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On D’Alembert’s Principle

Larry M. Bates, James M. Nester

Abstract. A formulation of the D’Alembert principle as the orthogonal pro-
jection of the acceleration onto an affine plane determined by nonlinear
nonholonomic constraints is given. Consequences of this formulation for
the equations of motion are discussed in the context of several examples,
together with the attendant singular reduction theory.

1 D’Alembert’s principle
Let us suppose that we have a Lagrangian or Hamiltonian mechanical system and
we wish to impose a constraint. The system has an n-dimensional configuration
space Q with local coordinates {qa}, velocity phase space TQ with the natural chart
{qa, va}, and momentum phase space P = T ∗Q with local coordinates (qa, pa). To
start, suppose we have a Lagrangian of the classical form kinetic energy minus
potential energy,

l =
1

2
g(v, v)− u(q).

We want to write down the equations of motion if we impose a (possibly time
dependent and nonholonomic) constraint of the form

c(q, v, t) = 0.

Later on we will discuss what happens if we have Lagrangians not of this simple
form, or more constraints, but for now it suffices to just to consider this case.

Differentiating the constraint with respect to the time t gives

d

dt
c = cav

a + cȧv̇
a + ct = 0

where ca = ∂c/∂qa, cȧ = ∂c/∂va, and ct = ∂c/∂t. The acceleration a is given by

ab = v̇b + Γbklv
kvl
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where the Γbkl are the Christoffel symbols of the Levi-Civita connection of the
metric. Substituting the acceleration into the differentiated constraint yields

ck̇a
k + (ckv

k − cȧΓaklv
kvl + ct) = 0.

The important point here is that for fixed (q, v, t) this equation represents an affine
relation for the accelerations in the tangent space TqQ, where we have used the
connection to identify the vertical space V(q,v)TQ with TqQ.

Given the acceleration a of the unconstrained problem, it must be modified so
that it lies in the affine plane. This is done by subtracting the component a⊥ of
a orthogonal to the plane, so the acceleration of the constrained problem is the
difference

aconstrained = a− a⊥

and lies in the affine plane. Observe that the vector a⊥ has components

a⊥
k = −λgkrcṙ

for some real number λ because of the form of the affine equation. Since we already
have a Lagrangian description of the unconstrained problem, the force covector for
the constrained problem may be written in the form

d

dt

(
∂l

∂va

)
− ∂l

∂qa
= λcȧ.

Observe that the specific form of the Lagrangian was not essential, one can
equally well work with the velocity Hessian gab := lȧḃ as long as the Lagrangian
is regular, i.e., the velocity Hessian defines an invertible metric. Furthermore, the
argument generalizes to the case of more than one constraint function, say c1 = 0,
. . . , cK = 0, yielding the constrained Euler-Lagrange equations

d

dt

(
∂l

∂va

)
− ∂l

∂qa
= λAc

A
ȧ

involving the Lagrange multipliers λ1, . . . , λK .

2 Other formulations
Assuming the regularity of the Lagrangian, we may push everything over to the
cotangent bundle and give a Hamiltonian description as well. This may be written
in a coordinate free manner for the vector field

X = q̇a∂qa + ṗb∂
pb

by using ϑ0, the canonical one-form on T ∗Q, the symplectic form ω = −dϑ0, the
Legendre transform L , as well as ϑA := FcA

∗
ϑ0, where FcA is the fiber derivative

of cA. Set φA = L∗ϑA. Then the constrained Hamilton’s equations may be written
in the form

X ω = dh+ λAφ
A
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The time derivative of a function f (with Hamiltonian vector field Xf ) along
an integral curve of the constrained vector field X is

df

dt
= 〈df,X〉 = ω(Xf , X) = −Xf (X ω) = −Xf (dh+ λAφ

A).

