2-form Ω is regular, the system is reduced to the Birkhoffian system.
If the GBS is autonomous or semi-autonomous, the equation

ΩIJ ȧ
J − ∂B

∂aI
= 0, I, J = 1, 2, . . . ,m (27)

can be globally formulated by
iXΩ = −dB (28)

where Ω = 1
2ΩIJda

I ∧daJ . Combining the equation (22) with equation (28), yields
that ∂B

∂t = 0, i.e., the so-called semiautonomous Birkhoffian systems are really
autonomous ones. Furthermore, if the closed 2-form is regular, the Lie algebra can
be constructed by the Poisson bracket

{f, g} = Ω−1(df, dg) = Ω(Xf , Xg) (29)

in accordance with the time evolution law ȧI = ΩIJ ∂B
∂aJ = 0. It should pointed

out that Lie algebra structure does not generally exist for a GBS unless ∂RI

∂t = 0,
det(ΩIJ) 6= 0.

4 Integration of generalized Birkhoff’s equations
As Birkhoffian mechanics, the most important tasks to study the generalized Birk-
hoffian mechanics mainly focus on both constructing the Birkhoffian, Birkhoffian
functions and integrating the generalized Birkhoff’s equations. The first procedure
should be checking whether the methods utilized in Birkhoffian mechanics can be
generalized to GBSs or not. Fortunately, all the existing methods to construct
Birkhoffian functions can be used in GBSs because that the methods only rely
upon the locality, analyticity of the integrand, independent of the regularity of the
matrix ΩIJ mentioned above.

A given first-order system verifying the conditions of locality, analyticity and
regularity always admits infinite varieties of equivalent generalized Birkhoffian rep-
resentations characterized by the gauge transformations

RI(t, a) → R′
I(t, a) = RI(t, a) +

∂G(t, a)
∂aI

(30a)

B(t, a) → B′(t, a) = B(t, a)− ∂G(t, a)
∂t

(30b)
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All the Birkhoffian representations are equivalent in the sense that Birkhoff’s equa-
tions are the same for all possible functions (30), i.e.,(

∂R′
ν

∂aµ
−
∂R′

µ

∂aν

)
ȧν −

(
∂B′

∂aµ
+
∂R′

µ

∂t

)
=
(
∂Rν

∂aµ
− ∂Rµ

∂aν

)
ȧν −

(
∂B

∂aµ
+
∂Rµ

∂t

)
(31)

The practical meaning is that we can choose a gauge function G(t, a) to make the
Birkhoffian be the physical energy of the system.

Therefore, we can outline the three methods to construct Birkhoffian functions
as follows.

Method 1. Let B be the total energy of the system and then solve the Cauchy-
-Kowalevski equations (19a) in the functions RI .

Method 2. Via the method of the genotopic transformations starting from the
equation (16), construct a self-adjoint covariant form

[ΩIJ (t, a) ȧJ + ΓI(t, a)]SA = 0, I, J = 1, 2, . . . ,m (32)

The functions RI are then given by

RI(t, a) =
[∫ 1

0

dτ τΩIJ (t, τa)
]
aJ (33)

and the Birkhoffian is provided by the rule

B(t, a) = −
[∫ 1

0

dτ

(
ΓI +

∂RI

∂t

)
(t, τa)

]
aI (34)

This method is recommended when no physical condition is imposed on the
meaning of the Birkhoffian and on the prescriptions for the construction of the
first-order form. It is often preferable in practice, because of the greater freedom
in the Birkhoffian functions.

Method 3. Suppose that the m obtained first integrals IJ of the first-order
system (16) are independent in the sense that det(∂IJ/∂aI) 6= 0. Then

RI(t, a) = GJ
∂IJ

∂aI
, B(t, a) = −GJ

∂IJ

∂t
(35)

where GJ are functions of the integrals II , which are not constrained by the reg-
ularity condition det(∂GI/∂IJ − ∂GJ/∂II) 6= 0.

5 Application of generalized Birkhoffian formulation to nonholo-
nomic systems

As an important example of GBS, we consider a mechanical system on the contact
manifold R × TQ with local coordinates {t, qi, q̇i} (i = 1, 2, . . . , n). Denote the
Lagrangian of the system by L(t, q, q̇) and suppose the system is subject to the
nonholonomic constraints

q̇α = ϕα(t, qi, q̇µ), α = 1, 2, . . . , l; µ = 1, 2, . . . , k = n− l (36)
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The dynamics of the nonholonomic system is uniquely determined by the four
factors: (1) Lagrange-d’Alembert principle, (2) ideal constraints, (3) Chetaev’s
condition for the virtual displacement, and (4) the regularity of the Hessian matrix(

∂2L
∂q̇i∂q̇j

)
. Of course, the locality and analyticity are understood. The equations

of motion for the system form a set of mixed second- and first-order ordinary
differential equations [6], [16], [17], [19]

q̈µ = fµ(t, qν , q̇ν , qα), ν = 1, 2, . . . , k = n− l (37a)

q̇α = ϕα(t, qν , q̇ν , qβ), β = 1, 2, . . . , l (37b)

The Lagrangian and Hamiltonian inverse problem for such a coupled system is
not universal [1], [7], [12]. The nonholonomicity of the system makes the Birk-
hoffian realization for the system to be not universal. However, the universality
of self-adjointness for the nonholonomic system can be realized in the generalized
Birkhoffian framework based on the conditions of locality, analyticity and regularity
of the system.

Introduce l regular coordinates {xµ}

xµ = ξµ(t, qν , q̇ν , qα), det(∂ξµ/∂q̇ν) 6= 0 (38)

whose inverse transformation is

q̇µ = ζµ(t, qν , xν , qα) (39)

Substituting equation (39) into the equation (37) we get the following first-order
system

q̇µ = ζµ(t, qν , xν , qα) (40a)
ẋµ = ψµ(t, qν , xν , qα) (40b)

q̇α = ϕα(t, qν , xν , qβ) (40c)

Sometimes we directly choose xµ to be generalized velocity q̇µ or generalized mo-
mentum pµ. Denote the m = 2k + l local coordinates {qν , xν , qα} on constraint
manifold M by {aI} (I = 1, 2, . . . ,m = 2k + l). Then the equations (37) can be
reformulated by

ȧI = ΞI(t, aJ), I, J = 1, 2, . . . ,m = 2k + l (41)

The locality, analyticity and regularity of the functions ΞI(t, a) make the equa-
tions (41) admit a generalized Birkhoffian formulation[

∂RJ

∂aI
− ∂RI

∂aJ

]
ȧJ −

(
∂B

∂aI
+
∂RI

∂t

)
= 0, I, J = 1, 2, . . . ,m = 2k + l (42)

where the total energy of the system can be taken as the Birkhoffian B and the
functions RI are related with the nonholonomic constraint forces. It should be
remarked that the regularity of Hessian matrix for the original nonholonomic me-
chanical system does not assure the regularity of the matrix (ΩIJ) which is deter-
mined by the integrability of the constraints or the nonholomicity of odd number
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of constraints. If l is even the system is a Birkhoffian system. For the case of
odd l, no symplectic and Lie algebra structure exist on the constraint manifold M .
However, the self-adjointness for the equation (41) is independent of parity of the
number m of the nonholonomic constraints.

If the second-order equations are decoupled with the constraints, e.g., the Chap-
lygin’s system

q̈µ = fµ(t, qν , q̇ν), ν = 1, 2, . . . , k = n− l (43a)
q̇α = ϕα(t, qν , q̇ν), α = 1, 2, . . . , l (43b)

the Birkhoffian formulation can be realized on a 2k-dimensional subspace [9], [11].

Example 1. [9] Consider the motion of a simplified sleigh with unit mass and unit
moment of inertia in R2×T 1 with coordinates (x, y, ϕ) , subjected to the nonholo-
nomic constraint ẏ = ẋ tanϕ. The Lagrangian is L = 1

2

(
ẋ2 + ẏ2 + ϕ̇2

)
and the

Lagrangian embedded in the constraint is L = 1
2

(
ẋ2sec2ϕ+ ϕ̇2

)
. Obviously the

system is a Chaplygin’s system and thus reduced to a holonomic nonconservative
subsystem for x and ϕ on a submanifold hs

τ ⊂ T
(
R2 × T 1

)
, decouped with the

constraint. The Chaplygin’s equations of motion are

ẍ+ ẋϕ̇ tanϕ = 0, ϕ̈ = 0, ẏ − ẋ tanϕ = 0

Utilizing the Legendre transformation ẋ = px cos2 ϕ, ϕ̇ = pϕ, the Hamiltonian
embedded in the constraint is H = 1

2

(
p2

xcos2ϕ+ p2
ϕ

)
. The equations of motion are

given by the matrix form
0 px tanϕ −1 0

−px tanϕ 0 0 −1
1 0 0 0
0 1 0 0



ẋ
ϕ̇
ṗx

ṗϕ

 =


0

− 1
2p

2
x sin 2ϕ

px cos2 ϕ
pϕ


with four independent first integrals

I1 = pϕ, I2 = ϕ− pϕt, I3 = px cosϕ, I4 =
1
2
[
ω2x2 + p2

x cos4 ϕ
]

where ω = ϕ̇ is constant.
Taking the conventional notations aJ = {x, ϕ, px, pϕ} (J = 1, 2, 3, 4), we find

out a set of Birkhoffian functions by means of Hojman’s method [5], [14]

R1 = a1a3
(
a4
)2

cos a2

R2 =
1
2
a4 +

a3 cos a2

2a4
−
(
a3
)2

cos3a2 sin 2a2

R3 =
(
a3
)2

cos5a2

R4 = −a2 +
1
2
a4t− ta3 cos a2

2a4
+
(
a1
)2
a3a4 cos a2

B =
1
2

[(
a4
)2

+ a3 cos a2
]
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Thus the symplectic tensor ΩIJ = ∂RJ

∂aI − ∂RI

∂aJ is given by the matrix elements

Ω11 = Ω22 = Ω33 = Ω44 = 0

Ω12 = −Ω21 = a1a3
(
a4
)2

sin a2

Ω13 = −Ω31 = −a1
(
a4
)2

cos a2

Ω14 = −Ω41 = 0

Ω23 = −Ω32 =
(
a3
)2

cos4a2 sin a2 − cos a2

2a4

Ω24 = −Ω42 = −3
2
−
(
a1
)2
a3a4 sin a2 +

a3 cos a2 + ta3a4 sin a2

2(a4)2

Ω34 = −Ω43 =
(
a1
)2
a4 cos a2 − t cos a2

2a4

which satisfies the conditions of self-adjointness. It can be verified that the equa-
tions of motion can be represented by the nonautonomous Birkhoff’s equations

ΩIJ ȧ
J − ∂B

∂aI
− ∂RI

∂t
= 0

Example 2. Consider a nonholonomic system whose configuration is denoted by
{q1, q2}. The Lagrangian of the system is L = 1

2

(
(q̇1)2 + (q̇2)2

)
. Suppose the

system is constrained by a nonholonomic constraint

q̇1 + tq̇2 − q2 + t = 0.

Then the differential equations of motion for the system are

(1 + t2)q̈2 + 2tq̇2 + 2q̇1 − 2q2 + 3t = 0

q̇1 + tq̇2 − q2 + t = 0

Let a1 = q2, a2 = q̇2, a3 = q1, then the equations can be transformed into the
first-order differential equations

ȧ1 = a2,

ȧ2 =
−t

1 + t2
,

ȧ3 = a1 − ta2 − t

with three independent first integrals

I1 = a3 − t
(
a1 − ta2 − t

)
− 1

2
ln
(
1 + t2

)
,

I2 = a1 − ta2 − t+ arctan t,

I3 = a2 +
1
2

ln
(
1 + t2

)
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By using the Hojman’s method, we can get the Birkhoffian functions

R1 = G1
∂I1

∂a1
+G2

∂I2

∂a1
+G3

∂I3

∂a1
= −G1t+G2

R2 = G1
∂I1

∂a2
+G2

∂I2

∂a2
+G3

∂I3

∂a2
= G1t

2 −G2t+G3

R3 = G1
∂I1

∂a3
+G2

∂I2

∂a3
+G3

∂I3

∂a3
= G1

B = −
[
G1

∂I1

∂t
+G2

∂I2

∂t
+G3

∂I3

∂t

]
= −G1

(
2ta2 + 2t− a1 − t

1 + t2

)
−G2

(
1

1 + t2
− a1 − 1

)
−G3

t

1 + t2

Set G1 = I2, G2 = 0, G3 = I3. Then

R1 = −t
(
a1 − ta2 − t+ arctan t

)
R2 = t2

(
a1 − ta2 − t+ arctan t

)
+ a2 +

1
2

ln
(
1 + t2

)
R3 = a1 − ta2 − t+ arctan t

B =
(

2ta2 + 2t− a1 − t

1 + t2

)(
−a1 + ta2 + t− arctan t

)
− t

1 + t2

[
a2 +

1
2

ln
(
1 + t2

)]
Thus the presymplectic tensor ΩIJ = ∂RJ

∂aI − ∂RI

∂aJ is given by the matrix

(ΩIJ)3×3 =

 0 0 1
0 0 −t
−1 t 0


It can be verified that the equations of motion can be represented by the generalized
Birkhoff equations

ΩIJ ȧ
J − ∂B

∂aI
− ∂RI

∂t
= 0

Concluding remarks
As shown above the inverse problem of the calculus of variations for a dynamical
system is characterized essentially by the self-adjointness conditions of the equa-
tions of motion in first-order form, which is equivalent to a closed 2-form on the
manifold. Any local, analytic, regular, finite-dimensional, nonholonmic, self-adjoint
or non-self-adjoint dynamical systems in first-order form always admit a generalized
Birkhoffian formulation in a contractible region of regular point of variables. The
sequence from self-adjointness to symplecticity and to Lie algebra of the formula-
tion for the dynamics is a sequence for the conditions to become more and more
strict. The symbiosis of self-adjoint/symplectic/Lie algebraic/physical formulation
is only suitable to the local, analytic, regular, holonomic, autonomous dynamical
systems.



34 Yong-Xin Guo, Chang Liu and Shi-Xing Liu

Acknowledgments

This work was supported by the National Natural Science Foundation of China
(10932002, 10872084, 10472040), the Outstanding Young Talents Training Fund of
Liaoning Province of China (3040005), the Research Program of Higher Education
of Liaoning Province, China (2008S098), the Program of Supporting Elitists of
Higher Education of Liaoning Province, China (2008RC20) and the Program of
Constructing Liaoning Provincial Key Laboratory, China (2008403009).

References

[1] A.M. Bloch, O.E. Fernandez, T. Mestdag: Hamiltonization of nonholonomic systems and
the inverse problem of the calculus of variations. Rep. Math. Phys. 63 (2009) 225–249.

[2] A.M. Bloch, J. Baillieul, P. Crouch, J. Marsden: Nonholonomic Mechanics and Control.
Springer, London (2003).

[3] J.M. Cortes: Geometric, Control and Numerical Aspects of Nonholonomic Systems.
Springer, Berlin (2002).

[4] Y.X. Guo, S.K. Luo, M. Shang, F.X. Mei: Birkhoffian formulation of nonholonomic
constrained systems. Rep. Math. Phys. 47 (2001) 313–322.

