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Variational formulations I: Statics of mechanical
systems.

W lodzimierz M. Tulczyjew

Abstract. Two improvements of variational formulations of mechanics are
proposed. The first consists in a modification of the definition of equilib-
rium. The second consists in adding elements of control by external devices.
In the present note the proposed improvements are applied to variational
principles of statics. Numerous examples are given.

Introduction
The fundamental concept in variational formulations of physical theories is that of
equilibrium. In the current literature on mechanics an equilibrium configuration is
a configuration at which a function such as internal energy or action assumes a local
minimum. This definition is too narrow. It excludes the treatment of dissipative
systems. A definition of equilibrium based on the response to virtual displacements
is proposed. This proposal does net affect the treatment of potential unconstrained
systems. It allows the treatment of dissipative systems. Applying constraints to
virtual displacements and not to configurations is a natural consequence of this
proposal. A different interpretation of non holonomic constraints is obtained as
one of the results. This modified version of non holonomic constraints applies to
statics as well as dynamics.

The study of motions of an isolated object in a configuration space is the subject
of geometric formulations of mechanics. Let Q be an affine configuration space
modelled on a vector space V . For a potential unconstrained system a motion

q : R→ Q

is required to satisfy the Hamilton principle

δ

∫ ∞
−∞

L ◦ (q, q̇) = 0 .
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Here
L : Q× V → R

is the Lagrangian and
q̇ : R→ V

is the velocity. The Hamilton principle must be satisfied for all variations

δq : R→ V

with compact support. Variations with compact support are used in order to make
the integration meaningful. The Euler-Lagrange equations(

d

dt

∂L

∂q̇
− ∂L

∂q

)
◦ (q, q̇, q̈) = 0

follow from the variational principle.
The formulation of mechanics based on the Hamilton principle is suitable for

studying motions of isolated systems such as planets. Modern formulations of
mechanics should treat boundary value problems and should include elements of
control theory. A motion is typically observed in a precise time interval [t0, t1]. The
observed object is not created at the initial moment t0 and does not disappear at
the terminal moment t1. The past motion of the object interacts with the motion
in the time interval [t0, t1] by supplying the initial momentum p0 and the terminal
momentum p1 is passed onto the future motion. This type of interaction is well
described by the variational principle

δ

∫ t1

t0

L ◦ (q, q̇) = 〈p1, δq(t1)〉 − 〈p0, δq(t0)〉 (1)

with free variations of the boundary configurations. This principle leads to the
equations

p0 =
∂L

∂q̇
(q(t0), q̇(t0))

and

p1 =
∂L

∂q̇
(q(t1), q̇(t1))

in addition to the Euler-Lagrange equations satisfied inside the interval [t0, t1].
The variational principle (1) provides a theoretical background for ballistics.

It is not general enough for treatig guided missiles and not even cars or planes.
External forcess applied to the object during the interval [t0, t1] must be included.
An external force represented by

f : R→ V ∗.

appears in the variational principle

δ

∫ t1

t0

L ◦ (q, q̇) = −
∫ t1

t0

〈f, δq〉+ 〈p1, δq(t1)〉 − 〈p0, δq(t0)〉.
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Equations (
d

dt

∂L

∂q̇
− ∂L

∂q

)
◦ (q, q̇, q̈) = f, (2)

p0 =
∂L

∂q̇
(q(t0), q̇(t0)),

and

p1 =
∂L

∂q̇
(q(t1), q̇(t1))

follow from the principle. The equation (2) is to be satisfied in the interval [t0, t1].
Control by external forces and boundary momenta is not the only form of

control. We suggest that at least this form of control be explicitly included in
modern formulations of mechanics.

This note is a part of a series of notes on variational formulations of physical
theories. Static mechanical systems are considered. Formulations of dynamics of
mechanical systems and field theories will follow.

Statics of mechanical systems is hardly present in modern literature. Static
systems appeared in catastrophe theory. Equilibrium configurations of isolated
systems defined as minima of internal energy functions were studied. Some elements
of control were present. All proposed improvements are fully implemented in the
present note.

1 Equilibria
1.1 Two simple examples

Example 1. LetQ be an affine space modelled on a vector space V with a Euclidean
metric g : V → V ∗. A material point with configuration q ∈ Q is connected with
a spring of spring constant k to a fixed point q0 ∈ Q. The configuration q = q0 is
the only stable configuration of the material point.

Example 2. The material point with configuration q ∈ Q in Example 1 is subject
to friction. The friction is measured by the coefficient ρ. The set

{q ∈ Q; ‖q − q0‖ 6 ρ/k}

is the set of equilibrium configurations.

Definitions of equilibrium:

A) A stable equilibrium configuration is a configuration at which the internal
energy of the system assumes its minimum value.

B) A configuration q is a stable equilibrium configuration if the work of each
process starting at q and not ending at q is positive.

Definition A) applies to the first example. The internal energy is the function

U : Q→ R : q 7→ k

2
‖q − q0‖2.
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It assumes its minimum value at the configuration q = q0. Definition A) does not
apply to the second example.

Definition B) applies to both examples. In the first example the work of a pro-
cess starting at q1 and ending at q2 equals U(q2) − U(q1). This work is always
positive unless q1 = q0. In the second example the work of a process from q1 to q2

equals

U(q2)− U(q1) + ρ× [length of process]. (3)

If q1 = q, q2 = q + ∆q 6= q, then

U(q2)− U(q1) + ρ× [length of process]

=
k

2
‖q − q0 + ∆q‖2 − k

2
‖q − q0‖2 + ρ‖∆q‖

= k〈g(q − q0),∆q〉+
k

2
‖∆q‖2 + ρ‖∆q‖ .

Let

‖q − q0‖ > ρ/k.

Choose ∆q in the direction opposite to (q− q0) and assume that the process is the
straight segment from q to q + ∆q. We have

U(q2)− U(q1) + ρ× [length of process]

= −k‖q − q0‖‖∆q‖+ ρ‖∆q‖+
k

2
‖∆q‖2.

This quantity is negative if ‖∆q‖ is small enough since

−k‖q − q0‖‖∆q‖+ ρ‖∆q‖ < 0.

It follows that q is not a configuration of equilibrium.
Let

‖q − q0‖ 6 ρ/k.

The quantity

ρ× [length of process]

is always positive. It assumes its lowest value

ρ× [length of process] = ρ‖∆

for given q and ∆q if the process is a segment of a straight line. The lowest value
of the term

U(q2)− U(q1) = U(q + ∆q)− U(q)

with a given ‖∆q‖ is obtained when ∆q points in the direction opposite to (q−q0).
In this case

k〈g(q − q0),∆q〉 = −k‖q − q0‖‖∆q‖ > 0.
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If the process is the segment of a straight line from q to q + ∆q and the vector ∆q
points in the direction of −(q − q0), then

U(q2)− U(q1) + ρ× [length of process]

= −k‖q − q0‖‖∆q‖+
k

2
‖∆q‖2 + ρ‖∆q‖ > 0

In all other cases the value of the expression (3) is higher. It follows that q is
a configuration of equilibrium.