Setting ψ := dh+ λAφ
A, we may write this derivative in Poisson bracket form as

ḟ = {f, ψ}

where we are taking the Poisson bracket of the function f and the one form ψ to
be Λ(df, ψ), where Λ = ω−1 is the structure tensor of the Poisson bracket.

3 Easy consequences
The following is a partial list of easy consequences of the nonlinear formulation so
that one may see the similarities and differences with the affine theory. Some of
these are known and may be found in earlier work by de Leon et al [5].

3.1 Conservation of energy

Suppose that we have a time independent Lagrangian and impose the constraint
of constant energy. Then the Lagrange multiplier is zero, and the problem reduces
to Hamilton’s equations on a constant energy surface. We may view this as a
consistency check for the nonlinear constraint theory.

3.2 Nonconservation of energy

Suppose that we have a time independent Lagrangian and impose a time indepen-
dent constraint c. Then, letting the energy e be e = pv − l = lvv − l as usual, we
find

ė =

(
d

dt

(
∂l

∂va

)
− ∂l

∂qa

)
va,

and so by the equation of motion for the constrained problem

ė = λA
∂cA

∂va
va.

In general we do not expect this term to vanish, so unlike the case of linear nonholo-
nomic constraints, we do not have energy conservation even in the time independent
situation. Since this is not what one would expect from the usual Noether theory,
it only goes to show that such problems are really not variational problems in the
usual way, even though we have a Lagrangian. However, if the Lagrange multi-
pliers are not zero, there is an important case where this term will vanish, and
that is when the constraint functions are each homogeneous of some degree in the
velocities. For then, by Euler’s theorem on homogeneous functions,

∂cA

∂va
va ∝ cA = 0

by the constraint equation. Note that this is the case for linear constraints.
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3.3 The Lagrange multiplier

Suppose we have just one constraint. The Lagrange multiplier λ is chosen so that
the constrained vector field X is tangent to the constraint surface: 〈dc,X〉 = 0.
Since the constrained vector field X satisfies

X ω = dh+ λφ,

we have by symplectic inversion

〈dc,Xh + λφ#〉 = 0,

so that

λ = −〈dc,Xh〉
〈dc, φ#〉

= − {c, h}
〈dc, φ#〉

where Xh is the Hamiltonian vector field of h, and {c, h} is the Poisson bracket of
c and h. Note that the solvability of the Lagrange multiplier assumes the indepen-
dence condition dc ∧ φ 6= 0.

An immediate corollary is that if the constraint function is a first integral of
the Hamiltonian, then imposing the integral as a constraint is really no constraint
at all, since the multiplier is zero.

If we have multiple constraints, say c1, c2, . . . , cK = 0, then the equations of
motion take the form

X ω = dh+ λAφ
A.

The Lagrange multipliers λA may be found from the K equations

〈dcA, Xh〉+ λB〈dcA, φB#〉 = 0.

An evaluation of 〈dcA, φB#〉 gives −MAB = −gabcAȧ cBḃ , a contravariant metric on

the subspace spanned by the one forms cAȧ . As long as this metric is invertible one
can uniquely find the λA. If gab has a Euclidean signature this will be the case as
long as the one forms cAȧ are linearly independent. This is not sufficient, however,
for Lorentz signature metrics, such as those appearing in our relativistic particle
examples below.

4 Examples (1)
4.1 The brachystochrone

A good place to begin is with the brachystochrone. The brachystochrone is the
problem where a bead slides down a frictionless wire from rest at (x, y) = (0, 0) to
the point (x, y) = (a, b). Here we take the positive y direction to point vertically
downwards. The problem is to determine the shape of the wire so as to have a
minimum time of descent. For a falling body, from conservation of energy one
obtains v2 = 2gy. This can be viewed as a nonholomic constraint. In section 3.1
above we noted that such a constraint does no work—the associated constraint
force vanishes. But we can exploit this nonholonomic constraint in another way.
Using dl2 = dx2 + dy2 we may write the time T of descent to be

T =

∫
dt =

∫
dl

v
=

∫
1√
2gy

√(dx
dσ

)2

+
( dy
dσ

)2

dσ.
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where σ is any path parameter. The parameter invariance is connected with the fact
that this Lagrangian is degenerate. Consequently a proper Hamiltonian analysis
requires the Dirac algorithm. We will develop that shortly and include a description
of the results it yields when applied to this problem. But first let us note that for
this problem one can avoid the degeneracy of the Legendre transformation. Observe
that our Lagrangian can be viewed as the arc length due to the metric

ds2 =
1

2gy
(dx2 + dy2).