[5] S. Hojman: Construction of genotopic transformations for first order systems of
differential equations. Hadronic J. 5 (1981) 174–184.

[6] L.A. Ibort, J.M. Solano: On the inverse problem of the calculus of variations for a class
of coupled dynamical systems. Inverse Problems 7 (1991) 713–725.
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Homogeneous systems of higher-order ordinary

differential equations

Mike Crampin

Abstract. The concept of homogeneity, which picks out sprays from the
general run of systems of second-order ordinary differential equations in
the geometrical theory of such equations, is generalized so as to apply to
equations of higher order. Certain properties of the geometric concomitants
of a spray are shown to continue to hold for higher-order systems. Third-
order equations play a special role, because a strong form of homogeneity
may apply to them. The key example of a single third-order equation
which is strongly homogeneous in this sense states that the Schwarzian
derivative of the dependent variable vanishes. This equation is of impor-
tance in the theory of the association between third-order equations and
pseudo-Riemannian manifolds due to Newman and his co-workers.

1 Introduction
In the geometrical theory of systems of second-order ordinary differential equations
an important role is played by a class of equations which are homogeneous in a
certain sense. In the theory envisaged here a system of second-order equations
in m dependent variables is represented by a vector field Γ of a special type on
the tangent bundle T (M) of an m-dimensional smooth manifold M . A tangent
bundle comes equipped with a canonical vertical vector field ∆, the Liouville field,
which is the infinitesimal generator of dilations of the fibres. Then the equations
are homogeneous if the corresponding differential equation field Γ satisfies [∆,Γ] =
Γ (so one might say it is homogeneous of degree 1). Such differential equation
fields, which may in fact be defined not on the whole of T (M) but only on the
slit tangent bundle (T (M) with its zero section deleted), are often called sprays.
Examples include the geodesic field of a Finsler space, and a fortiori that of a
Riemannian space, or indeed of any affine connection. It should be mentioned that

2010 MSC: 34A26, 34C14, 53A55, 53B15, 83C80
Key words: Differential equation field, dynamical covariant derivative, horizontal distribution,

Jacobi endomorphism, Liouville field, multiconnection, n-velocity, spray, Wuenschmann invariant.
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this paper deals only with equations which do not explicitly involve the independent
variable; in a dynamical context such equations could be called autonomous, and
the examples mentioned above are clearly of this type. For a textbook account of
the geometry of sprays see [13].

The aim of the present paper is to propose a definition — or as it turns out,
definitions — of homogeneity for systems of higher-order ordinary differential equa-
tions, where ‘higher-order’ means of course ‘of order higher than the second’; and
to establish under these definitions properties that parallel those enjoyed by sprays
in the second-order case.

To describe the properties of sprays that will be generalized I first need to say
somewhat more about the geometrical theory of systems of second-order differential
equations. A standard reference here is [3]. The main aim of the theory may be
described as the formulation of differential-geometric concomitants of the equation
field Γ, or in other words associated geometric objects which do not depend on
the choice of coordinates. (Despite what has just been said, I must admit to the
rather frequent use of coordinates below — but only in order to simplify or speed
up the exposition.) For my purposes here there are three important concomitants
of a second-order differential field Γ. These involve in their specifications so-called
vector fields along the tangent bundle projection τ : T (M) → M , or in other
words sections of the pull-back bundle τ∗T (M) → T (M). I make a short detour to
mention a couple of useful features of this construction. There is a canonical section
of τ∗T (M), given in local coordinates by ẏi∂/∂yi, where (yi), i = 1, 2, . . . ,m are
coordinates on M and (ẏi) the corresponding fibre cordinates on T (M); this section
is sometimes called the total derivative; I shall denote it by T . Given any section Y
of τ∗T (M) there is a canonical associated vertical vector field on T (M), its vertical
lift, denoted by Y V . The three geometric objects associated with a second-order
differential equation field are

1. its dynamical covariant derivative: this is an R-linear operator

∇ : sect τ∗T (M) → sect τ∗T (M)

satisfying the covariant-derivative-like property ∇(fY ) = f∇Y + Γ(f)Y for
f ∈ C∞(T (M));

2. its horizontal distribution: this is a distribution on T (M), complementary
to the vertical distribution, which can be thought of as defining a nonlinear
connection, and leads to a horizontal lift operation taking Y ∈ sect τ∗T (M)
to Y H , a horizontal vector field on T (M);

3. its Jacobi endomorphism: this is a C∞(T (M))-linear map

Φ : sect τ∗T (M) → sect τ∗T (M) ,

so called because Jacobi’s equation, which is the equation satisfied by varia-
tion fields along an integral curve of Γ, can be expressed as ∇2Y + Φ(Y ) = 0.

The three are related as follows:

[Γ, Y V ] = −Y H + (∇Y )V
, [Γ, Y H ] = (∇Y )H + Φ(Y )V

.
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When Γ is a spray these objects have the following properties (see for example
[5], [13]):

1. the horizontal distribution is invariant under ∆: if Y ∈ X(M) then [∆, Y H ] = 0;

2. the Jacobi endomorphism is homogeneous of degree 2: L∆Φ = 2Φ (where the
Lie derivative is used in a sense to be explained fully later);

3. Γ is horizontal with respect to the horizontal distribution it defines, and in
fact Γ = TH ;

4. Φ(T ) = 0.

In Section 3 below I describe how one may define analogues of the dynamical
covariant derivative, the horizontal distribution and the Jacobi endomorphism for
a differential equation field of any order. There are in fact several inequivalent ways
of extending these concepts to equations of higher order, which are discussed in [1],
[2], [4], [6], [8], [12]. The one adopted here is based on an approach first given for
fourth-order equations in [1], and extended to equations of arbitrary order in [8].
It is to be preferred, in my opinion, because it gets most quickly to the generalized
Jacobi equation.

In Section 4 I give a definition of homogeneity for a differential equation field
of any order, and show that properties 1 and 2 above hold, mutatis mutandis, for
homogeneous fields with this definition. There is a stronger sense of homogeneity,
but it applies only to equations of the third order. I explain this in Section 5, and
show that the remaining two properties then hold.

Finally in Section 5 I obtain the most general strongly homogeneous third-
order differential equation in a single dependent variable. This turns out to be
essentially the vanishing of the Schwarzian derivative of the dependent variable.
Single third-order differential equations are of interest because of their association
in certain cases with pseudo-Riemannian spaces, an association rediscovered as a
result of an approach to problems in general relativity initiated by E. T. Newman
and his co-workers in [9]. The equations which feature in these studies are picked
out by the vanishing of a certain invariant called the Wuenschmann invariant: this
has a simple expression in terms of the Jacobi endomorphisms, as has been shown
in [8], and also more recently in [4]. It turns out that each member of the class
of strongly homogeneous third-order differential equations in a single dependent
variable mentioned above has vanishing Jacobi endomorphisms, and ipso facto
vanishing Wuenschmann invariant. The properties of pseudo-Riemannian spaces
associated with these equations have been studied in [10], [11].

The paper proper begins with an account of the space which plays the role of
the tangent bundle for equations of order n, namely the bundle of n-velocities.

2 The bundle of n-velocities

Let M be a smooth manifold of dimension m, with local coordinates (yi), i =
1, 2, . . . ,m. Let Tn(M) be the bundle of n-velocities on M : a point of Tn(M) is an
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equivalence class of curves σ in M , defined on an open interval containing 0, under
the equivalence relation σ ≡ ρ if in one, and hence any, coordinate representation

drσi

dxr
(0) =

drρi

dxr
(0), r = 0, 1, . . . , n.

Denote by (yi
r) = (yi

0, y
i
1, . . . , y

i
n) the natural coordinates on Tn(M), so that (yi

r)
are the coordinates of the equivalence class of the curve

yi(x) = yi
0 + xyi

1 + · · ·+ 1
r!
xryi

r + · · ·+ 1
n!
xnyi

n.

Evidently Tn(M) is fibred over T r(M) for r = 0, 1, . . . , n− 1, where T 0(M) =
M . The corresponding projections are denoted by τr : Tn(M) → T r(M); we have
τr(yi

0, y
i
1, . . . , y

i
n) = (yi

0, y
i
1, . . . , y

i
r). A vector v ∈ T (Tn(M)) such that τ0∗v = 0 is

said to be vertical; one such that τr∗v = 0 to be vertical over T r(M); on occasion,
one vertical over Tn−1(M) to be very vertical. At any point of Tn(M), the space of
vectors vertical over T r(M) is spanned by the coordinate vectors ∂/∂yi

s for s > r.
For n ≥ r ≥ 1, denote the vector sub-bundle of T (Tn(M)) consisting of vectors
vertical over T r−1(M) by Vr, so that in particular the vector sub-bundle consisting
of vertical vectors (vectors vertical over M) is V1. Then

Vn ⊂ Vn−1 ⊂ · · · ⊂ V1 ⊂ T (Tn(M))

is a filtration of T (Tn(M)). One can identify Vn, and Vr−1/Vr, with τ∗0 (T (M)), the
pull-back by τ0 : Tn(M) → M of the tangent bundle T (M) → M . I shall denote
by Vr the module of vector fields on Tn(M) which are vertical over T r−1(M), or
in other words, sections of Vr → Tn(M). Then

Vn ⊂ Vn−1 ⊂ · · · ⊂ V1 ⊂ X(Tn(M)).

The type (1, 1) tensor field S on Tn(M) given by

S =
n∑

r=1

r
∂

∂yi
r

⊗ dyi
r−1

is called the vertical endomorphism. Evidently S(X(Tn(M))) = V1, and for 1 ≤
r ≤ n− 1, S(Vr) = Vr+1, while S(Vn) = {0}.

The additive group R acts on Tn(M) as follows. For any curve σ in M , and
for t ∈ R, we may define a curve σt by σt(x) = σ(etx). This map of curves defines
a map of n-velocities, given in coordinates by (yi

r) 7→ (ertyi
r). The corresponding

(vertical) vector field on Tn(M) is

∆ = yi
1

∂

∂yi
1

+ 2yi
2

∂

∂yi
2

+ · · ·+ nyi
n

∂

∂yi
n

.

It is the fundamental vector field of the action corresponding to the vector field
t∂/∂t on R.
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Vector fields ∆r on Tn(M), r = 1, 2, . . . , n, are defined as follows:

∆r+1 = S(∆r), ∆1 = ∆.

Then S(∆n) = 0. It may be shown that these vector fields satisfy

[∆r,∆s] =
{

(r − s)∆r+s−1 for r + s− 1 ≤ n
0 otherwise.

In particular, they form an n-dimensional Lie algebra, say D. The generators
of this algebra may be related to vector fields on R in a way that extends the
relation between ∆ and t∂/∂t described above. Let p be the Lie algebra of vector
fields on R whose coefficients are (formal) power series in t, and let pn be the
subalgebra of those vector fields which vanish to order n at 0, that is, whose
coefficient begins with tn+1. Then p0 is the subalgebra of vector fields which vanish
at 0; for n > 0, pn is an ideal in p0; and D is anti-isomorphic to p0/pn. In fact the
map p0 → X(Tn(M)) by tr∂/∂t 7→ Sr−1(∆) for r ≥ 1 is an anti-homomorphism,
with kernel pn. Now the group D of diffeomorphisms of R which leave 0 fixed acts
on Tn(M) by reparametrization; the action leaves the fibres invariant and induces
the identity on M . We may think of p0 as playing the role of the Lie algebra of D,
and the vector fields ∆r as the fundamental vector fields of the action.

The space q of all quadratic vector fields on R is a Lie algebra, and no space of
all polynomial vector fields of some higher degree has that property. Then p0/p2

is isomorphic to q0, the subalgebra of q consisting of quadratic vector fields that
vanish at 0. Correspondingly, {∆1,∆2} span a 2-dimensional Lie algebra of vector
fields on Tn(M), which is anti-isomorphic to q0.

3 Systems of (n + 1)st-order differential equations
A differential equation field of order n+ 1 is a vector field Γ on Tn(M) of the form

Γ = yi
1

∂

∂yi
0

+ yi
2

∂

∂yi
1

+ · · ·+ yi
n

∂

∂yi
n−1

+ f i ∂

∂yi
n

.

The integral curves of such a vector field, projected onto M , are the solutions of
the system of (n+ 1)st-order ordinary differential equations

yi
n+1 = f i(yj , yj

1, . . . , y
j
n), yi

r =
dryi

dxr
.

The vector field Γ is a geometrical expression for the system of differential equa-
tions. One geometrical approach to the study of systems of ordinary differen-
tial equations is to work with the corresponding vector field: this is the approach
adopted here.

Notice that Γ is a differential equation field if and only if S(Γ) = ∆.
If Γ is a differential equation field of order n + 1 and Γ̂ is another vector field

on Tn(M)) then Γ̂ is also a differential equation field of order n+ 1 if and only if
differs from Γ by a very vertical vector field.

Associated with a differential equation field Γ there is a linear differential oper-
ator ∇ with properties reminiscent of those of a covariant derivative; accordingly, it
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is called the dynamical covariant derivative. It acts on sect τ∗0 (T (M)), and satisfies
∇(fY ) = f∇Y + Γ(f)Y for f ∈ C∞(Tn(M)) and Y ∈ sect τ∗0 (T (M)). In terms of
coordinate fields ∇ is given by

∇
(
∂

∂yi

)
= − 1

n+ 1
∂f j

∂yi
n

∂

∂yj
= Γj

i

∂

∂yj
.

One can easily check from this formula that ∇ is well-defined, in the sense that
Γj

i transforms appropriately under a coordinate transformation ȳi = ȳi(yj) on M .
Then (taking account of the Leibniz-like rule)

∇Y = ∇
(
Y i ∂

∂yi

)
= (Γ(Y i) + Y jΓi

j)
∂

∂yi
= (∇Y i)

∂

∂yi
.

The dynamical covariant derivative may of course be made to act on other
geometrical objects. In particular, it acts on T (M)-valued 1-forms on Tn(M),
that is to say, sections of T ∗(Tn(M)) ⊗ τ∗0 (T (M)) → Tn(M), as follows: for θ ∈
sectT ∗(Tn(M)) and Y ∈ sect τ∗0 (T (M)) set

∇(θ ⊗ Y ) = LΓθ ⊗ Y + θ ⊗∇Y.

For convenience of calculation one may proceed as follows. Any section of

T ∗(Tn(M))⊗ τ∗0 (T (M))

can be expressed as θi⊗ ∂/∂yi where (θi) is an m-tuple of 1-forms on Tn(M), and
the index i may be thought of as tensorial so far as coordinate transformations on
M are concerned. Set

∇
(
θi ⊗ ∂

∂yi

)
= (∇θi)⊗ ∂

∂yi
.

This defines a new m-tuple of 1-forms on Tn(M), (∇θi), and again the index is
tensorial; explicitly,

∇θi = LΓθ
i + Γi

jθ
j .

It follows that for any vector field Z on Tn(M)

θi([Γ, Z]) = ∇(θi(Z))− (∇θi)(Z).