The two examples were designed to show that variational formulations have
a wider area of applicability if based on Definition B). This definition appears in
the Levi-Civita formulations of mechanics. It is not present in modern geometric
formulations.

1.2 Precise definitions of local equilibria

Let Q be the configuration space of a system. A virtual displacement trajectory
(a trajectory for short) is a submanifold c ⊂ Q homeomorphic to the interval
R+ = [0,∞) ⊂ R. The submanifold c the image of an embedding

q : R+ → Q.

The point q = q(0) is the initial point of the trajectory and the trajectory will be
denoted by (q, c).

The embedding q is called a parameterization of (q, c). The set of virtual dis-
placement trajectories will be denoted by P(Q).

There is a work function
W(q,c) : c→ R

defined on each trajectory (q, c). We introduce the mapping

W : P(Q)→
⋃

(q,c)∈P(Q)

C∞(R|c) : (q, c) 7→W(q,c).

This mapping characterizes the system.
A configuration q ∈ Q is a local stable equilibrium configuration if for each

displacement trajectory (q, c) the work function W(q,c) has a local minimum at q.
Let c be parameterized by an embedding

q : R+ → Q.

The work function can be converted to a function

W̃q : R+ → R : s 7→W(q,c)(q(s))

of the parameter. The first order necessary condition of equilibrium for a config-
uration q states that for each trajectory (q, c) the derivative of the work function
W̃q satisfies

DW̃q(0) > 0. (4)
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This condition is parameterization independent.
Only the first order differential conditions are used in variational formulations

of physical theories. For the purpose of studying the first order differential crite-
ria virtual displacemements are well represented by vectors δq ∈ TQ tangent to
trajectories and the set of work functions is represented by a work form

σ : TQ→ R

derived from the differentials of work functions. The work form is positive homo-
geneous in the sense that

σ(kδq) = kσ(δq)

if k > 0. The condition (4) assumes the form

σ(δq) > 0

for each vector δq at q.

1.3 Constraints

An unconstrained system is characterized by a work function

W(q,c) : c→ R (5)

defined on each trajectory (q, c). The mapping

W : P(Q)→
⋃

(q,c)∈P(Q)

C∞(R|c) : (q, c) 7→W(q,c).

is also used. Constraints are conditions imposed on trajectories by specifying a
subset C of the set of all displacement trajectories. Trajectories in C are said to
be admissible. A work function (5) is assigned to admissible trajectories. Let
C0 be the set of initial configurations of all admissible displacement trajectories.
Constraints are said to be holonomic if C is the set of all displacement trajectories
included in C0. In other cases constraints are said to be non holonomic.

A system is characterized by the pair (C,W ), with

W : C →
⋃

(q,c)∈C

C∞(R|c) : (q, c) 7→W(q,c).

A configuration q ∈ C0 is a local stable equilibrium configuration of a constrained
system if for each displacement trajectory (q, c) ∈ C the work function W(q,c) has
a local minimum at q.

For the purpose of formulating the first differential order necessary condition of
local equilibrium the system is characterized by a virtual work function

σ : C1 → R

defined on a constraint set C1 ⊂ TQ. For each

q ∈ C0 = τQ(C1)
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the set
C1
q = C1 ∩ TqQ

is a cone in the sense that if
δq ∈ C1

q ,

then
λδq ∈ C1

q

for each
λ > 0.

A vector δq is said to be tangent to a set C0 ∈ Q if there is a curve

γ : R→ Q

such that γ([0,∞)) ⊂ C0 and δq = tγ(0). The set of vectors tangent to C0 is
the tangent set of C0 denoted by TC0. Constraints are said to be holonomic if
C1 = TC0. Otherwise constraints are said to be non holonomic. The inclusion

C1 ⊂ TC0

is usually verified.
The virtual work function is a homogeneous form in the sense that

σ(λδq) = λσ(δq)

if
λ > 0.

The necessary condition of local equilibrium states that a configuration q ∈ C0

is an equilibrium configuration of the static system

(C1, σ)

if the inequality
σ(δq) > 0

is satisfied for each virtual displacement

δq ∈ C1
q .

2 Control of mechanical system by external forces
2.1 Composed systems

Let two static systems with the same configuration space Q be characterized by

(C1
1, σ1)

and
(C1

2, σ2)
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respectively. Then the system constructed by coupling the two systems is charac-
terized by

(C1, σ)

with

C1 = C1
1 ∩ C1

2

and

σ = σ1|C1 + σ2|C1.

Certain regularity is assumed in this construction of the coupled system. Some
possible irregularities will be discussed separately. The construction of the coupled
system is certainly valid when one of the systems is unconstrained.

2.2 Control

Equilibrium configurations of an isolated system are not of much interest. A static
system is usually subjected to control by being coupled to an external system. The
work function σ together with the constraint set C1 provides complete information
on the response of a static system to control. Equilibrium configurations q ∈
C0 ∩ F 0 of a static system characterized by (C1, σ) coupled to an external system
represented by (F 1, ϕ) are determined by the virtual work principle

σ(δq) + ϕ(δq) > 0 for each virtual displacement δq ∈ C1
q ∩ F 1

q .

2.3 The Legendre-Fenchel transformation, the constitutive set

A static system is said to be regular if C1 = TQ, there is a function

U : Q→ R,

and the virtual work form is derived from the potential U according to

σ : TQ→ R : δq 7→ 〈dU, δq〉.

Control by regular external systems is of special interest. Equilibrium configura-
tions q ∈ C0 of a static system (C1, σ) controlled by a regular system represented
by (TQ,dU) are determined by

σ(δq) + 〈dU, δq〉 > 0 for each virtual displacement δq ∈ C1
q . (6)

Note that only the differential dU(q) of the potential U appears in the virtual work
principle (6). Two controlling regular systems (TQ,dU1) and (TQ,dU2) will have
the same effect at q if

dU2(q) = dU1(q).

This equality establishes an equivalence relation of controlling regular systems at
q. A suitable representant of the equivalence class of a system (TQ,dU) at q is the
covector

f = −dU(q) ∈ T∗qQ. (7)
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Due to the presence of constraints two different covectors f1 and f2 in T∗qQ will
still have the the same effect if

〈f2, δq〉 = 〈f1, δq〉 for each virtual displacement δq ∈ C1
q .

This could lead to a further classification of controlling devices different for different
controlled systems. The covector (7) is a completely universal characteristic of a
regular controlling system (TQ,dU) at q. An external force will be the term used
for this covector.

An alternative representation of a static system (C1, σ) is provided by the con-
stitutive set

S = {f ∈ T∗Q; q = πQ(f) ∈ C0,∀δq∈C1
q
σ(δq)− 〈f, δq〉 > 0} (8)

The passage from the objects (C1, σ) characterizing a system to the constitutive
set S is the Legendre-Fenchel transformation known in convex analysis. The con-
stitutive set provides a complete characterization of a convex system. For a convex
system the objects C1 and σ can be reconstructed from the constitutive set.

