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Tangent Lie algebras to the holonomy group of a

Finsler manifold

Zoltán Muzsnay, Péter T. Nagy

Abstract. Our goal in this paper is to make an attempt to find the largest
Lie algebra of vector fields on the indicatrix such that all its elements are
tangent to the holonomy group of a Finsler manifold. First, we introduce the
notion of the curvature algebra, generated by curvature vector fields, then
we define the infinitesimal holonomy algebra by the smallest Lie algebra of
vector fields on an indicatrix, containing the curvature vector fields and their
horizontal covariant derivatives with respect to the Berwald connection.
At the end we introduce conjugates of infinitesimal holonomy algebras by
parallel translations with respect to the Berwald connection. We prove that
this holonomy algebra is tangent to the holonomy group.

1 Introduction
The notion of the holonomy group of Riemannian manifolds can be generalized very
naturally for Finsler manifolds: it is the group generated by canonical homogeneous
(nonlinear) parallel translations along closed loops. Until now the holonomy groups
of non-Riemannian Finsler manifolds were described only in special cases: the
Berwald manifolds have the same holonomy group as some Riemannian manifolds
(cf. Z.I. Szabó, [8]) and the holonomy groups of Landsberg manifolds are compact
Lie groups (cf. L. Kozma, [3]). A thorough study of the holonomy algebras of
homogeneous (nonlinear) connections was initiated by W. Barthel [1], he gave a
successive extension by Berwald’s covariant derivation of the Lie algebras generated
by the curvature vector fields. A general setting for the study of infinite dimensional
holonomy groups and holonomy algebras of nonlinear connections was initiated by
P. Michor in [5], but the tangential properties of the holonomy algebras to the
holonomy group were not clarified.

Recently, the authors introduced in [6] the notion of tangent Lie algebras to the
holonomy group and proved that the curvature algebra (the Lie algebra generated

2010 MSC: 53B40, 53C29, 22E65
Key words: Finsler geometry, holonomy, infinite-dimensional Lie groups.



138 Zoltán Muzsnay, Péter T. Nagy

by curvature vector fields) is a tangent algebra to the holonomy group. With
this technique we have constructed a Finsler manifold (with singular metric) with
infinite dimensional curvature algebra, which implies that the holonomy group can
not be a finite dimensional Lie group in this case. We suspect that for most of
non-Riemannian Finsler manifolds, the holonomy group is not a finite dimensional
Lie group.

In a recent paper [2] M. Crampin, D.J. Saunders carried on a deep analysis
of the holonomy structures of bundles with fibre metrics, and in particular the
holonomy structures of Landsbergian type Finsler manifolds. In these cases, the
holonomy groups are finite dimensional Lie groups. They introduced the notion of
holonomy algebra and proved a version of Ambrose-Singer Theorem for such spaces.
Reflecting to our results, they noticed that in the general Finslerian framework the
holonomy algebra should contain the parallel translated curvature algebras. They
showed that in this case the topological closure of this holonomy algebra contains
the covariant derivatives of curvature vector fields, but the tangent properties of
the successive covariant derivatives of curvature vector fields are not obvious from
this approach in the cases, when the holonomy group is not a finite dimensional
Lie group. The difficulty comes from the fact, that a topologically non-closed
infinite dimensional Lie algebra of vector fields may expand, if we add the covariant
derivatives of its elements.

Our goal in this paper is to make an attempt to find the right notion of the
holonomy algebra of Finsler spaces. The holonomy algebra should be the largest
Lie algebra such that all its elements are tangent to the holonomy group. In our
attempt we are building successively Lie algebras having the tangent properties.
First, we introduce the notion of the curvature algebra (the Lie algebra generated
by curvature vector fields) which is a tangent Lie algebra to the holonomy group
(cf. [6]). Then we define the infinitesimal holonomy algebra by the smallest Lie
algebra of vector fields on an indicatrix, containing the curvature vector fields and
their horizontal covariant derivatives with respect to the Berwald connection and
prove the tangential property of this Lie algebra to the holonomy group. At the
end we introduce the notion of the holonomy algebra of a Finsler manifold by all
conjugates of infinitesimal holonomy algebras by parallel translations with respect
to the Berwald connection. We prove that this holonomy algebra is tangent to
the holonomy group. The question of whether the holonomy algebra introduced in
this way is the largest Lie algebra, which is tangent to the holonomy group, is still
open.