This operation will now be applied repetitively, starting with θi = dyi
0 =

τ0∗(dyi), in other words with the section of T ∗(Tn(M)) ⊗ τ∗0 (T (M)) which, as
a map, takes a vector v on Tn(M) to τ0∗v considered as an element of τ∗0 (T (M))
located at the same point of Tn(M) as v. That is to say, we define 1-forms Θi

r,
0 ≤ r ≤ n, by

Θi
r+1 = ∇Θi

r, Θi
0 = dyi

0,

or in terms of T (M)-valued 1-forms, Θr+1 = ∇Θr. Now for 0 ≤ r < n, LΓdy
i
r =

dyi
r+1, whence for 0 ≤ r ≤ n we may write

Θi
r = dyi

r +
r−1∑
s=0

(Cs
r )i

jdy
j
s
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for some coefficients (Cs
r )i

j which are (local) functions on Tn(M). These satisfy the
recurrence relations

(Cr
r+1)i

j = (Cr−1
r )i

j + Γi
j

(Cs
r+1)i

j = Γ(Cs
r )i

j + Γi
k(Cs

r )k
j + (Cs−1

r )i
j 1 ≤ s ≤ r − 1

(C0
r+1)i

j = Γ(C0
r )i

j + Γi
k(C0

r )k
j .

In particular,
(Cr

r+1)i
j = (r + 1)Γi

j .

From the formula Θi
r = dyi

r +
∑

s<r(Cs
r )i

jdy
j
s we see that {Θi

r}, 0 ≤ r ≤ n, is a
local basis of 1-forms on Tn(M). Let {Y r

i } be the dual basis. Then

Y n
i =

∂

∂yi
n

, Y r
i =

∂

∂yi
r

+
n∑

s=r+1

(Dr
s)j

i

∂

∂yi
s

0 ≤ r ≤ n− 1,

for coefficients (Dr
s)j

i which may easily be expressed in terms of the (Cs
r )i

j .
For r = 0, 1, . . . , n− 1 let Hr be the distribution on Tn(M) spanned locally by

the vector fields Y r
i . We obtain in this way n m-dimensional distributions, each of

which can be identified with sect τ∗0 (T (M)), such that Hr ∩ Hs = {0} for r 6= s.
For r ≥ 1, Hr is a complement to Vr+1 in Vr, while H0 is a complement to V1 in
X(Tn(M)). If we set H̄r = H0⊕H1⊕· · ·⊕Hr for r < n then H̄r⊕Vr+1 = X(Tn(M)),
and

H̄0 ⊂ H̄1 ⊂ · · · ⊂ H̄n−1 ⊂ X(Tn(M))

is a filtration of X(Tn(M)) complementary to the filtration by vertical distributions.
It is called a horizontal filtration, and the whole construction a multiconnection, a
term coined in [12]. A vector field on Tn(M) which lies inH0 is said to be horizontal
with respect to the multiconnection, and H0 itself is the horizontal distribution.

For any section Y of τ∗0 (T (M)) denote by Y r the corresponding element of Hr,
0 ≤ r ≤ n − 1, and by Y n the corresponding element of Vn (which it is often
convenient to think of as Hn, however counter-intuitive this may be). Then

Y r = Y iY r
i where Y = Y i ∂

∂yi
.

Any vector field Z on Tn(M) may be expresssed as a sum of its components in the
Hr, and each component identified with an element of sect τ∗0 (T (M)) which will be
denoted by Zr. Then Z =

∑n
r=0(Zr)r, and Zr = Θr(Z).

A Jacobi field for Γ is a vector field Z on Tn(M) such that LΓZ = 0. Thus
along any integral curve γ of Γ, Z is the infinitesimal generator of variations of γ
to nearby integral curves of Γ. We have

Θr([Γ, Z]) = ∇(Θr(Z))− (∇Θr)(Z),

so that Z is a Jacobi field if and only if Zr+1 = ∇Zr for r = 0, 1, . . . , n − 1 and
∇Zn = (∇Θn)(Z). Now the 1-forms ∇Θi

n must be linearly dependent on the Θi
r

with 0 ≤ r ≤ n: say

∇Θi
n + (Φn)i

jΘj
n + (Φn−1)i

jΘj
n−1 + · · ·+ (Φ1)i

jΘj
1 + (Φ0)i

jΘj
0 = 0.
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For each r, (Φr)i
j are the components of an endomorphism Φr of sect τ∗0 (T (M)).

In fact Φn = 0: we have

Θi
n = dyi

n + nΓi
jdy

j
n−1 +

n−2∑
s=0

(Cs
r )i

jdy
j
s,

whence

∇Θi
n ∼ LΓdy

i
n + (n+ 1)Γi

jdy
j
n ∼ df i − ∂f i

∂yj
n

dyj
n ∼ 0,

where ∼ indicates equality modulo terms in dyi
r with r < n; the result follows. So

we may write

∇Θn + Φn−1 ◦Θn−1 + · · ·+ Φ1 ◦Θ1 + Φ0 ◦Θ0 = 0.

Thus a Jacobi field Z is determined by a single element of sect τ∗0 (T (M)), say
Y , with Z0 = Y , Z1 = ∇Y , . . . , Zn = ∇nY ; Z =

∑n
0 (∇rY )r; and Y must satisfy

∇n+1Y + Φn−1(∇n−1Y ) + · · ·+ Φ1(∇Y ) + Φ0(Y ) = 0.

This equation, or more precisely its restriction to any integral curve of Γ, is called
Jacobi’s equation for Γ, and the Φr are the Jacobi endomorphisms relative to the
multiconnection.

Evidently Γ itself is a Jacobi field, with

Γ0 = yi
1

∂

∂yi
,

which is a canonical element of sect τ∗0 (T (M)), and will be denoted by T . The
Jacobi endomorphisms therefore satisfy

∇n+1T + Φn−1(∇n−1T ) + · · ·+ Φ1(∇T ) + Φ0(T ) = 0.

Using the formula for Θr([Γ, Z]) and the defining formula for the Jacobi endo-
morphisms one finds that for Y ∈ sect τ∗0 (T (M))

[Γ, Y 0] = (∇Y )0 + Φ0(Y )n

[Γ, Y r] = −Y r−1 + (∇Y )r + Φr(Y )n, 1 ≤ r ≤ n− 1

[Γ, Y n] = −Y n−1 + (∇Y )n.

4 Homogeneous differential equation fields
A differential equation field Γ will be said to be homogeneous if [∆,Γ] = Γ
(∆ = ∆1). I show that, as for second-order fields, if Γ is homogeneous then
its horizontal distribution is invariant under ∆, and in an appropriate sense the
multiconnection defined above, and the Jacobi endomorphisms, are homogeneous.

For this purpose it is helpful to have a notion of Lie derivative with respect to a
vector field on Tn(M) acting on sect τ∗0 (T (M)). A general theory of Lie derivatives
of vector fields along fibre bundle projections π : E → M by vector fields on E
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projectable to M was given in [7]. Here we need only the case of the Lie derivative
with respect to a π-vertical vector field, which is somewhat simpler. A section Y
of π∗(T (M)) → E can be regarded as a linear operator C∞(M) → C∞(E) which
obeys a Leibniz rule: for ϕ1, ϕ2 ∈ C∞(M), Y (ϕ1ϕ2) = Y (ϕ1)ϕ2 + ϕ1Y (ϕ2). Then
for any π-vertical vector field Z on E, Z ◦Y is a linear operator C∞(M) → C∞(E),
and it obeys the Leibniz rule because Z(ϕ1) = Z(ϕ2) = 0. This operator is
defined to be LZY . Clearly LZY depends R-linearly on Y , and for f ∈ C∞(E),
LZ(fY ) = fLZY + Z(f)Y . Moreover, if Y ∈ X(M), LZY = 0. In fact the
coordinate representation of LZ is very simple:

LZ

(
Y i ∂

∂yi

)
= Z(Y i)

∂

∂yi
:

in a sense, the foregoing discussion merely serves to justify the claim that when Z
is vertical, differentiating the coefficients of Y along Z is a tensorial operation.

This Lie derivative operation can be extended to related geometric objects in the
usual way. In particular, if Φ is an endomorphism of π∗(T (M)) then (LZΦ)(Y ) =
LZ(Φ(Y ))−Φ(LZY ); and again, one calculates LZΦ by merely differentiating the
components of Φ along Z.

In the case of interest E = Tn(M) and Z = ∆. A simple calculation shows that
[∆, Y n] = (L∆Y − nY )n, and in particular if Y ∈ X(M) then [∆, Y n] = −nY n.
Here, as before, Y n is the element of Vn corresponding to Y ∈ sect τ∗0 (T (M)); and
we conclude (as indeed is otherwise obvious) that [∆,Vn] ⊂ Vn.

Theorem 1. If Γ is homogeneous then [∆,Hr] ⊂ Hr for r = 0, 1, . . . , n − 1, and
for any Y ∈ X(M), [∆, Y r] = −rY r, where Y r is the element of Hr corresponding
to Y ∈ sect τ∗0 (T (M)). Furthermore, the Jacobi endomorphisms satisfy L∆Φr =
(n+ 1− r)Φr.

Proof. First of all, note that when it is expressed in terms of coordinates the
homogeneity condition amounts to ∆(f i) = (n + 1)f i. It is an easy consequence
that ∆(Γi

j) = Γi
j , and hence that for any Y ∈ sect τ∗0 (T (M)), [L∆,∇]Y = ∇Y .

It further follows that for any T (M)-valued 1-form Θ, [L∆,∇]Θ = ∇Θ. The
T (M)-valued 1-forms Θr that define the multiconnection satisfy Θr+1 = ∇Θr for
r = 0, 1, . . . , n− 1, and therefore

L∆Θr+1 = ∇(L∆Θr) +∇Θr = ∇(L∆Θr) + Θr+1.

Now L∆Θ0 = 0, whence L∆Θr = rΘr. Thus for any vector field Z,

Θr([∆, Z]) = L∆(Θr(Z))− rΘr(Z).

In particular, if Y ∈ sect τ∗0 (T (M)), for any s = 0, 1, . . . , n

Θs([∆, Y r]) = L∆(Θs(Y r))− sΘs(Y r),

from which it follows that [∆, Y r] = (L∆Y )r − rY r ∈ Hr, and in particular that if
Y ∈ X(M) then [∆, Y r] = −rY r.
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The Jacobi endomorphisms are determined by the formula

∇Θn + Φn−1 ◦Θn−1 + · · ·+ Φ1 ◦Θ1 + Φ0 ◦Θ0 = 0;

that is to say, for any Y ∈ sect τ∗0 (T (M)) and for 0 ≤ r ≤ n− 1

Φr(Y ) = −(∇Θn)(Y r).

Thus

(L∆Φr)(Y ) = −L∆((∇Θn)(Y r))− Φr(L∆Y )
= −L∆(∇Θn)(Y r)− (∇Θn)([∆, Y r])− Φr(L∆Y )
= −∇(L∆Θn)(Y r)− (∇Θn)(Y r) + r(∇Θn)(Y r)

− (∇Θn)((L∆Y )r)− Φr(L∆Y )
= −n(∇Θn)(Y r)− (∇Θn)(Y r) + r(∇Θn)(Y r)

− (∇Θn)((L∆Y )r)− Φr(L∆Y )
= (n+ 1− r)Φr(Y )

as claimed. �

5 Strongly homogeneous third-order differential
equation fields

In order for a differential equation field Γ to be worthy of the description homo-
geneous it must certainly satisfy [∆,Γ] = Γ = [∆1,Γ]. But for n > 1 we have the
whole algebra D at our disposal, and one might imagine that one could impose some
conditions on the brackets [∆r,Γ] for all r = 1, 2, . . . , n. A little experimentation
using coordinates suggests that such conditions would have to take the form

[∆1,Γ] = Γ, [∆r,Γ] = r∆r−1, r = 2, 3, . . . , n.

Unfortunately, in general these conditions are inconsistent, for if n+ 2 ≥ r+ s and
r 6= s we would have

[∆r, [∆s,Γ]]− [∆s, [∆r,Γ]] = (r − s)(r + s− 1)∆r+s−2 6= 0,

while if also r + s > n + 1, [∆r,∆s] = 0, and Jacobi’s identity would be violated.
For n > 2 the values r = n, s = 2 satisfy both of the given inequalities (or indeed
any r, s with 1 < r, s ≤ n, r 6= s and r + s = n+ 2). However, the conditions

[∆1,Γ] = Γ, [∆2,Γ] = 2∆1

are consistent, and can be imposed whenever n ≥ 2. The case of greatest interest
is that with n = 2, in other words, the case of third-order differential equations.

Accordingly, a third-order differential equation field

Γ = yi
1

∂

∂yi
0

+ yi
2

∂

∂yi
1

+ f i ∂

∂yi
2
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is defined to be strongly homogeneous if it satisfies the conditions

[∆1,Γ] = Γ, [∆2,Γ] = 2∆1,

where
∆1 = yi

1

∂

∂yi
1

+ 2yi
2

∂

∂yi
2

, ∆2 = 2yi
1

∂

∂yi
2

.

That is, Γ is strongly homogeneous if the assignment ∂/∂t 7→ Γ extends the
anti-isomorphism of Lie algebras q0 → D to an anti-isomorphism of Lie alge-
bras q → D+, where D+ = 〈Γ〉 ⊕ D with the brackets above. (The remarks in
the opening paragraph of this section show that in general one cannot extend the
anti-homomorphism p0 → X(Tn(M)) : tr∂/∂t 7→ ∆r to an anti-homomorphism
p → X(Tn(M)) by a similar move.)

When expressed in terms of the coefficients f i the conditions become

∆1(f i) = 3f i, ∆2(f i) = 6yi
2.

Theorem 2. Let Γ be a strongly homogeneous third-order differential equation
field. Then Γ is horizontal with respect to the multiconnection defined by its dy-
namical covariant derivative; and the corresponding Jacobi endomorphisms satisfy
Φr(T ) = 0, r = 0, 1.

Proof. We have to show that Γ ∈ H0. Using the notation from the previous section,
this is equivalent to Γ1 = Γ2 = 0. Now Γ0 = T , Γ1 = ∇T , Γ2 = ∇2T . We have

∇T =
(

Γ(yi
1) + yj

1Γi
j

) ∂

∂yi
,

and

Γ(yi
1) + yj

1Γi
j = yi

2 − 1
3y

j
1

∂f i

∂yj
2

.

But ∆2(f i) = 6yi
2, which is to say that

yj
1

∂f i

∂yj
2

= 3yi
2,

and so ∇T = 0, Γ1 = Γ2 = 0, and Γ = T 0.
From the formula Θr([Γ, Z]) = ∇(Θr(Z)) − (∇Θr)(Z) with Z = ∆1, together

with the fact that ∆1
0 = 0, using the homogeneity conditions in bracket form one

finds that
∆1

1 = Γ0 = T, ∆1
2 = ∇Γ0 + Γ1 = 2∇T = 0,

so ∆1 ∈ H1, in fact ∆1 = T 1. The Jacobi endomorphisms are defined by the
formula

∇Θ2 + Φ1 ◦Θ1 + Φ0 ◦Θ0 = 0.