And so the objective is just to find a certain geodesic path of this metric. Now it
well known that there is an “equivalent” alternative to the arc length Lagrangian
for geodesics, namely its square:

L =
1

2gy

[(dx
ds

)2

+
(dy
ds

)2
]
.

This will give the same path, but with a uniform speed parameterization. Moreover,
for our problem it is apparent that we specifically want the unit speed geodesics of
this metric. Then the parameter is actually the physical time. A virtue of this new
Lagrangian is that it is non-degenerate, so there is no complication in passing to the
Hamiltonian. The Hamiltonian equations of motion for the associated Hamiltonian
h = gy(p2

x + p2
y)/2 are (upon setting g = 1)

ẋ = ypx, ṗx = 0, ẏ = ypy, ṗy = −h
y
.

The translational invariance of the metric in the x direction implies the conservation
of px, so we may reduce at µ = px along with h = 1 to get the reduced equation

ẏ = ypy =
√
y − µ2y2.

This separates and integrates to s = 1
µ arccos(2µ2y − 1). Inverting yields y =

1
2µ2 (1 − cosµs), and hence x = 1

2µ (s − 1
µ sinµs), from which we recognize the

familiar cycloidal solutions. In this example we have finessed the degeneracy of the
Legendre transformation. Further on we will reconsider that issue. Other aspects
of this problem are discussed in [6].

4.2 Dirac constraints

To deal with the proper dynamical formulation for relativistic particles, which
also involves finding an appropriate parametrization (the proper time) we first
sketch the Dirac Hamiltonian theory. In order to pass from the Lagrange equations
together with the undetermined constraint forces λA∂c

A/∂vk, to the Hamiltonian
description, one uses the Legendre transformation. If the Lagrangian is not regular,
so the momenta are not independent, then they satisfy some primary constraints
Φα(q, p) = 0. Following Dirac, one includes these constraints in the Hamiltonian
with Lagrange multipliers, so the total Hamiltonian takes the form h = h0 +uαΦα.
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The Hamiltonian evolution equations, including the velocity constraint forces, take
the form

dqk

dt
=
∂h0

∂pk
+ uα

∂Φα
∂pk

,

dpk
dt

= −∂h0

∂pk
− uα ∂Φα

∂pk
+ λAφ

A
k .

These differential equations are to be considered along with the two sets of con-
straint equations

Φα = 0, cA = 0.

The first possible obstruction is whether the constraint functions cA can be chosen
so that there exist one-forms on phase space φAk which are related by the degenerate
Legendre transform to cA

k̇
. Since the dynamical equations are required to preserve

the constraints, this leads to additional conditions which may yield new constraints
or fix the multipliers. In general, in attempting to determine the unknown multi-
pliers one can expect similar outcomes to the usual Dirac procedure:

1. there may be no solution,

2. there may be additional constraints,

3. the solution may not be unique.

Observe that the constraints Φα = 0 are well defined on phase space and their time
derivatives are linear in the unknown multipliers. In this case we know from Dirac
how to proceed. However, the constraints cA = 0 are velocity constraints, they are
not defined on phase space. In general there are no phase space functions which
are related to cA. Fortunately, from the Hamiltonian perspective there is a natural
“inverse” to the Legendre transformation, given by the first half of the Hamiltonian
evolution equations. Hence the velocity constraint function can be given in terms
of the phase space variables as

cA(qk, vk) = cA
(
qk,

∂h0

∂pk
+ uα

∂Φα
∂pk

)
= 0.