2 Preliminaries
Let M be an n-dimensional C∞ manifold and let X∞(M) denote the vector space
of smooth vector fields on M . For a local coordinate system (x1, . . . , xn) on M
we denote by (x1, . . . , xn; y1, . . . , yn) the induced local coordinate system on the
tangent bundle TM .

Finsler manifold, canonical connection, parallelism

A Finsler manifold is a pair (M,F), where the Finsler function F : TM → R is
continuous, smooth on T̂M := TM \{0}, its restriction Fx = F|TxM is a positively
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homogeneous function of degree 1 and the symmetric bilinear form (the Finsler
metric)

gx,y : (u, v) 7→ gij(x, y)uivj =
1

2

∂2F2
x(y + su+ tv)

∂s ∂t

∣∣∣
t=s=0

is positive definite at every y ∈ T̂xM .
Geodesics of Finsler manifolds are determined by a system of second order

ordinary differential equation ẍi + 2Gi(x, ẋ) = 0, i = 1, . . . , n, where Gi(x, ẋ) are
locally given by

Gi(x, y) :=
1

4
gil(x, y)

(
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
)
yjyk. (1)

The associated homogeneous (nonlinear) parallel translation τc : Tc(0)M → Tc(1)M

along a curve c : [0, 1] → R is defined by vector fields X(t) = Xi(t) ∂
∂xi along c(t)

which are solutions of the differential equation

DċX(t) :=
(dXi(t)

dt
+Gij(c(t), X(t))ċj(t)

) ∂

∂xi
= 0, where Gij =

∂Gi

∂yj
. (2)

Horizontal distribution, Berwald connection, curvature

Let (TM, π,M) and (TTM, ρ, TM) denote the first and the second tangent bun-
dle of the manifold M , respectively. The horizontal distribution HTM ⊂ TTM
associated with the Finsler manifold (M,F) can be defined as the image of the
horizontal lift which is an isomorphism X → Xh between TxM and HyTM at
y ∈ TxM defined by(

Xi ∂

∂xi

)h
:= Xi

(
∂

∂xi
−Gki (x, y)

∂

∂yk

)
. (3)

If VTM := Kerπ∗ ⊂ TTM denotes the vertical distribution on TM , then for any
y ∈ TM we have TyTM = HyTM ⊕ VyTM . The projectors corresponding to this
decomposition will be denoted by h : TTM → HTM and v : TTM → VTM . We
note that the vertical distribution is integrable.

Let (V̂TM, ρ, T̂M) be the vertical bundle over T̂M := TM \ {0}. We denote

by X∞(M), respectively by X̂∞(TM) the vector space of smooth vector fields
on M and of smooth sections of the bundle (V̂TM, τ, T̂M), respectively. The

horizontal Berwald covariant derivative of a section ξ ∈ X̂∞(TM) by a vector field
X ∈ X∞(M) is ∇Xξ := [Xh, ξ].

In an induced local coordinate system (xi, yi) on TM for vector fields ξ(x, y) =
ξi(x, y) ∂

∂yi and X(x) = Xi(x) ∂
∂xi we have (3) and hence

∇Xξ =

(
∂ξi(x, y)

∂xj
−Gkj (x, y)

∂ξi(x, y)

∂yk
+
∂Gij(x, y)

∂yk
(x, y)ξk(x, y)

)
Xj ∂

∂yi
. (4)

Let (π∗TM, π̄, T̂M) be the pull-back bundle of (T̂M, π,M) by the map π : TM →
M . Clearly, the mapping(

x, y, ξi
∂

∂yi

)
7→
(
x, y, ξi

∂

∂xi

)
: V̂TM → π∗TM (5)
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is a canonical bundle isomorphism. In the following we will use the isomorphism
(5) for the identification of these bundles.

The Riemannian curvature tensor field R(x,y)(X,Y ) := v
[
Xh, Y h

]
, X, Y ∈ TxM ,

(x, y) ∈ T̂M characterizes the integrability of the horizontal distribution. Namely,
if the horizontal distribution HT̂M is integrable, then the Riemannian curvature
is identically zero. The expression of the Riemannian curvature tensor

R(x,y) = Rijk(x, y)dxj ⊗ dxk ⊗ ∂

∂xi

on the pull-back bundle (π∗TM, π̄, T̂M) is

Rijk(x, y) =
∂Gij(x, y)

∂xk
− ∂Gik(x, y)

∂xj
+Gmj (x, y)Gikm(x, y)−Gmk (x, y)Gijm(x, y).