It is easy to see that ∇Θ2 vanishes on Γ and ∆1, from which it follows that
Φ0(T ) = Φ1(T ) = 0. �
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For completeness’ sake it’s worth pointing out that ∆2
0 = ∆2

1 = 0. Moreover, ∆2
2 =

T , so ∆2 = T 2 ∈ H2, from which one can check independently that ∇Θ2(∆2) = 0.
As an instructive example of a strongly homogeneous third-order differential

equation field I discuss the case of a single dependent variable, that is (in more
natural notation) the equation

y′′′ = f(y, y′, y′′)

considered as defining a differential equation field on T 2(R).

Theorem 3. There is no strongly homogeneous third-order differential equation
field defined on the whole of T 2(R). If we restrict attention to the submanifold
of T 2(R) where y′ > 0 then the most general strongly homogeneous third-order
differential equation is

y′′′ = 3
2

(y′′)2

y′
+ κ(y)(y′)3

where κ is an arbitrary smooth function of a single variable.

Proof. Denote by φ1 and φ2 the flows generated by ∆1 and ∆2 on T 2(R). Then

φ1
t (y, y′, y′′) = (y, ety′, e2ty′′), φ2

t (y, y′, y′′) = (y, y′, y′′ + 2ty′).

Any point with y′ = 0 is of course invariant under φ2
t . From the condition ∆1(f) =

3f it follows that f(φ1
t (y, y′, y′′)) = e3tf(y, y′, y′′). Along any integral curve of ∆2,

on the other hand, we have

df

dt
= 6(y′′ + 2ty′),

whence
f(φ2

t (y, y′, y′′)) = f(y, y′, y′′) + 6(ty′′ + t2y′).

This condition cannot be satisfied with y′ = 0. For y′ > 0, however, one can
find values of s and t such that (y, y′, y′′) = φ2

s(φ1
t (y, 1, 0)), namely t = log y′,

s = 1
2y

′′/y′. Then

f(y, y′, y′′) = f(φ2
s(φ1

t (y, 1, 0))) = f(φ2
s(y, y′, 0))

= (y′)3f(y, 1, 0) + 6
(

1
2

y′′

y′

)2

y′

= 3
2

(y′′)2

y′
+ κ(y)(y′)3

with κ(y) = f(y, 1, 0). �

Since the equation is satisfied by y(−x) if it is satisfied by y(x), a similar result
holds for y′ < 0.
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This result should not really come as a surprise, at least so far as the equation
with κ = 0 is concerned. This equation says that the Schwarzian derivative of y is
zero. Thus, or directly, the general solution is

y =
ax+ b

cx+ d

(a factor may be taken to get the right number of arbitrary constants). Note that
the solutions are invariant under reparametrizations

x 7→ Ax+B

Cx+D
, AD −BC 6= 0,

and this is just the pseudo-group of local diffeomorphisms of R generated by the
quadratic vector fields — the action of SL(2,R) on R by fractional-linear or Möbius
transformations.

The general analysis shows that since the differential equation field, even with
κ nonzero, is strongly homogeneous it is horizontal. Moreover, the corresponding
Jacobi endomorphisms Φ0 and Φ1 satisfy Φr(T ) = 0, which means in this case that
they are both zero. It follows immediately that the Wuenschmann invariant, which
in the present notation is ∇Φ1 − 2Φ0 (see [4], [8]), vanishes.

Finally, it should be pointed out that the property of having solutions invariant
under reparametrizations by fractional-linear transformations holds for all strongly
homogeneous third-order systems. That is to say, if ξ 7→ (yi(ξ)) is a solution of such
a system, and x 7→ ξ(x) is a fractional-linear transformation, then x 7→ (yi(ξ(x)))
is also a solution (where it is defined). For

dyi

dx
= ξ′

dyi

dξ

d2yi

dx2
= (ξ′)2

d2yi

dξ2
+ ξ′′

dyi

dξ

d3yi

dx3
= (ξ′)3

d3yi

dξ3
+ 3ξ′ξ′′

d2yi

dξ2
+ ξ′′′

dyi

dξ
.

On the other hand, the use of φ1
t and φ2

t as in the theorem leads to the result that
for a strongly homogeneous system the functions f i satisfy

f i(yj
0, ky

j
1, k

2yj
2 + lyj

1) = k3f i(yj
0, y

j
1, y

j
2) + 3klyi

2 + 3
2

l2

k
yi
1

for any k, l ∈ R with k > 0. It follows (taking k = ξ′ and l = ξ′′) that

d3yi

dx3
− f i

(
yi,

dyi

dx
,
d2yi

dx2

)
= (ξ′)3

(
d3yi

dξ3
− f i

(
yi,

dyi

dξ
,
d2yi

dξ2

))
+
(
ξ′′′ − 3

2

(ξ′′)2

ξ′

)
dyi

dξ
,

and the final term vanishes if ξ(x) is a fractional-linear function of x.
This is the analogue for strongly homogeneous third-order systems of the fact

that the solutions of the second-order equations defined by a spray are invariant
under affine reparametrizations.
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Geometric mechanics on nonholonomic submanifolds

Olga Krupková

Abstract. In this survey article, nonholonomic mechanics is presented as
a part of geometric mechanics. We follow a geometric setting where the
constraint manifold is a submanifold in a jet bundle, and a nonholonomic
system is modelled as an exterior differential system on the constraint man-
ifold. The approach admits to apply coordinate independent methods, and
is not limited to Lagrangian systems under linear constraints. The new
methods apply to general (possibly nonconservative) mechanical systems
subject to general (possibly nonlinear) nonholonomic constraints, and admit
a straightforward generalization to higher order mechanics and field theory.
In particular, we are concerned with the following topics: the geometry of
nonholonomic constraints, equations of motion of nonholonomic systems on
constraint manifolds and their geometric meaning, a nonholonomic varia-
tional principle, symmetries, a nonholonomic Noether theorem, regularity,
and nonholonomic Hamilton equations.

1 Introduction
Nonholonomic mechanics is concerned with study of systems the motion of which
is subject to constraints on time, positions and velocities. The interest to investi-
gate mechanical systems with holonomic and nonholonomic constraints goes back
to the 19th century, when D’Alembert’s principle of virtual work and Gauss’ prin-
ciple of least action in presence of constraints were considered. It was discovered
that holonomically constrained dynamics can be understood as motions subject
to reactive forces of a gradient form, given by the constraints. As conjectured by
Chetaev in early 30’s of the last century, nonholonomic equations of motion could
have a similar form, but now the reactive forces should take the form of derivatives
with respect to the velocities [9]. Since that time, Chetaev’s equations have been
tested in many situations and on many examples in mechanics and engineering,

2010 MSC: 70G45, 70G75, 37J60, 70F25, 70H30
Key words: Jet bundle, holonomic constraint, nonholonomic constraint, the constraint dis-

tribution, generalized D’Alembert principle, Chetaev equations, reduced equations, the nonholo-
nomic first variation formula, symmetry, nonholonomic Noether theorem, regularity, nonholo-
nomic Hamilton equations.
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and it turned out that (contrary to the so-called vakonomic equations proposed as
alternative equations of motion), they really do describe motions of nonholonomic
mechanical systems (see e.g. [6], [12]).

Within the classical analysis approach, only Lagrangian systems subject to lin-
ear integrable (semi-holonomic) constraints have been well-understood. In case of
non-integrable, or even non-liner constraints, a satisfactory, complete theory, sim-
ilar to the analytical dynamics of unconstrained systems, has been missing. On
the other hand, during the last 20 years, in connection with the developments
of geometric mechanics and global calculus of variations, methods of differential
geometry and global analysis have turned out be well suited and helpful for un-
derstanding nonholonomic systems. There have been proposed several geometric
models, appropriate in different situations, applicable to Lagrangian systems in
tangent bundles or in jet bundles. It should be stressed, however, that almost all
the work on noholonomic systems is concerned with the case of constraints linear
(affine) in the velocities. The bibliography is very extensive and it is not possible
to list here all important contributions; we refer at least to [2], [7], [10], [11], [13],
[14], [15], [20], [29], [30], [33], [43], [44], [46], [47], [49] and references therein.

In this article we present the nonholonomic mechanics as a part of geomet-
ric mechanics. However, we should emphasize that we follow the setting where a
nonholonomic system is modeled as an exterior differential system on a constraint
manifold (subbundle of a jet bundle) [29], [30], [33], [35], [39], [51] (i.e., motion
equations appear in the “reduced form”, without Lagrange multipliers). This ap-
proach consistently reflects the geometric character of nonholonomic constraints.
It naturally admits to apply coordinate independent methods and transfer stan-
dard concepts and techniques of differential geometry and the calculus of variations
on manifolds to the situation when differential constraints are present. Moreover,
this approach is not limited to Lagrangian systems under linear constraints. In
fact, both Lagrangian and non-conservative systems are treated in a unique way,
and similarly, a unique geometric model of differential constraints (whatever they
are: linear integrable or non-integrable, or nonlinear) is presented. Within this
setting, a generalization to higher-order systems and constraints, and extension of
nonholonomic mechanics to field theory is straightforward [31], [32], [34], [35], [36],
[41], [42]. Remarkably, the new way of treating and understanding nonholonomic
systems brings new methods for investigating concrete examples of nonholonomic
systems, either with linear constraints (see [19]), or with nonlinear constraints
(see [50] for problems of mechanics and engineering and [38] for applications in the
special relativity theory).

The aim of the present article is to survey, in a consistent way, some of the recent
results on first order mechanical systems. After a brief introduction to the standard
geometric theory of first order mechanical systems in jet bundles (to be found e.g.
in [29] or [40]) we turn to include nonholonomic constraints into the picture. We
are concerned with the geometry of nonholonomic constraints, equations of motion
of nonholonomic systems on constraint manifolds and their geometric meaning,
including also the case of “implicit equations”, a nonholonomic variational princi-
ple, symmetries of nonholonomic systems and a nonholonomic Noether theorem,
and finally we discuss regularity of nonholonomic equations, and nonholonomic
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Hamilton equations. We note that there are also other interesting topics studied
within nonholonomic mechanics, not included in this article, as e.g. the inverse
variational problem in the nonholonomic setting [3], [39], nonholonomic reduction
in presence of symmetries [4], [5], [8], integrability of nonholonomic systems and
Hamilton-Jacobi theory [1], nonholonomic mechanics on Lie algebroids [11], [17],
[44], etc.

2 Mechanical systems in jet bundles
Compared to the classical approach, geometric methods bring a new quality into
the study of mechanical systems. The geometric language leads to an elegant and
transparent formulation of results. It is important that concepts and formulas
can be introduced in an intrinsic (coordinate independent) form: this is not only
convenient for computations, but clarifies the geometric content and enables to
distinguish between local and global results.

In this section we introduce structures for mechanics on fibred manifolds. We
shall deal with both Lagrangian and nonconservative, generally time-dependent
systems, the dynamics of which is described by systems of second order ordinary
differential equations. In our approach, geometric concepts related with differential
equations on manifolds play a central role. For more detailed exposition we refer
to [21], [23], [48], and especially to the book [28] devoted to higher-order mechanics.

2.1 Basic structures

Throughout the paper we consider smooth manifolds and mappings. In coordinate
formulas summation over repeated indices applies.

A smooth mapping Y → X between differentiable manifolds is called submer-
sion if its rank is equal to dimX at each point y ∈ Y . A surjective submersion
π : Y → X is called a fibred manifold. The manifold X is called base, Y total space,
and the map π itself projection. The submanifold π−1(x) of Y , where x ∈ X, is
called fibre over x. In case that all the fibres are diffeomorphic to each other, we
speak about a bundle over X.

We shall consider fibred manifolds where dimX = 1. This means that if X is
connected, it is diffeomorphic either to R or S1. We denote dimY = m+ 1, hence
m denotes the dimension of the fibres. From the definition of submersion it follows
that to every point y ∈ Y there exists a chart (V, ψ) on Y and (U,ϕ) on X such
that V is a neighbourhood of y, U = π(V ), and the coordinate functions are of the
form ϕ = (t), ψ = (t, qσ), 1 ≤ σ ≤ m. Charts of this kind are called fibred charts.
Mostly we shall assume that X = R: in this case we choose t on R to be a global
coordinate.

When dealing with dynamics of mechanical systems, we are concerned with a
special kind of mappings between the base and the total space, called sections.
By a section of the fibred manifold π : Y → X one means a (smooth) mapping
γ : X → Y , defined possibly on an open subset W of X, such that π◦γ = idW . Also,
it is necessary to work with quantities dependent on first or higher derivatives of the
corresponding sections. A precise mathematical setting is based on the concept of
a jet manifold. We say that sections γ1 and γ2 defined on an open set W ⊂ X have
contact of order one at a point x ∈W if γ1(x) = γ2(x), and if there is a fibred chart
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around γ1(x) = γ2(x) such that the derivatives of the components γσ
1 = qσγ1ϕ

−1

and γσ
2 = qσγ2ϕ

−1 of the sections γ1 and γ2 at the point ϕ(x) coincide. The
latter condition does not depend on the choice of fibred coordinates. In this way
there arises an equivalence relation: the equivalence class can be easily visualized
as a family of sections passing through the same point y ∈ Y and possessing the
same tangent vector. The equivalence class containing a section γ is called the
1-jet of γ at x and is denoted by J1

xγ. Collecting all the equivalence classes for
all the points x ∈ X one obtains a set naturally endowed with a structure of a
smooth manifold of dimension 2m + 1, denoted by J1Y , and called the first jet
prolongation of the fibred manifold π : Y → X. Moreover, the manifold J1Y is
fibred over X (the fibred projection is denoted by π1) as well as over Y (with the
projection denoted by π1,0). Consequently, one has on J1Y coordinates, associated
with fibred coordinates on Y . They are denoted by (t, qσ, q̇σ). The construction
can be easily generalized to obtain higher-order jets: For every x ∈ X one considers
equivalence classes of sections passing through the same point over x and having
at x the same derivatives up to the order r. In this way one gets a manifold JrY ,
called the manifold of r-jets of local sections of π, or briefly the r-jet prolongation
of π. Similarly as in the first-order case, one has on JrY coordinates naturally
associated with fibred coordinates on Y denoted by (t, qσ, qσ

1 , q
σ
2 , . . . , q

σ
r ). Instead

of qσ
1 and qσ

2 one often writes q̇σ and q̈σ. From the definition of Jr
xγ (which is a

point in JrY ) one can see that the values of the coordinate functions at Jr
xγ can

be regarded as the coefficients of the r-th order Taylor polynomial of the mapping
γ around x. The manifold JrY is fibred over X, Y , and all JsY , s = 1, . . . , r − 1.
The corresponding projections are denoted by πr : JrY → X, πr,0 : JrY → Y ,
πr,s : JrY → JsY , where s < r. For simplicity of notations, we also write J0Y = Y .
In this paper we mostly use the first and second jet prolongations, J1Y and J2Y .

If γ is a section of π : Y → X then the mapping x → Jr
xγ is a section of

the fibred manifold πr : JrY → X; it is called the r-jet prolongation of γ and
denoted by Jrγ. It is important to note that a section of πr need not be of the
form of an r-jet prolongation of a section of π. A section δ of πr such that δ = Jrγ
is called holonomic. For example, in fibred coordinates, a section of J1Y is a
mapping δ(t) = (t, fσ(t), gσ(t)) while a holonomic section takes the form J1γ(t) =
(t, fσ(t), dfσ/dt).