3 Examples of static systems
The geometric structure used in formulations of statics with external forces is the
diagram

(T∗Q, 〈, 〉)

πQ

y
Q

(9)

It is the cotangent fibration of the configuration space Q with the canonical pairing

〈, 〉 : T∗Q ×
(πQ,τQ)

TQ→ R.

If Q is an affine space modelled on a vector space V , then the cotangent bundle is
identified with Q× V ∗ and the mapping πQ is the canonical projection

πQ : Q× V ∗ → Q : (q, f) 7→ q.

The component f of an element (q, f) of the phase space T∗Q is the external
force applied to the material point at configuratiom q. The tangent bundle TQ is
identified with the product Q×V and the tangent projection is represented by the
canonical projection

τQ : Q× V → Q : (q, δq) 7→ q.

The fibre product of the cotangent bundle wth the tangent bundle is the space of
elements (q, f), (q, δq) in (Q× V ∗)× (Q× V ). The pairing 〈, 〉 is defined by

〈(q, f), (q, δq)〉 = 〈f, δq〉.

The diagram (9) takes the form
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(Q× V ∗, 〈, 〉)

πQ

y
Q

The response of a static system to control by esternal forces is described by the
constitutive set (8).

Example 3. A material point with configuration q in an affine space Q is tied to
a fixed point q0 ∈ Q with a spring of spring constant k. The model space is a
Euclidean vector space V with a metric tensor

g : V → V ∗.

The system is regular. The internal energy of the system is the function

U : Q→ R : q 7→ k

2
‖q − q0‖2.

This function generates the constitutive set

S = {(q, f) ∈ Q× V ∗; f = kg(q − q0)}.

Example 4. A material point with configuration q in a Euclidean affine space Q
is tied to a fixed point with configuration q0 with a rigid rod of length a. The
configuration q is constrained to the sphere

C0 = {q ∈ Q; ‖q − q0‖ = a}.

This is a system with a holonomic bilateral constraint. The set

C1 = {(q, δq) ∈ Q× V ; ‖q − q0‖ = a, 〈g(q − q0), δq〉 = 0}

of admissible virtual displacements is the tangent set TC0 of the holonomic con-
straint C0. With the virtual work form σ = 0 the constitutive set is the set

S = {(q, f) ∈ Q× V ∗; ‖q − q0‖ = a, f = a−2〈f, q − q0〉g(q − q0)}.

Example 5. The rigid rod of the Example 4 is replaced by a flexible string of
length a. The configuration q is constrained to the closed ball

C0 = {q ∈ Q; ‖q − q0‖ 6 a}.

This is a system with a holonomic unilateral constraint. The set

C1 = {(q, δq) ∈ Q× V ; ‖q − q0‖ 6 a, 〈g(q − q0), δq〉 6 0 if ‖q − q0‖ = a}

of admissible virtual displacements is the tangent set TC0 of the configuration
constraint C0. With the virtual work form σ = 0 the constitutive set is the set

S = {(q, f) ∈ Q× V ∗; ‖q − q0‖ 6 a, f = 0 if ‖q − q0‖ ≤ a,
f = ‖f‖a−1g(q − q0) if ‖q − q0‖ = a}.
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Example 6. Let Q be a Riemannian manifold with a metric tensor

g : TQ→ T∗Q.

A material point with configuration q ∈ Q is subject to homogeneous, isotropic
friction. The virtual work form is the mapping

σ : TQ→ R : δq 7→ ρ
√
〈g(δq), δq〉

with ρ > 0. The principle of virtual work is the inequality

ρ
√
〈g(δq), δq〉 > 0

satisfied for each virtual displacement δq ∈ TQ. This inequality is obviously satis-
fied at each q ∈ Q for each virtual displacement δq ∈ TqQ. Hence each configura-
tion is an equilibrium configuration of the system. A covector f ∈ T∗Q is in the
constitutive set if the inequality

ρ‖δq‖ − 〈f, δq〉 > 0

is satisfied for each virtual displacement δq such that τQ(δq) = πQ(f). Let f be in
the constitutive set. By using δq = g−1(f) in the preceding inequality we arrive at

‖f‖2 6 ρ‖f‖.

Hence,
‖f‖ 6 ρ.

The inequality
〈f, δq〉 6 ‖f‖‖δq‖

is the result of the Schwarz inequality applied to the pair of vectors g−1(f) and δq
such that τQ(δq) = πQ(f). If ‖f‖ 6 ρ, then

〈f, δq〉 6 ρ‖δq‖.

Hence, f is in the constitutive set. We conclude that the constitutive set of the
system is the set

S = {f ∈ T∗Q; ‖f‖ 6 ρ}.

Example 7. This is the affine version of Example 6. Let the configuration space Q
be an affine space modelled on a Euclidean vector space V . The material point is
not constrained and is subject to isotropic static friction. The virtual work is the
function

σ : Q× V → R : (q, δq) 7→ ρ(q)‖δq‖ = ρ(q)
√
〈g(δq), δq〉.

The set
S = {(q, f) ∈ Q× V ∗;∀δq∈V ρ(q)‖δq‖ > 〈f, δq〉} (10)

is the constitutive set. Let (q, f) ∈ S. By setting δq = g−1(f) in the inequality

ρ(q)‖δq‖ > 〈f, δq〉
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we obtain the inequality

ρ(q)‖f‖ > ‖f‖2.

Hence,

S ⊂ {(q, f) ∈ Q× F ; ‖f‖ 6 ρ(q)}.

Let (q, f) satisfy the inequality

‖f‖ 6 ρ(q).

The relation

〈f, δq〉 6 |〈f, δq〉| 6 ‖f‖‖δq‖ 6 ρ(q)‖δq‖

is derived from the Schwarz inequality

|〈f, δq〉| 6 ‖f‖‖δq‖.

We have shown that

S = {(q, f) ∈ Q× F ; ‖f‖ 6 ρ(q)}.

Example 8. The material point with configuration q ∈ Q in Example 3 is subject
to friction. The virtual work form is the mapping

σ : Q× V → R : (q, δq) 7→ k〈g(q − q0), δq〉+ ρ(q)‖δq‖.

The constitutive set is the set

S = {(q, f) ∈ Q× V ∗;∀δq∈V k〈g(q − q0), δq〉+ ρ(q)‖δq‖ > 〈f, δq〉}.

This set is the set constitutive set (10) of Example 7 with f replaced by

f − kg(q − q0).

The expression

S = {(q, f) ∈ Q× V ∗; ‖f − kg(q − q0)‖ 6 ρ(q)}

for the constitutive set is the result.