If cA is linear in v this expression will be linear in the multipliers, and there is
no insurmountable difficulty. In the general case the velocity constraints could
be nonlinear functions of the unknown multipliers. Moreover, preserving these
constraints could lead to expressions involving the derivatives of the multipliers.
This is the second obstruction.

In the relativistic examples below the velocity constraints are linear in an ex-
pression which is homogeneous of degree one in velocity, so they turn out to be
linear in the multiplier, so there is no difficulty.

4.3 The relativistic particle

We apply the above procedure to the following relativistic particle Lagrangians
with their associated proper time-constant magnitude velocity constraints (see for
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example Gràcia [8] or Krupková [10])

l1 = −mc
√
−gµνvµvν − V (x) + qvµAµ, C1 = c−

√
−gµνvµvν ,

l2 =
1

2
mgµνv

µvν − V (x) + qvµAµ, C2 =
1

2c

[
gµνv

µvν = c2
]
.

Here vµ = dxµ/dσ, where σ is an a priori arbitrary time parameter. Just for this
example we have changed our notation for the constraints in order to avoid any
possible confusion with the speed of light c. In both cases the dynamical equation
of motion can be rearranged to be in the form

d

dσ
(mgµνu

ν) = qvν(∂µAν − ∂νAµ)− ∂µV + λgµνu
ν ,

with uµ = dxµ/dτ with τ being the proper time. Contracting the equation of
motion with the 4-velocity gives the value of the multiplier: −uµ∂µV − λc2 = 0.
The final form of the equation of motion is then

d

dτ
(mgµνu

ν) = qFµνu
ν − (δνµ + c−2uνgµγu

γ)∂νV,

where, as usual, Fµν = ∂µAν − ∂νAµ is the Maxwell field. The authors know of
no textbook that gives a proper treatment of the relativistic velocity constraint.
Typically, the equations of motion are obtained and then the constraint is imposed
(see for example [7]) without any consideration of the force of constraint. This
happens to work if the the dynamics is compatible with the constraint, as is the
case of a charged particle interacting with the Maxwell field. Then the velocity
constraint does no work, so the multiplier λ vanishes. This is not the case for
the scalar potential, where the force must be Lorentz orthogonal to the 4-velocity.
There does not seem to be any way to get the proper relativistic force due to a
scalar potential directly from a Lagrangian. Nonholonomic constraints play an
essential role.

It is also of interest to give the Hamiltonian formulation of these examples. For
the Lagrangian l1, the Legendre transformation is degenerate, and so there is a
primary constraint. From

pµ =
∂l1
∂vµ

= mc
gµνv

ν√
−gαβvαvβ

+ qAµ,

set pµ := pµ − qAµ so the primary constraint has the form

gµνpµpν = −(mc)2.

The Hamiltonian h0 = pµv
µ − l1 = V (x) and so

h = V +
N

2m

[
gµνpµpν + (mc)2

]
,
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where the primary Dirac constraint Lagrange multiplier N is called the lapse.
Hamilton’s equations take the form

dxµ

dσ
=
N

m
gµνpν ,

dpµ
dσ

= −∂µV +
N

m
pαg

αν(q∂µAν) + λ
pµ
mc

.

The velocity constraint 0 = c −
√
−N2

m2pµpµ determines that the Dirac mul-

tiplier N = 1. The preservation of the primary Dirac constraint determines
the velocity constraint multiplier since 0 = −pµ∂µV − λpµpµ/(mc) implies that
λ = (mc)−1pµ∂µV .

4.4 The brachystochrone as a constrained system

Now we can briefly return to the brachystochrone as a constrained system. The
Lagrangian has a general curve parameter σ and thus a gauge freedom type degen-
eracy, which leads to a primary constraint

2gy(p2
x + p2

y)− 1 = 0.