Remark 1. Classical mechanics is often modeled on fibred manifolds of the form
π : R ×M → R, where M is a manifold of dimension m (called the configuration
space). In this case J1Y = R× TM , J2Y = R× T 2M and sections of π are graphs
of curves c : R →M .

In fibred manifolds, there are distinguished vector fields and differential forms,
adapted to the fibred and prolongation structure.

A vector field ξ on Y is called π-projectable if there exists a vector field ξ0 on
X such that Tπ.ξ = ξ0 ◦ π, and π-vertical if it projects onto a zero vector field on
X, i.e., Tπ.ξ = 0. In fibred coordinates, projectable vector fields have their ∂/∂t
component dependent on t only, and vertical vector fields have this component
equal to zero.
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Similarly one defines a πr,s-projectable or a πr,s-vertical vector field on JrY ,
where r > s.

Local flows of projectable vector fields transfer sections into sections. Con-
sequently, π-projectable vector fields on Y can be naturally prolonged to vector
fields on JrY . The procedure is as follows: Let ξ be a π-projectable vector field, ξ0
its projection, and denote {φu} and {φ0u} the corresponding local one-parameter
groups. For every u, the mapping φu is an isomorphism of the fibred manifold
π meaning that π ◦ φu = φ0u ◦ π. Then for every section γ, the composition
γu = φu ◦ γ ◦ φ−1

0u is again a section and we can define the r-jet prolongation of
φu by Jrφu(Jr

xγ) = Jr
φ0u(x)(φuγφ

−1
0u ). Then Jrφ is a local flow corresponding to

a vector field on JrY , denoted by Jrξ and called the r-jet-prolongation of ξ. The
vector field Jrξ is both πr-projectable and πr,s-projectable for 0 ≤ s < r, and its
πr-projection, (resp. πr,s-projection) is ξ0 (resp. ξ, resp. Jsξ, 1 ≤ s ≤ r − 1). In
fibred coordinates, where

ξ = ξ0(t)
∂

∂t
+ ξσ(t, qν)

∂

∂qσ
, (1)

one has for 1 ≤ k ≤ r

Jrξ = ξ0
∂

∂t
+ ξσ ∂

∂qσ
+

r∑
k=1

ξσ
k

∂

∂qσ
k

, where ξσ
k =

dξσ
k−1

dt
− qσ

k

dξ0

dt
. (2)

Above
d

dt
=

∂

∂t
+ q̇σ ∂

∂qσ
+ q̈σ ∂

∂q̇σ
+

...
q σ ∂

∂q̈σ
+ . . . (3)

denotes the total derivative operator.
A differential k-form η on JrY is called πr-horizontal (resp. πr,s-horizontal) if it

vanishes whenever at least one of its arguments is a πr-vertical (resp. πr,s-vertical)
vector field. A k-form η on JrY is called contact if for every section γ of π

Jrγ∗η = 0 . (4)

Putting

ωσ = dqσ − q̇σdt, ω̇σ = dq̇σ − q̈σdt, . . . , ωσ
r−1 = dqσ

r−1 − qσ
r dt (5)

1 ≤ σ ≤ m, we obtain a family of local contact 1-forms on JrY . Remarkably,
the contact ideal on JrY is locally generated by these one-forms and their exterior
derivatives. We also note that one-forms (5) can be completed to a basis of linear
forms

(dt, ωσ, . . . , ωσ
r−1, dq

σ
r ) (6)

well adapted to the structure of JrY . Working in coordinates, it is much more
convenient to use this basis instead of the canonical basis (dt, dqσ, . . . , dqσ

r ).
We have an important property of differential forms in jet bundles: Every k-

form η on JrY , if lifted to Jr+1Y , admits a unique and invariant decomposition
into two parts such that in the adapted basis the first and the second part contains
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wedge products of exactly k − 1 and k basic contact forms (5), respectively. We
write

π∗r+1,rη = hη + p1η, π∗r+1,rη = pk−1η + pkη (7)

if k = 1 and k ≥ 2, respectively. hη is a horizontal form on Jr+1Y , called the
horizontal part of η, piη is then called the i-contact part of η (we also speak about
a i-contact form). Note that for a function f we get hdf = df

dtdt.

2.2 Fibred mechanics

In what follows, let us consider a fibred manifold π : Y → R with dimY = m+ 1,
and fibred coordinates denoted by (t, qσ), where t is a global coordinate on R.

A dynamical form of order r is defined to be a 2-form E on JrY which is
1-contact, and horizontal with respect to the projection onto Y . In fibred coordi-
nates E = Eσω

σ ∧ dt, where E1, . . . , Em are functions on an open subset of JrY .
Dynamical forms are appropriate objects to represent systems of ordinary differ-
ential equations on manifolds. In this paper we shall be interested in (at most)
second-order ODE’s. Then E is defined on J2Y and its components Eσ depend
upon t, qν , q̇ν , q̈ν (1 ≤ σ, ν ≤ m). Equation E = 0 determines a submanifold of J2Y
of codimension m. A section γ of π is called a path of E if it satisfies E ◦ J2γ = 0.
In fibred coordinates this is a system of m (possibly implicit) second order ODE’s

Eσ

(
t, γν(t),

dγν

dt
,
d2γν

dt2

)
= 0, 1 ≤ σ ≤ m (8)

for components of γ.
In what follows it will be sufficient to restrict to the case of so-called J1Y -

pertinent dynamical forms that are distinguished by a significant property: the
corresponding dynamics proceeds in the manifold J1Y (sometimes called the evo-
lution space).

Given a dynamical form E, we say that a 2-form α defined on an open subset
U ⊂ J2Y is an extension of E on U if E|U = p1α. E is called pertinent with respect
to J1Y if around every point in J2Y it has a local extension α that is projectable
onto an open subset of J1Y . A second order dynamical form E is pertinent with
respect to J1Y if an only if

Eσ = Aσ(t, qρ, q̇ρ) +Bσν(t, qρ, q̇ρ)q̈ν . (9)

Then every local projectable extension of E takes the form

α = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + F, (10)

where F is a 2-contact 2-form on an open subset of J1Y . The class [α] of 2-forms
(10) is then called the (first-order) Lepage class of the dynamical form E. The
corresponding ODE’s are affine in the second derivatives (accelerations),

Aσ

(
t, γρ(t),

dγρ

dt

)
+Bσν

(
t, γρ(t),

dγρ

dt

) d2γν

dt2
= 0. (11)
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Equations (11) can be represented in a form of a Pfaffian system, or vector distri-
bution ∆ on J1Y , called dynamical distribution of E [27], [32], as follows:

∆ = span{iξα |where ξ runs over all vertical vector fields on J1Y }
= span{Aσdt+ Fσνω

ν +Bσνdq̇
ν , Bσνω

σ},
(12)

where Fσν are the components of F .
Remarkably, ∆ need not have a constant rank, and need not be completely

integrable. We say that a dynamical form E is regular if around every point in J1Y
it has a dynamical distribution which is everywhere of rank one [26], [27]. It can be
shown that every regular dynamical form E has a unique global rank one dynamical
distribution. It is locally annihilated by 2m one-forms ωσ and Aσdt+Bσνdq̇

ν , or,
equivalently, spanned by one vector field

ζ =
∂

∂t
+ q̇σ ∂

∂qσ
−BσνAν

∂

∂q̇σ
. (13)

This geometrical model is used to study non-conservative time-dependent me-
chanical systems, to classify ODE’s according to their dynamical properties, to
study structure of solutions of both regular ODE’s and ODE’s “in implicit form”
(non-representable by a vector field), to generalize Hamilton’s equations to non-
variational and non-regular equations, to study transformations of ODE’s, and
symmetries and first integrals, to develop exact integration methods based on sym-
metries and transformations (eg. generalized Liouville and Jacobi theorem of the
calculus of variations), to study relations between variational and non-variational
equations (the inverse problem of the calculus of variations, the problem of exis-
tence of variational multipliers), and much more (see eg. [24], [28], [32], [37], [40]
and references therein).

Let us now turn to variational equations.
By a Lagrangian of order r, r ≥ 1, we mean a horizontal form λ on JrY . In

fibred coordinates a Lagrangian reads λ = Ldt, where L is a function on an open
subset of JrY . To every Lagrangian there exists a unique 1-form θλ on J2r−1Y
such that hθλ = λ and p1dθλ is a dynamical form [21]. The 1-form θλ is called
the Lepage equivalent or the Cartan form of λ, and the related dynamical form
Eλ = p1dθλ is then called the Euler-Lagrange form of λ. We shall be mostly
interested in first order Lagrangians. In this case λ = Ldt where L depends upon
t, qσ, and q̇σ, 1 ≤ σ ≤ m, and

θλ = Ldt+
∂L

∂q̇σ
ωσ, Eλ =

( ∂L
∂qσ

− d

dt

∂L

∂q̇σ

)
ωσ ∧ dt . (14)

The components of Eλ are familiar as Euler-Lagrange expressions, and equations
for paths of an Euler-Lagrange form are called Euler-Lagrange equations. We note
that the same Euler-Lagrange form can arise from different Lagrangians, possibly
even of different orders. Such Lagrangians are called equivalent; it is known that
Lagrangians λ1 of order r and λ2 of order k ≥ r are equivalent iff around every
point there is a function f of order k−1 such that λ2 = λ1 +hdf (where, precisely,
on the place of λ1 one has to consider its lift by the projection πk,r).
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Let us recall some important properties of Euler-Lagrange dynamical forms
[26], [28]. First, every second order Euler-Lagrange form is J1Y -pertinent, since
the Euler-Lagrange expressions are affine in the second derivatives. This means
that Eλ on J2Y is represented by a Lepage class [α] defined on J1Y . Moreover,
the Lepage class has a distinguished representative, independent upon the choice
of a particular Lagrangian for E = Eλ, as follows:

Theorem 2. Given an Euler-Lagrange form E on J2Y , the associated Lepage class
contains a unique global and closed representative αE , defined on J1Y . The 2-form
αE can be expressed by means of the Euler-Lagrange expressions as follows:

αE = Eσω
σ ∧ dt+

1
4

(∂Eσ

∂q̇ν
− ∂Eν

∂q̇σ

)
ωσ ∧ ων +

∂Eσ

∂q̈ν
ωσ ∧ ω̇ν

= Aσω
σ ∧ dt+

1
4

(∂Aσ

∂q̇ν
− ∂Aν

∂q̇σ

)
ωσ ∧ ων +Bσνω

σ ∧ dq̇ν ,

(15)

where

Aσ =
∂L

∂qσ
− d′

dt

∂L

∂q̇σ
, Bσν = − ∂2L

∂q̇σ∂q̇ν
. (16)

Moreover, for every (possibly local) Lagrangian λ of order r ≥ 1 for E, the
Cartan form θλ satisfies the following property: dθλ is projectable onto an open
set in J1Y , and on this set,

dθλ = αE . (17)

Above,
d′

dt
=

d

dt
− q̈ν ∂

∂q̇ν
=

∂

∂t
+

∂

∂qν
q̇ν (18)

denotes so-called “cut total derivative” applied to functions on J1Y .
Remarkably, also the converse holds true [26], [28], giving us a one-to-one rela-

tionship between variational equations and a class of closed 2-forms:

Theorem 3. Let α be a 2-form on J1Y such that E = p1α is a dynamical form. If
α is closed then E is locally variational, meaning that around every point in J1Y
there exists a Lagrangian λ such that over the domain of λ, E = Eλ.

We note that the existence of a global Lagrangian for a locally variational dy-
namical form is related with topological properties of the manifold Y [23].

Euler-Lagrange equations can be obtained from the variational principle. Let
us briefly recall the procedure. Denote by S[a,b](π) the set of sections of π with
domains around an interval [a, b] ⊂ R. Given a Lagrangian λ on J1Y , consider the
function

S[a,b](π) 3 γ →
∫ b

a

J1γ∗λ =
∫ b

a

J1γ∗θλ ∈ R (19)

called the action function of λ over [a, b]. To get a correct concept of variation
(one-parametric deformation) of a section γ, one has to restrict to consider π-
projectable vector fields on Y : if ξ is a projectable vector field on Y with projection
ξ0, and {φu}, resp. {φ0u} are the corresponding local one-parameter groups, we
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get a one-parameter family {γu} of sections where γu = φuγφ
−1
0u is defined in a

neighbourhood of φ0u([a, b]) ⊂ R, called variation of the section γ induced by ξ.
The arising function

S[a,b](π) 3 γ →

(
d

du

∫
φ0u([a,b])

J1γ∗u λ

)
u=0

=
∫ b

a

J1γ∗ LJ1ξλ ∈ R (20)

is called the first variation of the action function of the Lagrangian λ over the
interval [a, b], induced by ξ. The First Variation Formula is a splitting of the
above integral into a sum of two terms such that the first one does not depend
upon “derivations of variations” (the Euler-Lagrange term) and the second one is
a boundary term. With the Cartan form θλ the decomposition is available directly
(without the integration by parts procedure), and in an invariant way [21]:∫ b

a

J1γ∗ LJ1ξλ =
∫ b

a

J1γ∗ LJ1ξθλ

=
∫ b

a

J1γ∗ iJ1ξdθλ +
∫ b

a

d(iJ1ξθλ ◦ J1γ)

=
∫ b

a

J2γ∗ iJ2ξEλ + the above boundary term.

(21)

A section γ of π is called an extremal of λ on [a, b] if the first variation of
the action of λ on the interval [a, b] vanishes for every vertical vector field ξ on Y
with the support in π−1([a, b]) (such a vector field is often called a fixed-endpoints
variation). γ is called extremal of λ if it is an extremal on every interval [a, b] ⊂ R.

With help of the First Variation Formula one obtains necessary and sufficient
conditions for extremals as follows [21]:

Theorem 4. Let λ be a Lagrangian on J1Y . A section γ of π is an extremal of λ
if and only if γ satisfies one of the following equivalent conditions:

(1) Eλ ◦ J2γ = 0, i.e. γ is a path of the Euler-Lagrange form of λ.

(2) For every vertical vector field ξ on Y , J1γ∗ iJ1ξdθλ = 0.

(3) In every fibred chart γ satisfies the system of m second-order ordinary differ-
ential equations

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= 0, 1 ≤ σ ≤ m. (22)

Notice the meaning of condition (2) of the above theorem: it is a geometric
interpretation of the Euler-Lagrange equations in terms of a dynamical distribution
of the dynamical form E = Eλ. Namely, accounting Theorem 2 we can see that
every Euler-Lagrange dynamical form possesses a distinguished global dynamical
distribution related with the Lepage 2-form αE ,

∆E = annih{iξαE | ξ runs over all vertical vector fields on J1Y } (23)
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called the Euler-Lagrange distribution [25], [27]. By condition (2) of the above the-
orem, extremals (solutions of the Euler-Lagrange equations) are holonomic integral
sections of the distribution ∆E .