Example 9. Let M be an affine plane modelled on a Euclidean vector space V .
The configuration space of a skate is the set Q = M ×D, where D is the projective
space of directions in the affine space M . We use the Euclidean metric in M to
identify the space D with the unit circle

D = {ϑ ∈ V ; 〈g(ϑ), ϑ〉 = 1}.

Virtual displacements are elements of the space M × V × TD, where

TD = {(ϑ, δϑ) ∈ D × V ; 〈g(ϑ), δϑ〉 = 0}.
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The skate is a system with non holonomic constraints. The set C0 is the entire
space Q. The constraint consists in restricting virtual displacements in M to those
parallel to the direction specified by an element of D. Thus

C1 = {(x, δx, ϑ, δϑ) ∈M × V × TD;∃λ∈Rδx = λϑ}.

The constitutive set is a subset of the space Q × V ∗ × T∗D. The space T∗D is
specified as the set of pairs (ϑ, τ), where ϑ is in D and τ is in the quotient space
V ∗/T◦ϑD, where the space T◦ϑD is the polar of the space TϑD ⊂ V . The quotient
space V ∗/T◦ϑD is dual to TϑD. The set

S = {(x, f, ϑ, τ) ∈ Q× V ∗ × T∗D; 〈f, δx〉+ 〈τ, δϑ〉 = 0

for each (x, δx, ϑ, δϑ) ∈ C1}
= {(x, f, ϑ, τ) ∈ T∗Q; 〈f, ϑ〉 = 0, τ = 0}

is the constitutive set of the system with the virtual work form σ = 0. Let the
skate be subject to friction represented by a non negative function ρ : Q→ R. The
virtual work is the function

σ : C1 → R : (x, δx, ϑ, δϑ) 7→ ρ(x, ϑ)‖δx‖ = ρ(x, ϑ)
√
〈g(δx), δx〉.

The set

S = {(x, f, ϑ, τ) ∈ T∗Q;∀(x,δx,ϑ,δϑ)∈C1ρ(x, ϑ)‖δx‖ > 〈f, δx〉+ 〈τ, δϑ〉}

is the constitutive set. The equality τ = 0 is obtained by setting δx = 0 in the
inequality

ρ(x, ϑ)‖δx‖ > 〈f, δx〉+ 〈τ, δϑ〉

with arbitrary δϑ. By setting δx = λϑ we arrive at the inequality

ρ(x, ϑ)|λ| > λ〈f, ϑ〉

for each λ ∈ R. The inequality must be satisfied for λ = 〈f, ϑ〉. Hence

ρ(x, ϑ)|〈f, ϑ〉| > 〈f, ϑ〉2

and |〈f, ϑ〉| 6 ρ(x, ϑ). If |〈f, ϑ〉| 6 ρ(x, ϑ), then

ρ(x, ϑ)|λ| > |λ||〈f, ϑ〉| > 〈f, λϑ〉

for each λ ∈ R. It follows that the virtual work principle is satisfied. In conclusion
we obtain the expression

S = {(x, f, ϑ, τ) ∈ T∗Q; |〈f, ϑ〉| 6 ρ(x, ϑ), τ = 0}

for the constitutive set of the system.
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Example 10. Let Q be the affine physical space. The example gives a formal
description of experiments performed by Coulomb in his study of static friction.
Let a material point be constrained to the set

C0 = {q ∈ Q; 〈g(k), q − q0〉 > 0},

where q0 is a point in Q and k ∈ V is a unit vector. The boundary

∂C0 = {q ∈ Q; 〈g(k), q − q0〉 = 0}

is a plane passing through q0 and orthogonal to k. In its displacements along
the boundary the point encounters friction proportional to the component of the
external force pressing the point against the boundary. The system is characterized
by the virtual work function σ = 0 defined on the non holonomic constraint

C1 = {(q, δq) ∈ Q× V ; 〈g(k), q − q0〉 > 0,

〈g(k), δq〉 > ν
√
‖δq‖2 − 〈g(k), δq)〉2 if 〈g(k), q − q0〉 = 0},

where ν > 0 is the coefficient of friction. The inequality

〈g(k), δq〉 > ν
√
‖δq‖2 − 〈g(k), δq)〉2

defines a cone in the tangent space TqQ. The axis of the cone is the vector k and
the angle 2ϑ such that ν = cotϑ is the aperture. The principle of virtual work
states that (q, f) is in the constitutive set S if and only if the inequality

〈f, δq〉 6 0

is satisfied for each (q, δq) ∈ C1. If the material point is not on the boundary,
then 〈g(k), q − q0〉 > 0. The virtual displacements are not constrained and a pair
(q, f) ∈ Q × V ∗ is in the constitutive set S if and only if f = 0. If the material
point is on the boundary, then 〈g(k), q− q0〉 = 0. We show that in this case a pair
(q, f) is in the constitutive set if and only if the inequality√

‖f‖2 − 〈f, k〉2〉+ ν〈f, k〉 6 0

is satisfied. If f = −‖f‖g(k), then (q, f) is in the constitutive set and ‖f‖2 −
〈f, k〉2 = 0. Let (q, f) be in the constitutive set and let ‖f‖2 − 〈f, k〉2 6= 0. The
virtual displacement (q, δq) with

δq = g−1(f)− 〈f, k〉k + ν
√
‖f‖2 − 〈f, k〉2k

is in C1 since

〈g(k), δq〉 = ν
√
‖f‖2 − 〈f, k〉2.

From the principle of virtual work and

〈f, δq〉 = ‖f‖2 − 〈f, k〉2 + ν
√
‖f‖2 − 〈f, k〉2〈f, k〉
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it follows that
‖f‖2 − 〈f, k〉2 + ν

√
‖f‖2t− 〈f, k〉2〈f, k〉 6 0

and √
‖f‖2 − 〈f, k〉2〉+ ν〈f, k〉 6 0

since ‖f‖2 − 〈f, k〉2 > 0.
The Schwarz inequality

|〈g(u), v〉 − 〈g(k), u〉〈g(k), v〉| 6
√
‖u‖2 − 〈g(k), u〉2

√
‖v‖2 − 〈g(k), v〉2

for the bilinear symmetric form

(u, v) 7→ (u− 〈g(k), u〉k|v − 〈g(k), v〉k) = 〈g(u), v〉 − 〈g(k), u〉〈g(k), v〉

applied to the pair (g−1(f), δq) leads to the inequality

〈f, δq〉 − 〈f, k〉〈g(k), δq〉 6
√
‖f‖2 − 〈f, k〉2

√
‖δq‖2 − 〈g(k), δq〉2.

If √
‖f‖2 − 〈f, k〉2〉+ ν〈f, k〉 6 0

and
〈g(k), δq〉 > ν

√
‖δq‖2 − 〈g(k), δq〉2,

then √
‖f‖2 − 〈f, k〉2

√
‖δq‖2 − 〈g(k), δq〉2 6 −〈f, k〉〈g(k), δq〉.