The Lagrangian is homogeneous of degree one in the velocities. Consequently by
Euler’s theorem the energy function vanishes. Then the Dirac Hamiltonian is just
given by a Lagrange multiplier multiple of the primary constraint:

H =
u

4

[
2gy(p2

x + p2
y)− 1

]
.

The primary constraint is preserved, and it is first class; the multiplier is an un-
determined gauge parameter. The simple choice u = 1 gives the same Hamilto-
nian equations found earlier. One might also consider including the gauge fixing
condition ẋ2 + ẏ2 = 2gy as a non-holonomic constraint along with its attendant
constraint force. This is essentially just imposing the constant energy as a non-
holonomic constraint, and, as mentioned, such a constraint does no work and has
vanishing constraint force. This is representative of what happens for other time
parameter gauge invariant actions (e.g., Jacobi), and their gauge fixing options.

5 The distributional splitting
In this section we derive the key distributional splitting and look at the special
case of homogeneous constraints. A consequence of homogeneity is that there is a
distributional formulation of the constrained Hamiltonian equations. The proofs of
these results are little changed from the earlier work of Bates and Śniatycki [2] who
treated the linear case, but we reproduce them here for the sake of completeness.

Let M be the manifold given by the common zeroes of the constraint functions
{c1, . . . , cK}, and let F be the distribution consisting of vectors in the kernel of the
forms {φ1, . . . , φK},

F = {v ∈ TP | 〈φA, v〉 = 0, a = 1, . . . ,K}.
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Set H to be the distribution formed by the intersection

H = F ∩ TM.

So far the only assumption needed on the metric was that it was nondegenerate.
However, in order to progress with the theory for indefinite metrics, we need an
additional assumption.

Definition 1. The constraint manifold M is said to be g-nondegenerate if the
restriction of the metric g to the distribution π∗TM

ω is nondegenerate. Here
π : P → Q is the cotangent bundle projection.1

It is easy to check that this if M is given locally by the common zeroes of constraint
functions c1, . . . , cK , then the condition is equivalent to the nondegeneracy of the
matrix MAB of section 3.3 whose AB component is g(π∗XcA , π∗XcB ).

Theorem 1. On a g-nondegenerate constraint manifold M , the restriction of ω to
the distribution H, denoted ωH , is nondegenerate.

Proof. Since the forms φA are assumed independent and semi-basic (since they
annihilate the vertical space V TP ), we may assert the existence of n−K additional
independent semi-basic one-forms φK+1, . . . , φn. In the local chart {q1, . . . , pn},
φa = φai dq

i. Let φ be the matrix with ab component φab . Our assumption implies
that the matrix φ is invertible. Define forms χa by

χa = (φ−1)jadpj , a = 1, . . . , n.

It then follows that {φ1, . . . , φn, χ1, . . . , χn} is a symplectic coframe as

φa ∧ χa = φai (φ−1)jadq
i ∧ dpj = dqa ∧ dpa = ω.

Since the restriction of ω to F is

ω|F = φK+1 ∧ χK+1 + · · ·+ φn ∧ χn,

it follows that the symplectic perpendicular Fω is

Fω = ker{φ1, . . . , φn, χK+1, . . . , χn},

and this implies that F is coisotropic. Since M is defined by the common zeroes
of c1, . . . , cK , tangent vectors to M are defined by the kernel of the forms

ψA = dcA = cA,mdq
m + cA,rdpr A = 1, . . . ,K.

It follows that the intersection of Fω and TM is given by

Fω ∩ TM = ker{φ1, . . . , φn, χK+1, . . . , χn, ψ
1, . . . , ψK}.

1That Fω could intersect the constraint manifold M nontransversally was overlooked in the
original proof for linear constraints found in [2], where I thought that the determinental multiplier
was always 1.