Equations for (all) integral sections of the Euler-Lagrange distribution ∆E , i.e.
equations

δ∗iξαE = 0 for every π1-vertical vector field ξ on J1Y (24)

for sections δ of the fibred manifold π1 : J1Y → R are then called Hamilton
equations [16], [27]. In case that rank ∆E = 1, i.e., E is regular (as a dynamical
form), rankαE is maximal (equal 2m), and the Euler-Lagrange distribution is
spanned by one vector field ζ. It is, up to a multiplier f , a unique solution of the
equation iζαE = 0, and is called Euler-Lagrange field [16], or Hamiltonian vector
field. The condition for regularity can be expressed by means of Lagrangians as
follows:

(i) If ∆E is defined on J1Y (this means that the Euler-Lagrange equations are
nontrivially second-order equations) the regularity condition takes the form

det
( ∂2L

∂q̇σ∂q̇ν

)
6= 0 . (25)

(ii) If αE is projectable onto Y , i.e. ∆E is defined on Y , then the regularity
condition takes the form [26]

det
( ∂2L

∂qσ∂q̇ν
− ∂2L

∂q̇σ∂qν

)
6= 0 . (26)

This is the case when the Euler-Lagrange equations are first-order equations, i.e.
the corresponding Lagrangians are affine functions in the velocities.

For regular Lagrangians, i.e. satisfying either (25) or (26), the Cauchy problem
has a unique solution, i.e., through every point in the dynamical space (J1Y , respec-
tively Y ) there passes a unique maximal solution of the Euler-Lagrange equations.

The Cartan form θλ takes the coordinate form (14). Expressing the same form
in the canonical basis (dt, dqσ, dq̇σ) one obtains

θλ = −H dt+ pσdq
σ, where pσ =

∂L

∂q̇σ
, H = −L+ pσ q̇

σ. (27)

If L is not affine in velocities (meaning that ∆E is defined on J1Y ) then the
“momenta” pσ are (local) functions on J1Y . If, moreover, L is regular, we get on
J1Y local coordinates (t, qσ, pσ), called Legendre coordinates. In these coordinates,
Hamilton equations (24) take the “canonical form”

dpσ

dt
= − ∂H

∂qσ
,

dqσ

dt
=
∂H

∂pσ
. (28)

Up to now we have been interested in the meaning of the first term in the
decomposition of the first variation (21). The second term, however, is important
as well, since it is connected with conservation laws.
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We say that a π-projectable vector field ξ on Y is a point symmetry of a La-
grangian λ if

LJ1ξλ = 0 , (29)

and a generalized point symmetry of λ if it is a point symmetry of its Euler-Lagrange
form, i.e.,

LJ2ξEλ = 0 . (30)

Within the terminology of the classical calculus of variations, point symmetries of
a Lagrangian correspond to infinitesimal transformations that leave invariant the
action integral; similarly point symmetries of the Euler-Lagrange form correspond
to transformations leaving the action integral invariant “up to a divergence”. Equa-
tion (29) and (30) is called Noether equation and Noether–Bessel-Hagen equation,
respectively. It is known that every point symmetry of λ is a point symmetry of
Eλ [22].

Substituting into the First Variation Formula (21) the symmetry condition and
taking account of the extremal condition (2) in Theorem 4 we immediately obtain
the following famous result [45], [22]:

Theorem 5. (Noether Theorem)

(1) Assume that a π-projectable vector field ξ on Y is a point symmetry of a
Lagrangian λ. Then, along every extremal of λ, the function F = iJ1ξθλ is
constant.

(2) Assume that a π-projectable vector field ξ on Y is a generalized point sym-
metry of a Lagrangian λ. Then (locally) LJ1ξλ = hdf for a function f , and
along every extremal of λ, the function F = iJ1ξθλ − f is constant.

Within fibred mechanics one can easily consider also Lagrangian systems subject
to external forces that need not be variational (so-called nonconservative systems)
[32]. More precisely, by a mechanical system on a fibred manifold π we shall mean
a pair (λ,Φ) where λ is a Lagrangian on J1Y and Φ is a first-order dynamical form,
called a force. It is generally assumed that λ is not affine in velocities (provides
Euler-Lagrange equations that are nontrivially of order two). The corresponding
dynamical form is then E = Eλ − π∗2,1Φ, and equations for paths of E take the
form

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= Φσ, 1 ≤ σ ≤ m. (31)

The corresponding Lepage class is represented by the Lepage 2-form

α = Aσω
σ ∧ dt+

1
4

(∂Aσ

∂q̇ν
− ∂Aν

∂q̇σ

)
ωσ ∧ ων +Bσνω

σ ∧ dq̇ν

= dθλ − Φ− 1
4

(∂Φσ

∂q̇ν
− ∂Φν

∂q̇σ

)
ωσ ∧ ων ,

(32)

where Aσ and Bσν are defined as above by Eσ = Aσ +Bσν q̈
ν and take the form

Aσ =
∂L

∂qσ
− ∂2L

∂t ∂q̇σ
− ∂2L

∂qν∂q̇σ
q̇ν − Φσ , Bσν = − ∂2L

∂q̇σ∂q̇ν
. (33)
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The motion is described by the dynamical distribution ∆ = annih{iξα} where ξ
runs over all vertical vector fields on J1Y .

Using theorems 1 and 2 we can see that the force Φ is conservative (potential)
if and only if it is variational (as a first order dynamical form), i.e. if and only if
the 2-form α is closed, hence

Φ +
1
4

(∂Φσ

∂q̇ν
− ∂Φν

∂q̇σ

)
ωσ ∧ ων (34)

is closed. It can be easily verified that Φ satisfies Helmholtz conditions [18]. Recall
that in this case the Helmholtz conditions take the form

∂Φσ

∂q̇ν
+
∂Φν

∂q̇σ
= 0,

∂Φσ

∂qν
− ∂Φν

∂qσ
+
d

dt

∂Φν

∂q̇σ
= 0.

(35)

Since we assume the force Φ be of the first order, the latter condition gives

∂2Φσ

∂q̇ν∂q̇ρ
= 0, (36)

i.e. that the force is affine in velocities,

Φσ = aσρq̇
ρ + bσ, (37)

and the first condition (35) then immediately means that the matrix of the coeffi-
cients (aσρ) is skew-symmetric. Substituting now (37) to the second condition (35)
we obtain the Helmholtz conditions for a force Φ in the familiar form

aσν = −aνσ,

∂aσρ

∂qν
+
∂aνσ

∂qρ
+
∂aρν

∂qσ
= 0,

∂bσ
∂qν

− ∂bν
∂qσ

+
∂aνσ

∂t
= 0.

(38)

We note that conditions (38) mean that Φ is a Lorentz-type force. From the geomet-
ric point of view, (38) indeed are exactly the closedness conditions for the 2-form
(34).

3 Holonomic constraints
Holonomic constraints on the motion appear in numerous applications in physics
and engineering. Due to their importance they have been considered within ana-
lytical mechanics since the very beginning going back to Lagrange and Hamilton.

In classical mechanics holonomic constraints are constraints on positions of
particles; they may be time-independent (not explicitly depending on time), or
time dependent. In local coordinates (q1, . . . , qm) in Rm, holonomic constraints
are given by a system of (algebraic) equations

ua(t, qσ) = 0, a = 1, 2, . . . , k < m, (39)
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satisfying the rank condition

rank
(∂ua

∂qσ

)
= k. (40)

The latter condition means that constraint conditions (39) can be expressed in a
form

qm−k+a = wa(t, q1, . . . , qm−k). (41)

There are two ways for considering constrained motions:

• External – with Lagrange multipliers:

The influence of the constraint on the motion is modeled via an external
attractive force, called constraint force, proportional to gradu. Equations of
motion of a Lagrangian system L subject to constraints (39) then take the
form

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= −µa

∂ua

∂qσ
, 1 ≤ σ ≤ m, (42)

where µa, 1 ≤ a ≤ k, are Lagrange multipliers. Solutions to the problem are
both curves in Rm satisfying simultaneously the constraint conditions and
the above motion equations, and Lagrange multipliers as functions of time.

Remarkably, equations of motion (42) can be obtained as standard Euler-
-Lagrange equations from the Lagrangian

L̂ = L+ µau
a. (43)

• Internal (geometric) – without Lagrange multipliers:

The point is that the constraints given by equations (39) with the accompany-
ing rank condition have the geometric meaning of a submanifold of codimen-
sion k in R×Rm. In terms of the fibred manifolds terminology, the constraint
conditions define a fibred submanifold π : Ȳ → R of the fibred manifold
pr1 : R × Rm → R. If we denote by ι the canonical embedding of the con-
straint submanifold Ȳ into R×Rm, and by (t, qs), 1 ≤ s ≤ m−k = dim Ȳ −1,
adapted coordinates on Ȳ , then equations of motion of a Lagrangian system
L(t, qσ, q̇σ) subject to constraints (39) take the form of “standard” Euler-
-Lagrange equations

∂L̄

∂qs
− d

dt

∂L̄

∂q̇s
= 0, 1 ≤ s ≤ m− k, (44)

for the Lagrangian L̄ = L ◦ J1ι on the manifold J1Ȳ . It is essential that the
latter equations and the equations with Lagrange multipliers above are, as
equations for sections passing in the constraint submanifold (i.e. satisfying
the constraint conditions), equivalent.

In analytical mechanics the manifold Ȳ is called “space of events”, (qs) are
“generalized coordinates”, m − k is the “number of degrees of freedom”,
J1Ȳ is called “evolution space” or “phase space”, and L̄ is the “constrained
Lagrangian”.
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Due to the geometric nature of holonomic constraints, holonomic systems are
very well understood within the fibred mechanics setting presented in the previous
section. Indeed, they completely fit with the general scheme of the theory - and
this concerns both Lagrangian and nonconservative systems. In a full generality, if
π : Y → X is a fibred manifold, a holonomic constraint in Y is a fibred subman-
ifold π̄ : Ȳ → X of π. Given a dynamical form E on J2Y , on J2Ȳ there arises
dynamical form Ē = J2ι∗E. In particular, given a Lagrangian λ on J1Y we obtain
a Lagrangian λ̄ = J1ι∗λ on J1Ȳ , and the Euler-Lagrange equations of λ̄ come from
the restricted Euler-Lagrange form Eλ̄ = J2ι∗Eλ.

Note that if π : R × M → R, and Ȳ is of the form R × N where N is a
submanifold in M we can speak about a time-independent holonomic constraint,
otherwise π̄ : Ȳ → R is a time-dependent holonomic constraint in R×M .

4 Nonholonomic systems on constraint manifolds
In what follows we shall consider constraints on the motion that depend on time,
positions and velocities, called nonholonomic constraints. In this case equations
defining a constraint are first order differential equations. In terms of jet bundles
constraints with this property are submanifolds of the first jet manifold.

As above, let us consider a fibred manifold π : Y → R, where dimY = m + 1.
Precisely speaking, by a nonholonomic constraint in J1Y we shall mean a submani-
fold Q ⊂ J1Y , fibred over Y . When appropriate, we shall use notation ι : Q→ J1Y
for the canonical embedding. A constraint of codimension k (1 ≤ k < m) in J1Y
is locally defined by a system of k first order ordinary differential equations

fa(t, qσ, q̇σ) = 0, 1 ≤ a ≤ k , (45)

where the functions fa satisfy the rank condition

rank
(∂fa

∂q̇σ

)
= k . (46)

Due to (46), equations of the constraint take a normal form

q̇m−k+a = ga(t, qσ, q̇1, . . . , q̇m−k), 1 ≤ a ≤ k . (47)

Similarly as in the case of holonomic constraints we can approach the nonholo-
nomic dynamics in two ways:

• External – with Lagrange multipliers:

The influence of the constraint on the motion should be modeled via a con-
straint force. The problem now, however, is that it is not clear how such a
force should look like. In [9] Chetaev proposed the following formula for the
constraint force:

Fσ = −µa
∂fa

∂q̇σ
, (48)

where µa, 1 ≤ a ≤ k, are Lagrange multipliers. Equations of motion of a
Lagrangian system L subject to nonholonomic constraints (45) then read

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= −µa

∂fa

∂q̇σ
, 1 ≤ σ ≤ m, (49)
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and are called Chetaev equations. In this case, the integration problem means
to solve a system of m+ k mixed first and second order ordinary differential
equations (45) and (49) for m components qσ(t) of the nonholonomic curves
and k Lagrange multipliers µa(t).

It should be stressed, that in this case, rather surprisingly, Chetaev equations
do not arise as Euler-Lagrange equations from a Lagrangian analogous to
(43), i.e.

L̂ = L+ µaf
a, (50)

since equations for extremals of (50), called vakonomic equations, take a
different form

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= −µa

(∂fa

∂qσ
− d

dt

∂fa

∂q̇σ

)
− dµa

dt

∂fa

∂q̇σ
, 1 ≤ σ ≤ m. (51)

Solutions of Chetaev and vakonomic equations are different unless the con-
straints are semiholonomic (linear, integrable), satisfying the integrability
conditions

fa =
dua

dt
. (52)

Investigations of different examples indicated that nonholonomic dynamics
obey Chetaev equations. On the other hand, vakonomic equations seem to
be valuable in control theory.

• Internal (geometric) – without Lagrange multipliers:

The second approach explores the geometric meaning of nonholonomic con-
straints as submanifolds in jet bundles. In what follows, we shall present
namely this model and the arising geometric structures, first considered in
our paper [29]. Remarkably, within this setting nonholonomic systems and
their dynamics are described by geometric structures on a corresponding con-
straint submanifold, which has the physical meaning of a constrained phase
space. The dynamics are governed by so-called reduced equations which rep-
resent a system of m − k second order ordinary differential equations for
sections of the constraint submanifold (as expected no Lagrange multipliers
enter in these equations). For the study of the constrained systems concepts
and techniques of fibred mechanics can be directly used or quite easily gen-
eralized. In this way, nonholonomic mechanics is a direct extension of fibred
mechanics and admits a straightforward generalization to higher order and
field theory.

Moreover, within the geometric model there arises a new possibility to un-
derstand and study constrained systems. Indeed, one can distinguish two
different situations [39]:

- the constrained system arises from an unconstrained system defined in a
neighbourhood of the constraint

- an internally defined constrained system on the constraint manifold is given,
without reference to the ambient space J1Y ; in this case a corresponding
unconstrained system need not exist.
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4.1 Constraint submanifolds in jet bundles

Consider a constraint submanifold ι : Q → J1Y of codimension k < m. This
means that we have fibred manifolds π̄1,0 : Q → Y where π̄1,0 is the restriction of
the projection π1,0 : J1Y → Y to Q, and π̄1 : Q→ X, where π̄1 = π1|Q.

We define the first prolongation Q̂ of the constraint Q to be a submanifold in
J2Y , consisting of all points J2

xγ such that J1
xγ ∈ Q, x ∈ X. Locally Q̂ is defined

by the equations of the constraint and their derivatives:

fa = 0,
dfa

dt
= 0, 1 ≤ a ≤ k , (53)

respectively, in normal form,

q̇m−k+a = ga, q̈m−k+a =
dga

dt
. (54)

We also use notation ι̂ : Q̂→ J2Y for the corresponding canonical embedding. The
manifold Q̂ is fibred over Q, Y and X, the fibred projections are simply restrictions
of the corresponding canonical projections of the underlying fibred manifolds. We
write π̄2 : Q̂→ X, π̄2,1 : Q̂→ Q and π̄2,0 : Q̂→ Y .