Indicatrix bundle

The indicatrix IpM of an n-dimensional Finsler manifold (M,F) at a point p ∈M
is the compact hypersurface IpM := {y ∈ TpM ;F(y) = 1} in TpM , diffeomorphic
to the standard (n − 1)-sphere. The indicatrix bundle (IM,π,M) of (M,F) is a
smooth subbundle of the tangent bundle (TM, π,M). The group Diff∞(IpM) of all
smooth diffeomorphisms of an indicatrix IpM is a regular infinite dimensional Lie
group modeled on the vector space X∞(IpM) of smooth vector fields on IpM . The
Lie algebra of the infinite dimensional Lie group Diff∞(IpM) is the vector space
X∞(IpM), equipped with the negative of the usual Lie bracket, (cf. A. Kriegl and
P.W. Michor [4], Section 43).

Let c(t), 0 ≤ t ≤ a be a smooth curve joining the points p = c(0) and q = c(a) in
the Finsler manifold (M,F). Since the parallel translation τc : TpM → TqM along

the curve c : [0, a]→M is a differentiable map between T̂pM and T̂qM preserving
the value of the Finsler function, it induces a parallel translation τc : IpM → IqM
in the indicatrix bundle.

Holonomy group

The notion of the holonomy group of Riemannian manifolds can be generalized
very naturally for Finsler manifolds:

Definition 1. The holonomy group Hol(p) of a Finsler space (M,F) at p ∈ M is
the subgroup of the group of diffeomorphisms Diff∞(IpM) of the indicatrix IpM
determined by parallel translation of IpM along piece-wise differentiable closed
curves initiated at the point p ∈M .

Clearly, the holonomy groups at different points of M are isomorphic. We note
that the holonomy group Hol(p) is a topological subgroup of the regular infinite
dimensional Lie group Diff∞(IpM), but its differentiable structure is not known in
general.
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3 Tangent Lie algebras to diffeomorphism groups
Here we discuss the tangential properties of Lie algebras of vector fields to an
abstract subgroup of the diffeomorphism group of a manifold. The results of this
section will be applied in the following to the investigation of tangent Lie algebras
of the holonomy subgroup of the diffeomorphism group of an indicatrix IxM and to
the fibred holonomy subgroup of the diffeomorphism group of the indicatrix bundle
I(M).

Let P be a C∞ manifold, let H be a (not necessarily differentiable) subgroup of
the diffeomorphism group Diff∞(P ) and let X∞(P ) be the Lie algebra of smooth
vector fields on P .

Definition 2. A vector field X ∈ X∞(P ) is called tangent to the subgroup H of
Diff∞(P ), if there exists a C1-differentiable 1-parameter family {φt ∈ H}t∈(−ε,ε) of

diffeomorphisms of M such that φ0 = Id and ∂φt
∂t

∣∣
t=0

= X. A Lie subalgebra g of
X∞(P ) is called tangent to H, if all elements of g are tangent vector fields to H.

Unfortunately, it is not true, that tangent vector fields to the group H generate a
tangent Lie algebra to H. This is why we have to introduce a stronger tangency
property in Definition 4.

Definition 3. A C∞-differentiable k-parameter family

{φ(t1,...,tk) ∈ Diff∞(P )}ti∈(−ε,ε)

of diffeomorphisms of P is called a commutator-like family if it satisfies the equa-
tions

φ(t1,...,tk) = Id, whenever tj = 0 for some 1 ≤ j ≤ k.

We remark, that the commutators of commutator-like families are commutator-like,
and the inverse of commutator-like families are commutator-like.

Definition 4. A vector field X ∈ X∞(P ) is called strongly tangent to the sub-
group H of Diff∞(P ), if there exists a commutator-like family

{φ(t1,...,tk) ∈ Diff∞(P )}ti∈(−ε,ε)

of diffeomorphisms satisfying the conditions

(A) φ(t1,...,tk) ∈ H for all ti ∈ (−ε, ε), 1 ≤ i ≤ k,

(B)
∂kφ(t1,...,tk)

∂t1···∂tk

∣∣
(0,...,0)

= X.