66 Larry M. Bates, James M. Nester

The conclusion will follow if we can show that

φ1 ∧ · · · ∧ φn ∧ χK+1 ∧ · · · ∧ χn ∧ ψ1 ∧ · · · ∧ ψK

is a volume, since then it follows that Fω ∩ TM = 0, and so Fω ∩ H = 0. Since
Fω ⊕H = F by dimension count, and F is coisotropic, we may conclude that ωH
is nondegenerate.

To actually show that the 2n form is a volume, first observe that since the result
is a pointwise result, we may choose, for a fixed point z, a local symplectic chart
such that

φ1(z) = dq1, . . . , φn(z) = dqn, χ1(z) = dp1, . . . , χn(z) = dpn.

In other words, φab (z) = δab . This means that the wedge product

φ1 ∧ · · · ∧ φn ∧ χK+1 ∧ · · · ∧ χn ∧ ψ1 ∧ · · · ∧ ψK

will equal det(gK)dq1∧ · · ·∧dqn∧dp1∧ · · ·∧dpn where det(gK) is the determinant
of the upper left K × K block of the metric gab in this frame (this is just the
earlier defined MAB). This is immediate once one realizes that the only part of the
forms ψa that survive the wedge product with all of the φa are the terms φarg

rsdps,
and all the terms involving dpK+1, . . . , dpn are annihilated by being wedged with
χK+1 ∧ · · · ∧ χn. Observe that the inequality det(gK) 6= 0 is exactly the condition
of g-nondegeneracy in our special frame. �

Define the distribution K by K = TM ∩ Hω. Since TM = H ⊕ K, the
constrained vector field X may be decomposed as X = XH + XK . Two extreme
cases of this are when the constraint is the Hamiltonian itself, so the Lagrange
multiplier vanishes and X = XK , and when the constraints are homogeneous, and
then X = XH . To see this, observe that for A = 1, . . . ,K, the pairing

〈φA, X〉 = 〈φA, q̇〉 = 0

by homogeneity, which implies that X is in H. Evaluating the constrained equation
of motion

X ω = dh+ λAφ
A

on the distribution H annihilates the terms involving the Lagrange multipliers, and
we obtain

X ωH = dhH .

The expression dhH denotes the restriction of dh to the distribution H, and we may
think of the constrained Hamiltonian equations as being in distributional form.

6 Conservation laws
In Hamiltonian mechanics symmetry (and the closely related reduction theory)
are usually studied together with conservation laws because of their equivalence,
which is the content of the first Noether theorem. In nonholonomic systems, this
equivalence is in general broken, so not all symmetries yield conservation laws, and
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not all conservation laws yield symmetries (see [2] for a simple example.) Looking
ahead to the reduction theory, we will say that a vector is horizontal if it lies in
the distribution H.

Suppose that we have a Lie group G acting in a Hamiltonian way on the phase
space P such that it possesses a momentum map j : P → g∗. In other words, for
each ζ ∈ g∗, the momentum jζ corresponding to ζ

jζ = 〈j, ζ〉

has a Hamiltonian vector field Xζ satisfying

Xζ ω = djζ .

If we further assume that G leaves the constraint manifold M , the constraint
forms φa and the Hamiltonian h invariant, then it also leaves the Lagrange multi-
pliers invariant, and thus the structure of the equations of motion

X ω = dh+ λAφ
A

is invariant as well. The vector field Xζ is called an infinitesimal symmetry.

Lemma 1. The momentum jζ associated to ζ is conserved if the vector field Xζ is
horizontal.

Proof. This is a simple calculation:

〈djζ , X〉 = X (Xζ ω〉 = −Xζ (dh+ λAφ
A) = −Xζ λAφ

A = 0. �

Observe that the invariance of the constraint manifold M was never used in the
proof of the lemma. This implies that the following more general theorem is true.

Theorem 2. Let f be a function with Hamiltonian vector field Xf with the prop-
erty that it preserves the Hamiltonian h and lies in the distribution F consisting
of the kernel of the constraint forms φA. Then f is a constant of motion.