Usually we shall use on Q adapted coordinates (t, qσ, q̇s), where 1 ≤ s ≤ m−k,
and on Q̂ associated coordinates (t, qσ, q̇s, q̈s), 1 ≤ σ ≤ m, 1 ≤ s ≤ m− k.

The contact ideal on Q respectively Q̂, is locally generated by one-forms

ω̄s = dqs − q̇sdt, ω̄m−k+a = dqm−k+a − gadt, (55)

respectively,

ω̄s = dqs − q̇sdt, ω̄m−k+a = dqm−k+a − gadt, ω̂s = dq̇s − q̈sdt , (56)

and their exterior derivatives.
Due to the existence of the contact structure on constraint manifolds, it is

possible to prolong projectable vector fields from the total space Y to the constraint
and to its prolongations. The procedure was described in [35] and is as follows:

Let ξ be a projectable vector field on Y . A vector field ζ on Q (resp. Q̂) is
called the first (resp. second) constrained prolongation of ξ, and is denoted by J1

c ξ
(resp. J2

c ξ), if ζ is a symmetry of the contact ideal on Q (resp. Q̂) and projects
onto ξ. It should be stressed that not every projectable vector field on Y admits a
constrained prolongation; conditions and formulas can be found in [35].

Similarly as in the unconstrained case, for every q-form η on Q one has a unique
decomposition into a sum of a π̄2-horizontal form and i-contact forms, i = 1, 2, . . . q,
on Q̂ [35]; we write

π̄∗2,1η = h̄η + p̄1η + · · ·+ p̄qη . (57)

Applying this decomposition to (locally) exact one-forms on Q we get an invariant
splitting of the exterior derivative d to the horizontal and contact part, π̄∗2,1d =
h̄d+ p̄1d. The operator h̄d has the component

dc

dt
=

∂

∂t
+ q̇s ∂

∂qs
+ ga ∂

∂qm−k+a
+ q̈s ∂

∂q̇s
, (58)
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and is called the constraint total derivative.
For convenience of notations we also put

d′c
dt

=
∂

∂t
+ q̇s ∂

∂qs
+ ga ∂

∂qm−k+a
. (59)

4.2 The canonical distribution

The most important object in the constraint geometry is the canonical distribution
(also called Chetaev bundle) [29] (see also [43]). Remarkably, it is an internal object
– a bundle naturally arising over every nonholonomic constraint. The canonical
distribution gives a geometric meaning to virtual displacements in the space of
positions and velocities, and to the concept of reactive (Chetaev) forces; for more
details and introduction of a nonholonomic D’Alembert principle we refer to [29]
and [34].

The canonical distribution for a nonholonomic constraint Q ⊂ J1Y is a corank
k distribution C on the manifold Q, where k = codimQ, locally annihilated by the
system of k linearly independent 1-forms

ϕa =
(
∂fa

∂q̇σ
◦ ι
)
ω̄σ = ω̄m−k+a −

m−k∑
s=1

∂ga

∂q̇s
ω̄s, 1 ≤ a ≤ k, (60)

or, equivalently, locally spanned by the system of 2(m− k) + 1 independent vector
fields

∂c

∂t
≡ ∂

∂t
+

k∑
a=1

(
ga −

m−k∑
l=1

∂ga

∂q̇l
q̇l
) ∂

∂qm−k+a

∂c

∂qs
≡ ∂

∂qs
+

k∑
a=1

∂ga

∂q̇s

∂

∂qm−k+a

∂

∂q̇s

(61)

where 1 ≤ s ≤ m− k.
The annihilator of C is denoted by C0.
The ideal in the exterior algebra on Q locally generated by the 1-forms ϕa,

1 ≤ a ≤ k, is called the constraint ideal, and denoted by I(C0). Differential forms
belonging to the constraint ideal are called constraint forms.

Vector fields belonging to the canonical distribution are called Chetaev vector
fields. Note that every Chetaev vector field takes a form

Z = Z0 ∂c

∂t
+ Zs ∂c

∂qs
+ Z̃s ∂

∂q̇s

= Z0 ∂

∂t
+ Zs ∂

∂qs
+

k∑
a=1

(
Z0
(
ga −

m−k∑
l=1

∂ga

∂q̇l
q̇l
)

+ Zs ∂g
a

∂q̇s

) ∂

∂qm−k+a
+ Z̃s ∂

∂q̇s
.

(62)
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We stress that the family of Chetaev vector fields need not contain

• vector fields projectable onto Y ,

• prolongations of vector fields defined on Y , even if the canonical distribution
is projectable.

Remarkably, the following theorem holds [29]:

Theorem 6. The constraint Q is given by equations affine in the first derivatives if
and only if the canonical distribution C on Q is π̄1,0-projectable (i.e. the projection
D of C is a distribution on Y ).

The distribution D on Y is then locally spanned by vector fields

∂

∂t
+

k∑
a=1

Aa ∂

∂qm−k+a
,

∂

∂qs
+

k∑
a=1

Ba
s

∂

∂qm−k+a
, 1 ≤ s ≤ m− k , (63)

or, annihilated by 1-forms Aadt + Ba
s dq

s − dqm−k+a, 1 ≤ a ≤ k, where ga =
Aa +Ba

s q̇
s.

The canonical distribution need not be completely integrable. We call a non-
holonomic constraint Q semiholonomic if its canonical distribution C is completely
integrable. Properties of semiholonomic constraints can be summarized as follows
[29], [33], [35]:

Theorem 7. The following conditions are equivalent:

(1) Q is semiholonomic.

(2) The canonical distribution C on Q is projectable onto Y , and its projection
is completely integrable.

(3) The constraint ideal is closed.

(4) Functions ga defining locally the constraint satisfy

∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s
= 0 , 1 ≤ s ≤ m− k . (64)

Theorem 8. The canonical distribution C of a semiholonomic constraint is spanned
by vector fields J1

c ξ, where ξ belongs to the projection D of C, and π̄1,0-vertical
vector fields.

We have seen that constraints linear or affine in velocities can be alternatively
modeled by means of a distribution D on Y , defined by (63) (that is completely
integrable in case of semiholonomic constraints). The geometric description of non-
holonomic constraints by a distribution on Y (on a “configuration space”, or “space
of events”) is quite popular and frequently used. The reader should, however, keep
in mind that using such a model means restriction to constraints affine in velocities.

The canonical distribution is naturally lifted to the distribution Ĉ on Q̂, defined
with help of its annihilator by Ĉ0 = π̄∗2,1C0.
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4.3 Dynamics of nonholonomic systems: Reduced equations

Consider a nonholonomic constraint ι : Q → J1Y endowed with the canonical
distribution C as above. Let E be a J1Y -pertinent dynamical form on J2Y and
[α] its Lepage class. Recall that [α] consists of local 2-forms on J1Y , and contains
a closed (global) 2-form if and only if the dynamical form E comes as the Euler-
-Lagrange form from (possibly local) Lagrangians. We keep notations used above,
i.e. E = Eσω

σ ∧ dt, Eσ = Aσ +Bσν q̈
ν , and

α = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + F, (65)

where F is a 2-contact 2-form on an open subset of J1Y .
According to [29], a constrained mechanical system associated with [α] is defined

to be the class
[ᾱ] = ι∗α mod I(C0). (66)

This means that [ᾱ] is defined on the constraint Q and consists of all possibly local
2-forms on Q such that

ᾱ = Ālω
l ∧ dt+ B̄lsω

l ∧ dq̇s + F + ϕ, (67)

where F is a 2-contact and ϕ is a constraint 2-form on Q, and

Āl =
(
Al +Am−k+j

∂gj

∂q̇l
+
(
Bl,m−k+i +Bm−k+j,m−k+i

∂gj

∂q̇l

)d′gi

dt

)
◦ ι,

B̄ls =
(
Bls +Bl,m−k+i

∂gi

∂q̇s
+Bm−k+i,s

∂gi

∂q̇l
+Bm−k+j,m−k+i

∂gj

∂q̇l

∂gi

∂q̇s

)
◦ ι.

(68)

Note that if the matrix B is symmetric then so is B̄, however, regularity of B does
not imply regularity of B̄. The latter has important consequences on dynamical
properties of nonholonomically constrained systems making them much different
from the holonomic ones. We shall discuss it in more detail below when dealing
with the associated exterior differential systems.

If in particular α is related with a mechanical system (λ,Φ), we have

Ās =
∂cL̄

∂qs
− d′c
dt

∂L̄

∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
)(∂cg

a

∂qs
− d′c
dt

∂ga

∂q̇s

)
− Φ̄s − Φ̄m−k+a

∂ga

∂q̇s
(69)

B̄sr = − ∂2L̄

∂q̇r∂q̇s
+
( ∂L

∂q̇m−k+a
◦ ι
) ∂2ga

∂q̇r∂q̇s
(70)

with the notation L̄ = L ◦ ι, Φ̄σ = Φσ ◦ ι.
In place of a single dynamical form E = p1α we have for the constrained system

rather the class [Ē], on Q̂, with

Ē = p̄1ᾱ = ι̂∗E + ϕa ∧ νa (71)

where ϕa are the canonical constraint 1-forms defined above and νa are horizontal
forms.
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Since C → Q is a subbundle of the tangent bundle TQ → Q, the class [Ē]
gives rise to a dynamical form along the canonical distribution, called constrained
dynamical form, Ēc = (ι̂∗E)|Ĉ ∈ Λ2(Ĉ) (see [29] for the definition and more details
on forms along a distribution); we note that Ēc is the same for all Ē ∈ [Ē].

Computations in adapted fibred coordinates yield the following formula:

Ēc = (Ās + B̄sr q̈
r)ω̄s ∧ dt . (72)

We shall be interested in constrained sections of π, that is in sections γ : I → Y
such that J1γ(I) ⊂ Q. Constrained sections satisfy the system of k first order
ODE’s of the constraint. In particular, every such a section is an integral section
of the canonical distribution C.

We have the following theorem (cf. [29]):

Theorem 9. Equations of motion of a mechanical system α constrained to Q are
equations for constrained sections of π, taking one of the following two equivalent
intrinsic forms:

Ēc ◦ J2γ = 0 , (73)

J1γ∗iZ ᾱ = 0 for every π̄1-vertical Chetaev vector field Z on Q (74)

(where ᾱ is (any) representative of the class [ᾱ]).
In coordinates,

Ās + B̄sr q̈
r = 0, (75)

or, if α is given by means of a Lagrangian λ and a force Φ,

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
)(∂cg

a

∂qs
− dc

dt

∂ga

∂q̇s

)
= Φ̄s + Φ̄m−k+a

∂ga

∂q̇s
, (76)

where 1 ≤ s ≤ m− k.

It should be stressed that the above motion equations for nonholonomic systems
are differential equations on the constraint manifold Q. They are called reduced
nonholonomic equations (“without Lagrange multipliers”) [29].

Further it should be emphasized that the motion equations for nonholonomic
systems are generally equations in implicit form. However, due to their interpre-
tation as equations for an exterior differential system on the constraint manifold
Q, apparent from (74), they are investigated with the same methods as motion
equations in the unconstrained/holonomic case (see e.g. [29], [32], [40]).

4.4 The nonholonomic variational principle

Let us turn to the special case, when the force Φ(t, qν , q̇ν) is conservative (poten-
tial). Note that equations (31) are then variational being Euler-Lagrange equations
of a Lagrangian L′ = L − V , where V is a potential for Φ. Hence, without loss
of generality, and for simplicity of notations, let us consider to have a Lagrangian
system on J1Y , given by a Lagrangian λ. The nonholonomic equations of motion
then obviously take one of the equivalent forms:

Ēc
λ ◦ J2γ = 0 , (77)
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J1γ∗iZι
∗dθλ = 0 for every π̄1-vertical Chetaev vector field Z on Q, (78)

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
)(∂cg

a

∂qs
− dc

dt

∂ga

∂q̇s

)
= 0 , 1 ≤ s ≤ m− k . (79)

Reduced equations for constrained Lagrangian systems (79) were first considered
in [46], and are equivalent with Chetaev equations.

In [35] a variational principle for systems subject to nonholonomic constraints
was found, providing the above reduced equations as equations for “constrained
extremals”. A generalization of the standard variational principle is in no case
trivial or straightforward, and needs a careful review of basic variational concepts.
Main points are as follows:

• The variational principle is formulated for the fibred manifold π̄1 : Q → R,
endowed with the canonical distribution C.

• “Admissible paths” are sections of the fibred manifold π̄1 : Q → R. (Note
that they need not be holonomic, however, every admissible section δ has a
counterpart in Y : it is a section γ of π : Y → R, given by γ = π̄1,0 ◦ δ).

• “Admissible variations” are π̄1-projectable vector fields belonging to the
canonical distribution (Chetaev vector fields). (Note that the requirement
of projectability onto the base is essential, since variations of this kind pro-
vide a one-parametric family of maps that all are sections of the constraint
manifold. Also note that the family of admissible sections δu = φu δ φ

−1
0u ,

arising by deformation of a holonomic section δ = J1γ, may contain non-
holonomic sections (which is a violation of the “classical” principle of virtual
displacements); moreover, the projection of the family {δu}, i.e. the family
of sections of π of the form γu = π̄1,0 φu J

1γ φ−1
0u is not induced by a vector

field on Y unless the canonical distribution is projectable (meaning that the
constraints are affine in velocities)–however, even in this case, J1γu = (J1γ)u

need not be true).

• The integrand of the action function (taking the place of a “constrained
Lagrangian”) is the 1-form ι∗θλ.

Definition 10. [35] Denote by S[a,b](π̄1) the set of sections of π̄1, defined around
an interval [a, b] ⊂ R, a < b. Given a Lagrangian λ on J1Y , the function

S[a,b](π̄1) 3 δ →
∫ b

a

δ∗ι∗θλ ∈ R , (80)

is called constrained (to Q) action function of the Lagrangian λ over [a, b].
Let Z ∈ C be a π̄1-projectable vector field, and denote by φ and φ0 the flows of

Z and its projection Z0, respectively. The one-parameter family {δu} of sections
of π̄1, where δu = φu δ φ

−1
0u , is called constrained variation of δ induced by Z. The

function

S[a,b](π̄1) 3 δ →

(
d

du

∫
φ0u([a,b])

δ∗u ι
∗θλ

)
u=0

=
∫ b

a

δ∗ LZι
∗θλ ∈ R (81)
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is then called the first constrained variation of the action function of λ over [a, b],
induced by Z.

To study constrained sections of the fibred manifold π, we have to restrict the
domain of definition S[a,b](π̄1) of the function (81) to the subset Sh

[a,b](π̄1) of holo-
nomic sections of the projection π̄1, i.e. δ = J1γ where γ ∈ S[a,b](π). Then the
first constrained variation (81) can be regarded as a function

S[a,b],Q(π) 3 γ →
∫ b

a

J1γ∗ LZι
∗θλ ∈ R (82)

defined on a subset of sections of the projection π : Y → R.
We stress that (due to the properties of admissible variations mentioned above)

the restricted first constrained variation cannot be obtained via a “variation pro-
cedure” from an action defined directly on the set S[a,b],Q(π).