It follows from the commutator-like property that
∂kφ(t1,...,tk)

∂t1...∂tk

∣∣
(0,...,0)

is the first

non-necessarily vanishing derivative of the diffeomorphism family {φ(t1,...,tk)} at
any point x ∈ P , and therefore it determines a vector field. On the other hand,
by reparametrizing the commutator like family of diffeomorphism, it can be shown
that if a vector field is strongly tangent to a group H, then it is also tangent to H.
Moreover, we have the following
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Theorem 1. Let V be a set of vector fields strongly tangent to the group H ⊂
Diff∞(P ). The Lie subalgebra v of X∞(P ) generated by V is tangent to H.

The proof of the theorem is based on two important observations. The first is a
generalization of the well-known relation between the commutator of vector fields
and the commutator of their induced flows. Namely, if {φ(s1,...,sk)} and {ψ(t1,...,tl)}
are commutator-like k-parameter, respectively l-parameter families of local diffeo-
morphisms, then the family of (local) diffeomorphisms [φ(s1,...,sk), ψ(t1,...,tl)] defined
by the commutator of the group Diff∞(U) is a commutator-like (k + l)-parameter
family and

∂k+l[φ(s1,...,sk), ψ(t1,...,tl)]

∂s1 . . . ∂sk ∂t1 . . . ∂tl

∣∣∣
(0,...,0;0,...,0)

(x)

= −

[
∂kφ(s1,...,sk)

∂s1 . . . ∂sk

∣∣∣
(0,...,0)

,
∂lψ(t1,...,tl)

∂t1 . . . ∂tl

∣∣∣
(0,...,0)

]
(x)

at any point x ∈ U . The second important fact to prove the theorem is that
the linear combinations of vector fields tangent to H are also tangent to H. The
detailed computations can be found in [6].

4 The curvature algebra at a point
Now, se summarize our results on the tangent Lie algebras of the holonomy group
Hol(p) at a point p ∈M , their proofs can be found in [6].

Definition 5. A vector field ξ ∈ X(IpM) on the indicatrix IpM of the Finsler
manifold (M,F) is called a curvature vector field at the point p ∈ M , if it is
in the image of the curvature tensor, i.e. if there exist X,Y ∈ TpM such that
ξ = rp(X,Y ), where

rp(X,Y )(y) := R(p,y)(X
h, Y h) (6)

The Lie subalgebra Rp :=
〈
rp(X,Y );X,Y ∈ TpM

〉
of X(IpM) generated by the

curvature vector fields at the point p ∈ M is called the curvature algebra at the
point p ∈M .

Since the Finsler function is preserved by parallel translations, its derivatives with
respect to horizontal vector fields are identically zero. According to [7], eq. (10.9),
the derivative of the Finsler metric with respect to R(p,y)(X

h, Y h) vanishes, i.e.

g(p,y)

(
y,R(p,y)(X

h, Y h)
)

= 0, for any y,X, Y ∈ TxM.

This means that the curvature vector fields ξ = rp(X,Y ) are tangent to the indica-
trix. In the sequel we investigate the tangential properties of the curvature algebra
to the holonomy group of the canonical connection ∇ of a Finsler manifold.

Proposition 1. Any curvature vector field at a point p ∈M is strongly tangent to
the holonomy group Hol(p).
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Proposition 2. The curvature algebra Rp at any point p ∈ M of a Riemannian
manifold (M, g) is isomorphic to the linear Lie algebra on the tangent space TpM
generated by the curvature operators of (M, g) at p ∈M .

Remark 1. The dimension of the curvature algebra at any point p ∈M of a Finsler
surface is ≤ 1.

5 Fibred holonomy group and fibred holonomy algebra
Now, we introduce the notion of the fibred holonomy group of a Finsler manifold
(M,F) as a subgroup of the diffeomorphism group of the total manifold IM of the
bundle (IM,π,M) and apply our results on tangent vector fields to an abstract
subgroup of the diffeomorphism group to the study of tangent Lie algebras to the
fibred holonomy group.