7 Symmetry and reduction
So far the nonlinear constraint theory looks virtually identical to the linear theory.
It is in the reduction by symmetry that the nonlinear case differs, and this is
because the constrained vector field does not have to lie in the distribution H.

Recall that the time derivative of a function f along an integral curve of the
constrained vector field X is

df

dt
= 〈df,X〉 = −Xf (dh+ λAφ

A).

Set ψ := dh+ λAφ
A, write this derivative in Poisson bracket form as

ḟ = {f, ψ}

where we are taking the Poisson bracket of the function f and the one form ψ to
be Λ(df, ψ), where Λ = ω−1 is the structure tensor of the Poisson bracket.
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In specific problems it is often more convenient to solve for the Lagrange mul-
tipliers explicitly and then use a Dirac bracket-like formulation in which the mul-
tipliers are eliminated. Since our bracket convention implies

{f, dh+ λAφ
A} = {f, h}+ λA{f, φA}

and the preservation of the constraints by the dynamics implies

0 = ċA = XcA (X ω) = ω(Xh, XcA)− λB{cA, φB},

and we already have the matrixMBD := −{cB , φD} with assumed inverseMEFM
FD =

δDE from which the Lagrange multiplier λA may be found as

λA = −MAB{h, cB}.

This implies that the bracket formulation of the equations of motion may be given
as

ḟ = {f, h}+ {f, φA}MAB{cB , h}.

It is important to note that this dynamical equation is only defined on the image of
the constraint manifold under the Legendre transformation, and not on the entire
phase space. In practice however, keeping track of this is not an issue, and we will
continue to ignore it as it makes no essential conceptual difference in what follows.

Let G be a symmetry group of the dynamical system, by which we mean that the
group G acts symplectically on the phase space, preserves the constraint manifold
and constraint forms, and leaves the Hamiltonian invariant. These assumptions
imply that the group action also preserves the Poisson bracket, the constraint
distributions H and K as well as the Lagrange multipliers.

Now, if f is a function invariant under the action of the symmetry group G,
f ∈ C∞(P )G, then the Poisson bracket {f, ψ} is invariant as well, since both Λ
and ψ are. This implies that the map

{·, ψ} : C∞(P )G → C∞(P )G : f → {f, ψ}

is an outer Poisson derivation2 (it is an outer derivation since it involves an invariant
one-form and not an invariant function) on the ring of invariant functions, and so if
f ∈ C∞(P )G, ḟ = {f, ψ} may be viewed as a differential equation on the reduced
space P/G. In this way a vector field X̄ is defined on the reduced space, and this is
the projection of X by the quotient map P → P/G when restricted to the quotient
of the constraint manifold M/G. A key benefit to considering reduction in this
formulation is that the construction is well-defined even when the quotient space is
not a manifold, as long as we assume that the group action is proper, for then the
quotient space is a subcartesian differential space, and the invariant functions still
separate points on the quotient (a good reference for this material may be found
in Śniatycki [13]). In this sense we may view the Poisson bracket-like formulation
as providing the singular reduction of nonlinear nonholonomic constraints simply
by restriction to the invariant functions.

2It is important to note here that there is no statement that the dynamical flow preserves the
Poisson bracket, even on the constraint manifold.
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8 Examples (2)
8.1 The central force problem with a speed constraint

Consider the motion of a particle in space subject to the action of a central force
and and the constraint of constant speed. Then the Hamiltonian may be written
as

h =
1

2
|p|2 + V (r)

with r = |q|. Take the constraint to be c = 1
2 |p|

2. The equations of motion are

q̇a = pa

ṗa = −q
a

r
V ′(r)− λpa

Solving for the Lagrange multiplier yields

λ = − 1

2c

q · p
r
V ′(r).