Applying to (82) Cartan’s formula for the decomposition of Lie derivative we
obtain the nonholonomic first variation formula∫ b

a

J1γ∗ LZι
∗θλ =

∫ b

a

J1γ∗ iZι
∗dθλ +

∫ b

a

J1γ∗ diZι
∗θλ , (83)

where Z is a π̄1-projectable Chetaev vector field.
Formula (83) gives the splitting of the first constrained variation to a “con-

strained Euler-Lagrange term” and a boundary term. One should notice that on
the left-hand side of the nonholonomic first variation formula one cannot put the
Lie derivative of the “constrained Lagrangian” λ̄ = ι∗λ instead of LZι

∗θλ, since
the difference LZι

∗θλ − LZ λ̄ need not be a contact form.
A section γ of π : Y → R is called a constrained extremal of λ on [a, b] if

Im J1γ ⊂ Q, and if the first constraint variation of the action on the interval [a, b]
vanishes for every “fixed endpoints” variation Z over [a, b]. γ is called a constrained
extremal of λ if it is its constrained extremal on every interval [a, b] ⊂ Dom γ. With
help of the nonholonomic first variation formula one proves that γ is a constrained
extremal of λ if and only if it satisfies equations of the constraint, and one of the
(equivalent) equations (77)–(79) [35]. Therefore we call any of these equations
nonholonomic Euler-Lagrange equations.

Notice that for semiholonomic constraints equations (79) simplify to

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
= 0 , 1 ≤ s ≤ m− k , (84)

completely determined by the “constrained Lagrangian” λ̄ = ι∗λ.
Similarly as in the unconstrained/holonomic case, the second term on the right-

hand side of the nonholonomic first variation formula (83) is connected with con-
servation laws. Let us recall a generalization of Noether theorem to nonholonomic
systems, due to [36]:

A Chetaev vector field Z ∈ C is called a constrained symmetry of a Lagrangian
λ if LZι

∗θλ is a constraint form.
Directly from (83) we obtain:
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Theorem 11. (Nonholonomic Noether theorem)
Let λ be a Lagrangian on J1Y , and Z be a constrained symmetry of λ. Then

along every constrained extremal of λ, the function F = iZι
∗θλ = iZθλ̄ is constant.

4.5 Regularity and Hamilton equations of nonholonomic systems

Consider a nonholonomic mechanical system (λ,Φ, Q). Equations (74) represent
an important form of the nonholonomic motion equations, since they provide a
representation in form of an exterior differential system (particularly, a distribution)
on the constraint Q. More precisely, solutions of equations (74) are holonomic
integral sections of the distribution ∆c

ᾱ, locally annihilated by the system of 1-
forms on Q,

ϕa, iZ ᾱ, (85)

where 1 ≤ a ≤ k, and Z runs over all vertical vector fields in C, called constrained
dynamical distribution (note that ∆c

ᾱ is a subdistribution of the canonical distrib-
ution C). We shall call equations for (all) integral sections of the distribution ∆c

ᾱ

nonholonomic Hamilton equations (cf. [32], [42] for Lagrangian systems). Note that
in this context, the constraint manifold Q has the meaning of a genuine evolution
space for the constrained system.

The constrained dynamical distribution need not have a constant rank, and
even if the rank is constant it need not be equal to one. We say that the nonholo-
nomic system [ᾱ] is regular if rank ∆c

ᾱ = 1 [29]. From (76) we conclude that for a
constrained mechanical system (λ,Φ, Q) the regularity condition reads

det
(

∂2L̄

∂q̇r∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
) ∂2ga

∂q̇r∂q̇s

)
6= 0 , (86)

i.e. the matrix (B̄sr) (70) is regular, If the constrained system is regular then the
distribution ∆c

ᾱ is locally spanned by one vector field (constrained semispray)

ζ =
∂

∂t
+

m−k∑
l=1

q̇l ∂

∂ql
+

k∑
a=1

ga ∂

∂qm−k+a
−

m−k∑
l,s=1

B̄lsĀs
∂

∂q̇l
, (87)

where (B̄ls) is the inverse matrix to (B̄ls) and Ās are given by (69), and the
nonholonomic Hamilton equations are equivalent with the nonholonomic motion
equations in Theorem 9.

Let us turn again to the case when the original mechanical system is Lagrangian.
Then the nonholonomic Hamilton equations take the form

δ∗iZι
∗dθλ = 0 for every π̄1-vertical Chetaev vector field Z on Q,

δ∗ϕa = 0 , 1 ≤ a ≤ k .
(88)

If the constrained system (λ,Q) is regular then the nonholonomic Hamilton equa-
tions are equivalent with the nonholonomic Euler-Lagrange equations ((77) or (78)
or (79)). In this case we can introduce a nonholonomic Legendre transformation
[51]:
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Theorem 12. Let x ∈ Q be a point. Suppose that in a neighbourhood of x,

∂B̄ls

∂q̇r
=
∂B̄lr

∂q̇s
, 1 ≤ l, r, s ≤ m− k . (89)

Then there exists a neighbourhood U ⊂ Q of x, and, on U , functions Pl, 1 ≤ l ≤
m− k, and a 1-form η, such that

ι∗dθλ = η ∧ dt+ dPl ∧ dql + F , (90)

where F is a 2-contact form on Q. If, moreover, the constrained system (λ,Q) is
regular, then (t, qσ, q̇l) → (t, qσ, Pl) is a coordinate transformation on U .

The integrability condition for the B̄sl’s (89) ensures that one can express func-
tions Pl explicitly. To this purpose we consider a mapping χ : [0, 1] ×W → W
defined by (u, t, qσ, q̇l) → (t, qσ, uq̇l), where W ⊂ Q is an appropriate open set.
Then Poincaré Lemma gives us a solution

Pl = −q̇s

∫ 1

0

(B̄ls ◦ χ) du =
∂L̄

∂q̇l
− q̇s

∫ 1

0

((
∂L

∂q̇m−k+a
◦ ι
)

∂2ga

∂q̇l∂q̇s

)
◦ χdu . (91)

We call the above functions Pl, 1 ≤ l ≤ k, nonholonomic momenta, and the
corresponding coordinate transformation nonholonomic Legendre transformation
of λ. The 1-form η in (90) is called a nonholonomic energy 1-form.

The 1-form η is determined up to a constraint 1-form, and need not be closed.
In constraint Legendre coordinates we can write

η = η0 dt+ ηl dq
l + ηl dPl mod I(C0) . (92)

In nonholonomic Legendre coordinates the nonholonomic Hamilton equations
take the following canonical form

d

dt
(Pl ◦ δ) = ηl,

d

dt
(ql ◦ δ) = −ηl ,

d

dt
(qm−k+a ◦ δ) = ga , (93)

where 1 ≤ l ≤ m− k, 1 ≤ a ≤ k.
For non-holonomic constraints affine in velocities the situation essentially sim-

plifies: Indeed, then (89) is fulfilled identically and the nonholonomic momenta are
defined by

Pl =
∂L̄

∂q̇l
, 1 ≤ l ≤ m− k . (94)

The regularity condition takes the form

det
(

∂2L̄

∂q̇l∂q̇s

)
6= 0. (95)

Moreover, if the constraint Q is semiholonomic then the family of energy 1-forms
(92) contains a closed 1-form equal to −dH̄, where

H̄ = −L̄+ Plq̇
l. (96)
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[26] O. Krupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity.
Arch. Math. (Brno) 22 (1986) 97–120.
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I. Kolář, D. Krupka, J. Slovák (eds.): Differential Geometry and Applications. Proc.
Conf. Brno 1998. Masaryk Univ., Brno (1999) 533–546.
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[39] O. Krupková, J. Musilová: Non-holonomic variational systems. Reports on Math. Phys.
55 (2005) 211–220.



Geometric mechanics on nonholonomic submanifolds 77
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Book review

Geoff Prince

Classical Mechanics: Hamiltonian and Lagrangian Formalism by Alexei Deriglazov.
Springer (2010), 308 pages, ISBN 978-3-642-14036-5, e-ISBN 978-3-642-14037-2.

Many modern books on classical mechanics are coloured by other areas of math-
ematical or theoretical physics. Quantum mechanics, quantum field theory, contin-
uum mechanics and special and general relativity all exert their influence. On the
positive side this means that the fundamental ideas of force, inertia and inertial
frames of reference, often neglected by mathematicians, are all thoroughly explored.
On the negative side it can lead to undue dependence on the historical develop-
ment of the parts of the subject which the author doesn’t favour. For example,
in V.I. Arnold’s famous Mathematical Methods of Classical Mechanics differential
forms are not introduced until after Lagrangian dynamics is treated. Although the
title of the work under review indicates a study of both the post Newtonian for-
malisms in mechanics the author makes it clear in the introduction that he prefers
the Hamiltonian framework, not least because of its role in quantum theory. As a
result Lagrangian dynamics is unfavourably compared to Hamiltonian mechanics
and much of its modern formulation is untouched. In writing this review I will try
and indicate some of the current trends in the Lagrangian theory.

So classical mechanics is one of those areas having multiple ownership. This can
be productive because the subject has inputs from many areas which should stim-
ulate cross fertilisation. On the other hand it has inhibited mathematicians from
developing the subject as their own. We have all had the experience of learning
classical mechanics as a stand alone subject with many idiosyncratic methods, not
bearing any resemblance to subjects like linear algebra which have an axiomatic
basis and a body of theorems applicable to a wide range of situations. Our under-
graduate experience of the subject constrains us from seeing it as an area in which
the beautiful theory of ordinary differential equations due to Lie, Cartan and others
applies. And of course the multiple ownership of the subject will forever prevent
us from teaching it as such. Nonetheless, we should at least attempt to see the
differential equations aspect of classical mechanics in this light.

This book has been developed from lectures aimed at graduate students in the-
oretical physics, but implicitly at those with an interest in quantum theory. This
may be the reason for the very limited use of differential geometric ideas, especially
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those of exterior calculus and the theory of connections. These two components of
the calculus of manifolds are central to many of the 20th century developments in
Lagrangian mechanics. The reader can get a sense of the current situation (albeit
that of the reviewer and this journal’s editor-in-chief) from the chapter Second Or-
der Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the
Calculus of Variations in Handbook of Global Analysis, edited by D. Krupka and
D. Saunders, Elsevier (2007). I will describe two of these developments: Noether’s
theorem and progress in the inverse problem in the calculus of variations. Refer-
ences can be found in the aforementioned article.

The central object in the modern Lagrangian theory in one independent vari-
able, t, and n dependent ones, xa, is the Cartan two-form. For a given non-
degenerate Lagrangian this form is

dθL = d

(
Ldt+

∂L

∂ua
(dxa − uadt)

)
=

∂2L

∂uaub
(dua − fadt) ∧ (dxb − ubdt).

Here (t, xa, ua) are local co-ordinates on the evolution space, E := R × TM , M
being the configuration manifold, and the Euler-Lagrange equations in normal form
are

ẍa = fa(t, xb, ub).

Of course this two-form has a geometric definition which can be found in the
literature, but its most important intrinsic property is that it has a one-dimensional
kernel spanned by the semi spray, known as the Euler-Lagrange field,

Γ =
∂

∂t
+ ua ∂

∂xa
+ fa ∂

∂ua
.

Noether’s theorem in this setting relates a non-trivial symmetry, X ∈ X(E), of dθL

to a non-trivial first integral, F, of Γ (so that Γ(F ) = 0):

LXdθL = 0 ⇐⇒ X dθL = dF.

This relation between X and F fixes X up to a multiple of Γ giving a converse to
Noether’s theorem which is not available if we restrict ourselves to so-called point
symmetries. This remarkably simple approach to the famous theorem should be
contrasted to the lengthy account given in Deriglazov’s book in which the converse
to the theorem is discovered in the Hamiltonian context and pulled back to the
Lagrangian picture by the Legendre transformation without reference to the point
symmetry issue.

The inverse problem in the calculus of variations is the problem of identifying
all, if any, Lagrangians whose Euler-Lagrange field is a given semi spray Γ. The
Fields medallist Jesse Douglas solved this problem for n = 2 in 1941. While special
cases have been solved for arbitrary n the solution for n = 3, for example, has
not yet been produced. Douglas himself, undoubtedly a modest man, said “the
problem ...... is one of the most important hitherto unsolved problems of the
calculus of variations”. Apart from its intrinsic value this problem has given birth
to deep results on second order differential equations. The question is of interest
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to physicists because if a problem admits more than one Lagrangian it may admit
more than one quantisation, not all of which are equivalent.

The theorem which geometrises the Helmholtz conditions (due to Douglas) is

Theorem 1. Given a semi spray, Γ, necessary and sufficient conditions for the
existence of a regular Lagrangian, whose Euler-Lagrange field is Γ, are that there
exists Ω ∈

∧2(E) :

1. Ω has maximal rank

2. Ω(V1, V2) = 0, ∀ V1, V2 ∈ V (E), the vertical sub-bundle on E

3. Γ Ω = 0

4. dΩ = 0

The Lagrangians are recovered from the observation that Ω is a Cartan two-form
dθL. The inverse problem is not touched upon in the book under review.

This is a comprehensive book in its own way. The chapter headings are: 1.
Sketch of Lagrangian Formalism, 2. Hamiltonian Formalism, 3. Canonical Trans-
formations of Two-Dimensional Phase Space, 4. Properties of Canonical Trans-
formations, 5. Integral Invariants, 6. Potential Motion in a Geometric Setting,
7. Transformations, Symmetries and Noether Theorem, 8. Hamiltonian Formal-
ism for Singular Theories. However, and as indicated earlier, the mathematical
setting is not modern and the influences lie in theoretical physics outside classical
mechanics. For example, of the 50 references only 10 are post the year 2000 and
of those 7 are works of the author and the other 3 lie outside classical mechan-
ics. Nonetheless, it provides interesting reading and the detailed level of discussion
reflects the extensive nature of the graduate lecture course on which the book is
based. For example, the discussion of Dirac’s theory of constraints in chapter 8
is quite deep and provides a natural end point of the author’s development of the
Hamiltonian and Lagrangian frameworks. Special relativity and quantum mechan-
ics are both represented through the examples and the quasi-Riemannian geometric
formulation is developed in chapter 6 in the context of the Principle of Mauper-
tius. Rather surprisingly this formulation of the Newtonian equations of motion as
quasi-geodesic equations is developed without reference to general relativity or to
Cartan’s formulation of the Newtonian equations as the auto-parallel equations of
a non-metric affine connection.

There are informative and serious exercises scattered throughout the text al-
though not as many as one would find in an undergraduate text on the subject.
However, I believe that the approach here is too idiosyncratic for the book to be
widely accepted as a basis for an advanced course on classical mechanics. The
situation is not improved by the personal mathematical style adopted, albeit con-
sistently, by the author for dealing with the co-ordinate transformations which
abound in classical mechanics along with the use of a non-standard mathematical
vocabulary.
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