It follows that 〈f, δq〉 6 0. Hence, (q, f) is in the constitutive set S. We have shown
that the set

S = {(q, f) ∈ Q× V ∗; 〈g(k), q − q0〉 > 0, f = 0 if 〈g(k), q − q0〉 > 0

and
√
‖f‖2 − 〈f, k〉2 + ν〈f, k〉 6 0 if 〈g(k), q − q0〉 = 0}

is the constitutive set of the system. The inequality√
‖f‖2 − 〈f, k〉2 + ν〈f, k〉 6 0

means that the vector g−1(f) is inside a cone in the tangent space TqQ. The vector
−k is the axis of the cone and the angle 2ϑ such that ν = cotϑ is the aperture.

4 Partial control of static systems
We have considered control of static systems through interaction with systems with
the same configuration space. This is not always the case. One can in general asso-
ciate three distinct configuration spaces with a static system: the internal configu-
ration space Q̄, the control configuration space Q, and the observed configuration
space Q̃. There are differential relations connecting the three spaces.

We will consider the cases when a static system with a configuration space Q̄ is
controlled by external devices in a configuration space Q and the relation between
the two spaces is a differential fibration η : Q̄ → Q. The configuration space Q̄
of the controlled system is the internal configuration space and the configuration
space Q of the controlling devices is the control configuration space. We will refer
to such situations as cases of partial control. The observed configuration space Q̃
will coincide either with Q or with Q̄.
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4.1 Families of functions

An internal energy function

Ū : Q̄→ R

is interpreted as a family of functions defined on fibres of the fibration η. The
symbol (Ū , η) is used to denote this family.

A generating family (Ū , η) generates the constitutive set

S = {f ∈ T∗Q;∃q̄∈Q̄η(q̄) = πQ(f)∀δq̄∈Tq̄Q̄〈dŪ , δq̄〉 = 〈f,Tη(δq̄)〉} (11)

of a partially controlled system.
We denote by VQ̄ the subbundle

{δq̄ ∈ TQ̄; Tη(δq̄) = 0}

of vertical vectors. The set

Cr(Ū , η) = {q̄ ∈ Q̄; 〈dŪ , δq̄〉 = 0 for each δq̄ ∈ Vq̄Q̄}

is called the critical set of the family. If q̄ satisfies the conditions stated in the
definition of S, then the equality 〈dŪ(q̄), δq̄〉 = 0 is obtained with δq = 0 and any
vertical vector δq̄ ∈ Q̄q̄. It follows that q̄ ∈ Cr(Ū , η).

There is a mapping

κ(Ū , η) : Cr(Ū , η)→ T∗Q

characterized by

〈κ(Ū , η)(q̄), δq〉 = 〈dŪ , δq̄〉

for each δq ∈ Tη(q̄)Q and each δq̄ ∈ Tq̄Q̄ such that Tη(δq̄) = δq. The constitutive
set is the image of κ(Ū , η). Note that if

κ(Ū , η)(q̄) = f,

then

πQ(f) = η(q̄).

The constitutive set (11) describes the relation between the controlling force
and the controlled configuration. It is used when the controlled configuration is
the observed configuration. If the internal configuration is observed, then the
constitutive set

S̃ = {(q̄, f) ∈ Q̄× T∗Q; q̄ ∈ Cr(Ū , η), f = κ(Ū , η)(q̄)}

should be used.

4.2 Reduction of generating families

Let (Ū , η) be a family generating the set (11). We have the following obvious
proposition.
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Proposition 1. Let q̄ ∈ Cr(Ū , η). The single point set

Sq̄ = {f ∈ T∗Q;πQ(f) = η(q̄)∀δq̄∈Tq̄Q̄dŪ(δq̄) = 〈f,Tη(δq̄)〉}.

is represented in the form

Sq̄ = {f ∈ T∗Q;πQ(f) = η(q̄)∀δq∈Tη(q̄)Qσq̄(δq) = 〈f, δq〉},

where
σq̄ : Tη(q̄)Q→ R : δq 7→ dŪ(δq̄), δq̄ ∈ Tq̄Q̄,Tη(δq̄) = δq. (12)

It follows from the above proposition that if Cr(Ū , η) is the image of a section
ζ : Q→ Q̄ of the fibration η then the family (Ū , η) generating the set S in (11) can
be replaced by the function

σ : TQ→ R : (δq) 7→ σζ(τQ(δq))(δq),

where σζ(τQ(δq)) is the function σq̄ defined in the the formula (12) with q̄ =
ζ(τQ(δq)). It is obvious that σ = d(Ū ◦ ζ). Thus the set S is generated by the
function U = Ū ◦ ζ.

4.3 Examples

Example 11. Three material points with configurations q0, q, and q′ in the affine
space Q are interconnected with springs with spring constants k1, k2, and k3. The
point q0 is fixed and not controlled. The two points q and q′ are not constrained.
The configuration q′ is not controlled. The internal configuration space is the affine
space Q̄ = Q × Q of internal configurations q̄ = (q, q′) modelled on V × V . The
control configuration space is the space Q of controlled configurations q and V is
the model space. The canonical projection

η : Q̄→ Q : q̄ = (q, q′) 7→ q

is the relation between the two spaces. The internal energy is the function

Ū : Q̄→ R : q̄ = (q, q′) 7→ k1

2
‖q − q0‖2 +

k2

2
‖q′ − q0‖2 +

k3

2
‖q′ − q‖2.

The internal energy defines a family (Ū , η) of functions on fibres of the projection η.
The critical set

Cr(Ū , η) = {q̄ = (q, q′) ∈ Q̄; (k2 + k3)(q′ − q0)− k3(q − q0) = 0}

of the family is the image of the section

ζ : Q→ Q̄ : q = q 7→ (q, q0 + k3(k2 + k3)−1(q − q0))

of the projection η. The constitutive set is the set

S =

{
(q, f) ∈ Q× V ∗; f =

k1k2 + k1k3 + k2k3

k2 + k3
g(q − q0)

}
.
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Note that the presence of the material point with configuration q′ can be ignored.
This is due to the fact that the critical set is the image of a section of the projection
η. The constitutive set is generated by the reduced internal energy function

U = Ū ◦ ζ : Q→ R : q 7→ 1

2

k1k2 + k1k3 + k2k3

k2 + k3
‖q − q0‖2.

This is the internal energy function

U : Q→ R : q 7→ k

2
‖q − q0‖2.

of Example 3 with

k =
k1k2 + k1k3 + k2k3

k2 + k3
.

Example 12. The present example gives a simplified discrete model of the buckling
of a rod. One end of the rod is a point in an affine space Q with configuration q
constrained to the half-line

L = {q ∈ Q; q − q0 = 〈g(u), q − q0〉u, 〈g(u), q − q0〉 > 0}

starting at a point q0 in the direction of a unit vector u. The other end is a point
with configuration q′ constrained to the plane

P = {q′ ∈ Q; 〈g(u), q′ − q0〉 = 0}

through q0 perpendicular to u. The rod can be compressed or extended in length
but not bent. Its relaxed length is a and the elastic constant is k. The buckling of
the rod is simulated by displacements of its end point in the plane P tied elastically
to the point q0 with a spring of spring constant k′. The configuration space Q̄ is
the product Q×Q with holonomic constraints represented by

C0 = {(q, q′) ∈ Q̄; q ∈ L, q′ ∈ P}.