Since the problem is rotationally invariant, we introduce the three independent
rotation invariants σ1 = r2 = |q|2, σ2 = q · p, and σ3 = |p|2 = 2c. The singularly
reduced problem in σ1-σ2 space (with the semi-algebraic constraint σ1 ≥ 0) has
equation of motion

σ̇1 = 2σ2,

σ̇2 = 2

(
c−

(
σ1 −

1

2c
σ2

2

)
dV

dσ1

)
.

The dynamical interest here is in the destabilization of the circular orbits in Ke-
plerian like potentials with the imposition of the constant speed constraint. If
this seems counterintuitive, one may think of it as the imposition of the constant
speed constraint, even though it is rotationally invariant, means that the angular
momentum is no longer conserved.

8.2 A classical particle with spin

The reduction by symmetry required that the bracket map the invariant functions
to invariant functions:

{·, ψ} : C∞(P )G → C∞(P )G.

However, and this is the crucial point, there is no requirement that the form ψ
actually be invariant as well in order to have reduced dynamics3. Thus, it is possible
to have reduction to invariant functions without the full problem being invariant.
From a distributional point of view, this says that reduction exists in the case when
the constrained vector field varies under the group action, but only in directions
that are parallel to the tangents to the group action. A nontrivial example of this

3There is such a requirement if one wants to have the reduced dynamics still in Poisson like
form, with a corresponding reduced form ψ̄.
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behaviour may be found in the reduction of a classical spinning rigid body to the
classical particle with spin. Consider a uniformly charged symmetric rigid body
with moment of inertia I, total charge q, mass m and gyromagnetic ratio g in the
presence of a magnetic field B. The equations of motion are

ẋ = v,

v̇ =
q

m
(v ×B) +

gI

m
DB∗(x)(k(AdAX))

Ȧ = A(X − gAdA−1 B(x)),

Ẋ = 0.

Here x ∈ R3 is the position of the centre of mass, v ∈ R3 is the velocity of the
centre of mass, A ∈ SO(3) is the orientation of the rigid body, and X ∈ so(3) is
the angular velocity. k is the Killing metric on the rotation group. We have also
employed the identification of antisymmetric matrices and 3-vectors as appropriate.
The nonlinear nonholonomic constraint of constant length of angular momentum
is applied, and the problem is reduced with respect to the action of the rotation
group to get Souriau’s model of a classical particle with spin

ẋ = v,

v̇ =
q

m
(v ×B) +

g

m
DB∗(x)(S)

Ṡ = g[S,B]

The details of this calculation, but not this point of view, may be found in [4].

9 Notes
1. In the mechanics literature there are differing definitions of just what consti-

tutes D’Alembert’s principle, the virtual work of perfect constraints, etc. It
seems to us that the D’Alembert principle is at heart the choice to pick the
orthogonal projection of the acceleration of the unconstrained problem onto
the affine plane. One could pick a different projection, but it would in general
result in different constrained equations of motion. In coming to this under-
standing we profited greatly from the thoughtful discussions in Marle [11]
and Rosenberg [12], as well as many insightful comments from J. Śniatycki.

2. One may observe a superficial analogy between the constructions of various
authors computing a nonholonomic bracket (van der Schaft and Maschke [14],
Bates [1], de Leon [5], Koon and Marsden [9] etc) and this paper. However,
there is a fundamental difference in that we are using the standard Poisson
bracket and putting all of the nonholonomic information into the one-form
that drives the dynamics.

3. In various examples one may of course consider what happens to the image
of the various distributions H, K under reduction. This is of interest in the
special case where the reduced distribution K̄ = 0, so the invariant part of
the dynamics satisfies the distributional Hamiltonian equations. Our results
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would indicate that this is not the most fundamental way to view these prob-
lems, and this is why we have stressed that the fundamental structure that
enables reduction by symmetry is the action of the outer Poisson derivation
on the invariant functions. Compare the discussion in Cantrijn et al [3].
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