Definition 6. The fibred holonomy group Holf(M) of (M,F) consists of fibre pre-
serving diffeomorphisms Φ ∈ Diff∞(IM) of the indicatrix bundle (IM,π,M) such
that for any p ∈ M the restriction Φp = Φ|IpM ∈ Diff∞(IpM) belongs to the
holonomy group Hol(p).

We note that the holonomy group Hol(p) and the fibred holonomy group Holf(M)
are topological subgroups of the infinite dimensional Lie groups Diff∞(IpM) and
Diff∞(IM) respectively.

The definition of strongly tangent vector fields yields

Remark 2. A vector field ξ ∈ X∞(IM) is strongly tangent to the fibred holonomy
group Holf(M) if and only if there exists a family

{
Φ(t1,...,tk)

∣∣
IM

}
ti∈(−ε,ε) of fibre

preserving diffeomorphisms of the bundle (IM,π,M) such that for any indicatrix
Ip the induced family

{
Φ(t1,...,tk)

∣∣
IpM

}
ti∈(−ε,ε) of diffeomorphisms is contained in

the holonomy group Hol(p) and ξ
∣∣
IpM

is strongly tangent to Hol(p).

Since π
(
Φ(t1,...,tk)(p)

)
≡ p and π∗(ξ) = 0 for every p ∈ U , we get the

Corollary 1. Strongly tangent vector fields to the fibred holonomy group Holf(M)
are vertical vector fields. If ξ ∈ X∞(IM) is strongly tangent to Holf(M) then
its restriction ξp := ξ

∣∣
Ip

to any indicatrix Ip is strongly tangent to the holonomy

group Hol(p).

The curvature vector fields and the curvature algebra at a point has been defined
on an indicatrix of the manifold M . Now we extend the domain of their definition
to the total manifold of the indicatrix bundle.

Definition 7. A vector field ξ ∈ X∞(IM) on the indicatrix bundle IM is a curva-
ture vector field of the Finsler manifold (M,F), if there exist X,Y ∈ X∞(M) such
that ξ = r(X,Y ), where r(X,Y )(x, y) := R(x,y)(Xx, Yx) for x ∈ M and y ∈ IxM .
The Lie algebra R(M) generated by the curvature vector fields of (M,F) is called
the curvature algebra of the Finsler manifold (M,F).
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Proposition 3. If the Finsler manifold (M,F) is diffeomorphic to Rn then any
curvature vector field ξ ∈ X∞(IM) of (M,F) is strongly tangent to the fibred
holonomy group Holf(M).

Proof. Since M is diffeomorphic to Rn we can identify the manifold M with the
vector space Rn. Let ξ = r(X,Y ) ∈ X∞(IRn) be a curvature vector field with
X,Y ∈ X∞(Rn). According to Proposition 1 its restriction ξ

∣∣
IpRn

to any indica-

trix IpRn is strongly tangent to the holonomy groups Hol(p). We have to prove
that there exists a family

{
Φ(t1,...,tk)

∣∣
IRn
}
ti∈(−ε,ε) of fibre preserving diffeomor-

phisms of the indicatrix bundle (IRn, π,Rn) such that for any p ∈ Rn the family
of diffeomorphisms induced on the indicatrix Ip is contained in Hol(p) and ξ

∣∣
IpRn

is strongly tangent to Hol(p).
For any p ∈ Rn and −1 < s, t < 1 let Π(sXp, tYp) be the parallelogram in

Rn determined by the vertexes p, p + sXp, p + sXp + tYp, p + tYp ∈ Rn and let
τΠ(sXp,tYp) : Ip → Ip denote the (nonlinear) parallel translation of the indicatrix Ip
along the parallelogram Π(sXp, tYp) with respect to the associated homogeneous
(nonlinear) parallel translation of the Finsler manifold (Rn,F). Clearly we have
τΠ(sXp,tYp) = IdIRn , if s = 0 or t = 0 and

∂2τΠ(sXp,tYp)

∂s ∂t

∣∣∣
(s,t)=(0,0)

= ξp for every p ∈ Rn.