The set

C1 = {(q, q′, δq, δq′) ∈ TQ̄; q ∈ L, q′ ∈ P,
δq = 〈g(u), δq〉u, 〈g(u), δq′〉 = 0}

of admissible virtual displacements is the tangent set of C0. The internal energy
of the system is the function

Ū : C0 → R : (q, q′) 7→ k

2
(‖q − q′‖ − a)2 +

k′

2
‖q′ − q0‖2.

The configuration q′ is not controlled. The internal energy defines a family (Ū , η)
of functions on fibres of

η : C0 → L : (q, q′) 7→ q.
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The critical set is the union of sets

Cr1(Ū , η) = {(q, q′) ∈ Q̄; q ∈ L, q′ = q0}

and
Cr2(Ū , η) = {(q, q′) ∈ Q̄; q ∈ L, q′ ∈ P, (k + k′)‖q′ − q‖ = ka}.

The critical set Cr1(Ū , η) is the image of the section

ζ1 : L→ C0 : q 7→ (q, q0).

The reduced internal energy

U1 = Ū ◦ ζ1 : L→ R : q 7→ k

2
(‖q − q0‖ − a)2

generates the constitutive set

S1 = {(q, f) ∈ Q× V ∗; q ∈ L, 〈f, u〉 = k(‖q − q0‖ − a)}

The critical set Cr2(Ū , η) is not the image of a section of η. A reducion of the
internal energy is still possible since the internal energy written in the form

Ū : C0 → R : (q, q′) 7→ k

2
(‖q − q′‖ − a)2 +

k′

2
(‖q − q′‖2 − ‖q − q0‖2)

is a function only of the distance ‖q − q′‖, and on the critical set Cr2(Ū , η) this
distance is determined by

‖q − q′‖ =
ka

k + k′
.

The result of the reduction is the function

U2 : L→ R : q 7→ −k′‖q − q0‖2 + Constant.

It generates the constitutive set

S2 = {(q, f) ∈ Q× V ∗; q ∈ L, (k + k′)‖q − q0‖ < ka,

〈f, u〉 = −k′‖q − q0‖}.

The constitutive set S = S1 ∪ S2 is not a submanifold of Q× V ∗.

Example 13. A material point with configuration q′ in the affine space Q is con-
nected to a fixed point q0 with a rigid rod of length a. A second material point
with configuration q is tied elastically to q′ with a spring of spring constant k.
The configuration q′ is not controlled. The internal configuration space Q̄ is the
product Q×Q with holonomic constraints represented by

C0 = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a}.

The set

C1 = {(q, q′, δq, δq′) ∈ Q×Q× V × V ;

‖q′ − q0‖ = a, 〈g(q′ − q0), δq′〉 = 0}
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is the tangent set of C0. The control configuration space is the space Q and the
canonical projection

η : Q̄→ Q : (q, q′) 7→ q

is the relation between the two spaces. The internal energy is the function

Ū : C0 → R : (q, q′) 7→ k

2
‖q − q′‖2

and

Cr(Ū , η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q = 〈g(q′ − q0), q′ − q〉a−2(q′ − q0)}.
= {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q0 = ±a(q − q0)‖q − q0‖−1 ifq 6= q0}.

is the critical set. The set

S = {(q, f) ∈ Q× V ∗; ‖f‖ = ka if q = q0,

f = k(1± a‖q − q0‖−1)g(q − q0) if q 6= q0}

is the constitutive set of the family (Ū , η). Note that the critical set is not the
image of a section of η. For each control configuration q we have two different
internal equilibrium configurations (q, q′) if q 6= q0 and an infinity of internal equi-
librium configurations if q = q0. The external force necessary to maintain the
control configuration q depends on the internal configuration. Thus even if the
internal configuration is not directly observed its presence can not be ignored. The
constitutive set is the image of the injective mapping

κ(Ū,η) : Cr(Ū , η)→ Q× V ∗ : (q, q′) 7→ (q, kg(q − q′)).

If the internal configuration is observed, then the set

S̃ = {(q, q′, f) ∈ Q×Q× V ∗; (q, q′) ∈ Cr(Ū , η), f = kg(q − q′)}

can be used to describe the relation between the controlling force and the observed
internal cofiguration.

4.4 Families of forms

A generating family of forms consists of a differential fibration

η : Q̄→ Q

and a form
σ̄ : TQ̄→ R.

The form v̄σ defines a family (v̄σ, η) of forms v̄σq on fibres of the fibration η. Each
form v̄σq is the restriction of the form v̄σ to the set

{δq̄ ∈ TQ̄; η(τQ̄(δq̄)) = q}.
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We denote by VQ̄ the subbundle

{δq̄ ∈ TQ̄; Tη(δq̄) = 0}

of vertical vectors. The set

Cr(σ̄, η) = {q̄ ∈ Q̄; σ̄(δq̄) > 0 for each δq̄ ∈ Vq̄Q̄}

is called the critical set of the family.
A generating family (σ̄, η) generates the set

S = {f ∈ T∗Q; q = πQ(f) ∈ Q,∃q̄∈Q̄q if δq ∈ TqQ,

δq̄ ∈ Tq̄Q̄, and Tη(δq̄) = δq, then σ̄(δq̄) > 〈f, δq〉}.

If q̄ satisfies the conditions stated in the definition of S, then the inequality
σ̄(δq̄) > 0 is obtained with δq = 0 and any vertical vector δq̄ ∈ Vq̄Q̄. It follows
that q̄ ∈ Cr(σ̄, η). Consequently,

S =
⋃

q̄∈Cr(σ̄,η)

Sq̄ ,

where

Sq̄ = {f ∈ T∗Q; q = πQ(f) = η(q̄), if δq ∈ TqQ, δq̄ ∈ Tq̄Q̄

and Tη(δq̄) = δq, then σ̄(δq̄) > 〈f, δq〉}.

It can be shown that if q̄ ∈ Cr(σ̄, η), then the set Sq̄ is not empty. The relation

κ(σ̄, η) : Cr(σ̄, η)→ T∗Q

defined by
graphκ(σ̄, η) = {(q̄, f) ∈ Cr(σ̄, η)× T∗Q; f ∈ Sq̄}

generalizes the mapping κ(Ū , η) introduced in Section 4.1. The constitutive set
is the image of the relation. We refer to the set Sq̄ as the contribution to the
constitutive set S from the critical point q̄.

4.5 Examples

Example 14. Let the point with configuration q′ of Example 11 be subject to
friction. The virtual work form is the family (s̄, η) with

σ̄ : Q×Q× V × V → R : (q, q′, δq, δq′)→ k1〈g(q − q0), δq〉
+ k2〈g(q′ − q0), δq′〉+ k3〈g(q′ − q), δq′ − δq〉+ ρ‖δq′‖

and
η : Q̄→ Q : (q, q′) 7→ q.

With a suitable choice of δq′ the expression

〈−(k2 + k3)g(q′ − q0) + k3g(q − q0), δq′〉
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in the definition

Cr(σ̄, η) = {(q, q′) ∈ Q̄;∀δq′∈V 〈k2g(q′ − q0) + k3g(q′ − q), δq′〉+ ρ‖δq′‖ > 0}
= {(q, q′) ∈ Q̄;∀δq′∈V 〈−(k2 + k3)g(q′ − q0) + k3g(q − q0), δq′〉 6 ρ‖δq′‖}

of the critical set can reach its maximum

‖(k2 + k3)(q′ − q0)− k3(q − q0)‖‖δq′‖.

Hence,

Cr(σ̄, η) = {(q, q′) ∈ Q̄; ‖(k2 + k3)(q′ − q0)− k3(q − q0)‖ 6 ρ}

The critical set is not the image of a section of η. The pair (q, f) ∈ Q × V ∗ is in
the constitutive set if the inequality

k1〈g(q − q0), δq〉+ k2〈g(q′ − q0), δq′〉
+ k3〈g(q′ − q), δq′ − δq〉+ ρ‖δq′‖ − 〈f, δq〉 > 0

is satisfied for some q′ ∈ Q and all (δq, δq′) ∈ V × V . If the inequality is satisfied,
then (q, q′) is in the critical set and δq′ can be set to 0. The resulting inequality

(k1 + k3)〈g(q − q0), δq〉 − k3〈g(q′ − q0), δq〉 − 〈f, δq〉 > 0

has the solution
f = (k1 + k3)g(q − q0)− k3g(q′ − q0).

Combining this result with the definition of the critical set we obtain the final
expression

S =

{
(q, f) ∈ Q× V ∗;

∥∥∥∥f − k1k2 + k1k3 + k2k3

k2 + k3
g(q − q0)

∥∥∥∥ 6 k3

k2 + k3
ρ

}
for the constitutive set. The presence of the internal configuration q′ can not be
ignored. If it is known, then the force f is obtained from (14). The internal
configuration q′ can be observed. The set

S̃ = {(q, q′, f) ∈ Q̄× V ;‖(k2 + k3)(q′ − q0)− k3(q − q0)‖ 6 ρ,
f = (k1 + k3)g(q − q0)− k3g(q′ − q0)}

includes the information about the internal configuration.

Example 15. The material point with configuration q′ in Example 13 is subject to
friction. The family (Ū , η) of functions is replaced by a family of forms (σ̄, η) with

σ̄ : C1 → R : (q, q′, δq, δq′) 7→ k〈g(q − q′), δq − δq′〉+ ρ‖δq′‖.

The set

Cr(σ̄, η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,∀δq′∈V
if 〈g(q′ − q0), δq′〉 = 0, then k〈g(q − q′), δq′〉 6 ρ‖δq′‖}
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is the critical set of the family. The maximum value of the expression

k〈g(q − q′), δq′〉

is
k‖(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)‖‖δq′‖.

Hence,

Cr(σ̄, η) = {(q, q′) ∈ Q̄; k‖(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)‖ 6 ρ}. (13)

The critical set is not a section of the projection η. The expression

(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)

is the component of q − q′ orthogonal to q′ − q0. If q 6= q0, then q′ ∈ C0 must be
such that the length this of component does not exceed ρ/k. If q = q0, then all
configurations q′ ∈ C0 are in the critical set. The pair (q, f) ∈ Q × V ∗ is in the
constitutive set if the inequality

k〈g(q − q′), δq − δq′〉+ ρ‖δq′‖ − 〈f, δq〉 > 0

is satisfied for some q′ ∈ C0 and all (δq, δq′) ∈ V ×V such that 〈g(q′−q0), δq′〉 = 0.
If the inequality is satisfied, then (q, q′) is in the critical set and terms with δq′ can
be discarded. The resulting inequality

k〈g(q − q′), δq〉 − 〈f, δq〉 > 0

leads to
f = kg(q − q′). (14)

The set

S̃ = {(q, q′, f) ∈ Q̄× V ∗; k‖(q − q′)− a−2〈g(q − q′), q′ − q0〉(q′ − q0)‖ 6 ρ
f = kg(q − q′)}

contains the information about the force in terms of the internal configuration q′.
The description of the constitutive set obtained from (13) and (14) is too compli-
cated to be useful.

5 Clean composition
Let C1 and C2 be subsets of Q. If the intersection C1 ∩ C2 is not empty, we say
that it is clean if

TC1 ∩ TC2 = T(C1 ∩ C2).

Example 16. We consider the composition of two holonomic systems. The con-
straints and the constitutive set for the first system are represented by the sets

C0
1 = {q ∈ Q; ‖q − q1‖ = a},
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C1
1 = {(q, δq) ∈ Q× V ; ‖q − q1‖ = a, 〈g(q − q1), δq〉 = 0},

and
S1 = {(q, f) ∈ Q× V ∗; ‖q − q1‖ = a, f = a−2〈f, q − q1〉g(q − q1)}.

For the second system we have

C0
2 = {q ∈ Q; ‖q − q2‖ = a},

C1
2 = {(q, δq) ∈ Q× V ; ‖q − q2‖ = a, 〈g(q − q2), δq〉 = 0},

and
S2 = {(q, f) ∈ Q× V ∗; ‖q − q2‖ = a, f = a−2〈f, q − q2〉g(q − q2)}.

If the distance ‖q2 − q1‖ between the centres of the spheres C0
1 and C0

2 is less
than 2a, then the composed system is a system with holonomic constraints. The
intersection of the constraints is clean since

C1 = C1
1 ∩ C1

2 = {(q, δq) ∈ Q× V ; ‖q − q1‖ = a, ‖q − q2‖ = a,

〈g(q − q1), δq〉 = 0, 〈g(q − q2), δq〉 = 0}

is the tangent set TC0 of the intersection

C0 = C0
1 ∩ C0

2 = {q ∈ Q; ‖q − q1‖ = a, ‖q − q2‖ = a}.

The constitutive set

S = {(q, f) ∈ Q× V ∗; ‖q − q1‖ = a, ‖q − q2‖ = a, 〈f, δq〉 = 0 for each

δq ∈ V such that 〈g(q − q1), δq〉 = 0 and 〈g(q − q2), δq〉 = 0}.

is obtained from the principle of virtual work. At each q ∈ C0 the set

Sq = {f ∈ V ∗; (q, f) ∈ S}

is the sum
{f ∈ V ∗; (q, f) ∈ S1}+ {f ∈ V ∗; (q, f) ∈ S2}.