Since the mapping (p, s, t) 7→ Π(sXp, tYp) is a differentiable field of parallelograms
in Rn, the maps τΠ(sXp,tYp), p ∈ Rn, 0 < s, t < 1, define a 2-parameter family
of fibre preserving diffeomorphisms of the indicatrix bundle IRn. The diffeomor-
phisms induced by the family {τΠ(sXp,tYp)}s,t∈(−1,1) on any indicatrix Ip are con-
tained in Hol(p). Hence the vector field ξ ∈ X∞(Rn) is strongly tangent to the
fibred holonomy group Holf(M), hence the assertion is proved. �

Corollary 2. If M is diffeomorphic to Rn then the curvature algebra R(M) of
(M,F) is tangent to the fibred holonomy group Holf(M).

The following assertion shows that similarly to the Riemannian case, the curvature
algebra can be extended to a larger tangent Lie algebra containing all horizontal
covariant derivatives of the curvature algebra vector fields.

Proposition 4. If ξ ∈ X∞(IM) is strongly tangent to the fibred holonomy group
Holf(M) of (M,F), then its horizontal covariant derivative ∇Xξ along any vector
field X ∈ X∞(M) is also strongly tangent to Holf(M).

Proof. Let τ be the (nonlinear) parallel translation along the flow ϕ of the vec-
tor field X, i.e. for every p ∈ M and t ∈ (−εp, εp) the map τt(p) : IpM →
Iϕt(p)M is the (nonlinear) parallel translation along the integral curve of X. If
{Φ(t1,...,tk)}ti∈(−ε,ε) is a C∞-differentiable k-parameter family {Φ(t1,...,tk)}ti∈(−ε,ε)
of fibre preserving diffeomorphisms of the indicatrix bundle (IM,π|M ,M) satisfy-
ing the conditions of Definition 1 then the commutator

[Φ(t1,...,tk), τtk+1
] := Φ−1

(t1,...,tk) ◦ (τtk+1
)−1 ◦ Φ(t1,...,tk) ◦ τtk+1
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of the group Diff∞
(
IM

)
fulfills [Φ(t1,...,tk), τtk+1

] = Id, if some of its variables
equals 0. Moreover

∂k+1[Φ(t1,...,tk), τ(tk+1)]

∂t1 . . . ∂tk+1

∣∣∣∣∣
(0,...,0)

= −
[
ξ,Xh

]
(7)

at any point of M , which shows that the vector field
[
ξ,Xh

]
is strongly tangent to

Holf(M). Moreover, since the vector field ξ is vertical, we have h[Xh, ξ] = 0, and
using ∇Xξ := [Xh, ξ] we obtain

−[ξ,Xh] = [Xh, ξ] = v[Xh, ξ] = ∇Xξ

which yields the assertion. �

Definition 8. Let holf(M) be the smallest Lie algebra of vector fields on the indi-
catrix bundle IM satisfying the properties

(i) any curvature vector field ξ belongs to holf(M),

(ii) if ξ ∈ holf(M) and X ∈ X∞(M), then the covariant derivative ∇Xξ also
belongs to holf(M).

The Lie algebra holf(M) ⊂ X∞(IM) is called the fibred holonomy algebra of the
Finsler manifold (M,F).

Remark 3. The fibred holonomy algebra holf(M) is invariant with respect to the
horizontal covariant derivation with respect to the Berwald connection, i.e.

ξ ∈ holf(M) and X ∈ X∞(M) ⇒ ∇Xξ ∈ holf(M). (8)

The results of this sections yield the following

Theorem 2. If M is diffeomorphic to Rn then the fibred holonomy algebra holf(M)
is tangent to the fibred holonomy group Holf(M).

6 Infinitesimal holonomy algebra
Let holf(M) ⊂ X∞(IM) be the fibred holonomy algebra of the Finsler manifold
(M,F) and let p be a a given point in M .

Definition 9. The Lie algebra hol∗(p) :=
{
ξp; ξ ∈ holf(M)

}
⊂ X∞(IpM) of vector

fields on the indicatrix IpM is called the infinitesimal holonomy algebra at the
point p ∈M .

Clearly, Rp ⊂ hol∗(p) for any p ∈M .
The following assertion is a direct consequence of the definition. It shows that

the infinitesimal holonomy algebra at a point p of (M,F) can be calculated in a
neighbourhood of p.

Remark 4. Let (U,F|U ) be an open submanifold of (M,F) such that U ⊂ M is
diffeomorphic to Rn and let p ∈ U . The infinitesimal holonomy algebras at p of
the Finsler manifolds (M,F) and (U,F|U ) coincide.
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Now, we can prove the following

Theorem 3. The infinitesimal holonomy algebra hol∗(p) at any point p of the
Finsler manifold (M,F) is tangent to the holonomy group Hol(p).