If ‖q2 − q1‖ = 2a, then the set

C0 = C0
1 ∩ C0

2 = {q ∈ Q; ‖q − q1‖ = a, ‖q − q2‖ = a}

has only one element q = q1 + 1
2 (q2 − q1). The intersection C1

1 ∩ C1
2 is the set{

(q, δq) ∈ Q× V ; q = q1 +
1

2
(q2 − q1), 〈g(q2 − q1), δq〉 = 0

}
.

The intersection of constraints is not clean since this intersection is not the tangent
set of C0. With

C1 = TC0 =

{
(q, f) ∈ Q× V ∗; q = q1 +

1

2
(q2 − q1), δq = 0

}
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the principle of virtual work produces the constitutive set

S =

{
(q, f) ∈ Q× V ∗; q = q1 +

1

2
(q2 − q1)

}
.

This is not the correct constitutive set for the composed system. The reason of
this failure is that the approximative assumption of perfect rigidity of the separate
constraints is no longer realistic in the case of a composition with

TC0
1 ∩ TC0

2 6= T(C0
1 ∩ C0

2).

To obtain a complete description of the composed system the precise elastic prop-
erties of the constraints must be known. A partial characterization of the system
is provided by the constitutive set

S1 ∩ S2 =

{
(q, f) ∈ Q× V ∗; q = q1 +

1

2
(q2 − q1), f = a−2〈f, q − q1〉g(q − q1)

}
generated by the non holonomic constraint C1 = C1

1 ∩ C1
2. Note that this con-

straint is not integrable since the inclusion C1 ⊂ TC0 does not hold.

6 A geometric setting for catastrophe theory
6.1 The framework

The traditonal approach to statics consists in studying equilibrium configurations
of isolated systems. Catastrophe theory introduces elements of control to this
approach. Families of isolated static systems are considered instead of separate
single systems. Variations of equilibria within the family are studied. Applicability
of this theory is somewhat limited since only unconstrained potential systems are
considered.

We adapt the framework established in Section 4.1. to the catastrophe theory
point of view. The base Q of the differential fibration

η : Q̄→ Q

is the control space. The control configurations are not controlled by external
forces. They are directly set by an external control mechanism. Fibres of the
fibration are behaviour spaces. An internal energy function

Ū : Q̄→ R

is interpreted as a family Cr(Ū , η) of potentials on the behaviour spaces parame-
terized by control configurations. The potential

Uq : Q̄q → R

corresponding to a control configuration q ∈ Q is the restriction of Ū to the fibre
Q̄q = η−1(q). The critical set

Cr(Ū , η) = {q̄ ∈ Q̄; 〈dŪ , δq̄〉 = 0 for each δq̄ ∈ Vq̄Q̄}
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with

VQ̄ = {δq̄ ∈ TQ̄; Tη(δq̄) = 0}

is the catastrophe manifold. Each element q̄ of the catastrophe manifold is an
equilibrium configuration for the potential Uη(q̄). A catastrophe is a singularity of
the catastrophe map

χ : Cr(Ū , η)→ Q

obtained as the restriction of the projection η to Cr(Ū , η). A singularity occurs at
a point q̄ ∈ Cr(Ū , η) at which the rank of the tangent mapping

Tχ : TCr(Ū , η)→ TQ

changes. The change of multiplicity of critical points projecting onto the same
configuration q is also an indication of a singularity.

The framework requires a obvious extension to families of holonomically con-
strained potentials in order to accomodate examples we want to present.

6.2 Examples

Example 17. In Example 13 we used the internal energy

Ū : C0 → R : (q, q′) 7→ k

2
‖q − q′‖2

defined on the holonomic constraint

C0 = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a}.

The critical set

Cr(Ū , η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q = 〈g(q′ − q0), q′ − q〉a−2(q′ − q0)}.

was obtained. This set is now interpreted as the catastrophe manifold. Let D be
the unit sphere

{ϑ ∈ V ; 〈g(ϑ), ϑ〉 = 1}.

The critical set is the image of the injective mapping

γ : R×D → Q̄ : (r, ϑ) 7→ (q0 + (a+ r)ϑ, q0 + aϑ).

The set
R× R× {(ϑ, δϑ) ∈ V × V ;ϑ ∈ D, 〈g(ϑ), δϑ〉 = 0}

is the tangent set T(R×D). The tangent mapping

Tγ : T(R×D)→ Q×Q× V × V
: (r, δr, ϑ, δϑ) 7→ (q0 + (a+ r)ϑ, q0 + aϑ, δrϑ+ (a+ r)δϑ, aδϑ)
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is injective. It follows that γ is an injective immersion. The mapping

χ : R×D → Q : (r, ϑ) 7→ q0 + (a+ r)ϑ

represents the catastrophe map. It is obtained as the composition η ◦ γ. The rank
of the tangent mapping

Tχ : T(R×D)→ Q× V : (r, δr, ϑ, δϑ) 7→ (q0 + (a+ r)ϑ, δrϑ+ (a+ r)δϑ)

is 3 if a+r 6= 0 and 1 if a+r = 0. This indicates a singularity at q = q0. Specialists
will refuse to recognize this singularity as a catastrophe since, as we will see in the
next example, it is not stable.

Example 18. We consider a modified version of Example 13. Let

k : V → V

be a linear mapping positve and symmetric in the sense that

〈g(k(δq1)), δq2〉 = 〈g(k(δq2)), δq1〉

for each pair of vectors δq1 and δq2 and

〈g(k(δq)), δq〉 > 0

unless δq = 0. We use the internal energy

Ū : C0 → R : (q, q′) 7→ 1

2
〈g(k(q − q′)), q − q′〉

defined on the holonomic constraint

C0 = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a}.

The critical set

Cr(Ū , η) = {(q, q′) ∈ Q̄; ‖q′ − q0‖ = a,

q′ − q = a−2〈g(k(q′ − q)), q′ − q0〉k−1(q′ − q0)}.

is obtained. If (q, q′) ∈ Cr(Ū , η) and q = q0, then

‖q′ − q0‖ = a (15)

and
q′ − q0 = a−2〈g(k(q′ − q0)), q′ − q0〉k−1(q′ − q0). (16)

A configuration q′ in the set

{q′ ∈ Q; ‖q′ − q0‖ = a}

satisfies the equality (16) if q′ − q0 is an eigenvector of k. The number of such
eigenvectors depends on the number of eigenvalues of k. If k has three distinct
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eigenvalues, then the number is 6. For q sufficiently far from q0 there are two
configurations

q′ = q0 ± a‖k(q − q0)‖−1k(q − q0)

satisfying (15) and the equation

k(q − q′) = a−2〈g(k(q − q′)), q′ − q0〉(q′ − q0)

approximated by

k(q − q0) = a−2〈g(k(q − q0)), q′ − q0〉(q′ − q0).

It is clear that the system described in Example 13 and Example 17 is not topo-
logically stable.
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