Proof. Let U ⊂M be an open submanifold of M , diffeomorphic to Rn and contain-
ing p ∈M . According to the previous remark we have hol∗(p) :=

{
ξp; ξ ∈ holf(U)

}
.

Since the fibred holonomy algebra holf(U) is tangent to the fibred holonomy group
Holf(U) we obtain that hol∗(p) is tangent to the holonomy group Hol(p). �

7 Holonomy algebra
Let x(t), 0 ≤ t ≤ a be a smooth curve joining the points q = x(0) and p = x(a)
in the Finsler manifold (M,F). If y(t) = τty(0) ∈ Ix(t)M is a parallel vector field
along x(t), 0 ≤ t ≤ a, where τt : IqM → Ix(t)M denotes the homogeneous (nonlin-

ear) parallel translation, then we have Dẋy(t) :=
(
dyi(t)
dt +Gij(x(t), y(t))ẋj(t)

)
∂
∂xi =

0. Considering a vector field ξ on the indicatrix IqM , the map τa∗ξ ◦ τ−1
a : (p, y) 7→

τa∗ξ(y(a)) gives a vector field on the indicatrix IpM . Hence we can formulate

Lemma 1. For any vector field ξ ∈ hol∗(q) ⊂ X∞(IqM) in the infinitesimal holon-
omy algebra at q the vector field τa∗ξ◦τ−1

a ∈ X∞(IpM) is tangent to the holonomy
group Hol(p).

Proof. Let {φt ∈ Hol(q)}t∈(−ε,ε) be a C1-differentiable 1-parameter family of dif-
feomorphisms of IqM belonging to the holonomy group Hol(q) and satisfying the

conditions φ0 = Id, ∂φt
∂t

∣∣
t=0

= ξ. Since the 1-parameter family

τa ◦ φt ◦ τ−1
a ∈ Diff∞(IpM)}t∈(−ε,ε)

of diffeomorphisms consists of elements of the holonomy group Hol(p) and satisfies
the conditions

τa ◦ φ0 ◦ τ−1
a = Id,

∂
(
τa ◦ φt ◦ τ−1

a

)
∂t

∣∣∣
t=0

= τa∗ξ ◦ τ−1
a ,

the assertion follows. �

Definition 10. A vector field Bγξ ∈ X∞(IpM) on the indicatrix IpM will be called
the Berwald translate of the vector field ξ ∈ X∞(IqM) along the curve γ = x(t) if

Bγξ = τa∗ξ ◦ (τa)−1.

Remark 5. Let y(t) = τty(0) ∈ Ix(t)M be a parallel vector field along γ = x(t),
0 ≤ t ≤ a, started at y(0) ∈ Ix(0)M . Then, the vertical vector field ξt = ξ(x(t), y(t))
along (x(t), y(t)) is the Berwald translate ξt = τt∗ξ0 ◦ τt−1 if and only if

∇ẋξ =

(
∂ξi(x, y)

∂xj
−Gkj (x, y)

∂ξi(x, y)

∂yk
+Gijk(x, y)ξk(x, y)

)
ẋj

∂

∂yi
= 0.

Now, lemma 1 yields the following
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Corollary 3. If ξ ∈ hol∗(q) then its Berwald translate Bγξ ∈ X∞(IpM) along any
curve γ = x(t), 0 ≤ t ≤ a, joining q = x(0) with p = x(a) is tangent to the
holonomy group Hol(p).

This last statement motivates the following

Definition 11. The holonomy algebra holp(M) of the Finsler manifold (M,F) at
the point p ∈ M is defined by the smallest Lie algebra of vector fields on the
indicatrix IpM , containing the Berwald translates of all infinitesimal holonomy
algebras along arbitrary curves x(t), 0 ≤ t ≤ a joining any points q = x(0) with
the point p = x(a).

Clearly, the holonomy algebras at different points of the Finsler manifold (M,F)
are isomorphic. The previous lemma and corollary yield the following

Theorem 4. The holonomy algebra holp(M) at p ∈M of a Finsler manifold (M,F)
is tangent to the holonomy group Hol(p).
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