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Some geometric aspects of the calculus of variations

in several independent variables

David Saunders

Abstract. This paper describes some recent research on parametric prob-
lems in the calculus of variations. It explains the relationship between these
problems and the type of problem more usual in physics, where there is a
given space of independent variables, and it gives an interpretation of the
first variation formula in this context in terms of cohomology.

1 Introduction
In this paper we consider some geometrical aspects of those problems in the cal-
culus of variations which are known as ‘parametric’: see, for example, the classi-
cal work [9] for the difference between parametric and non-parametric variational
problems. To illustrate this difference in a simple way, consider the following, su-
perficially similar, examples of the two types of problem. For the first problem,
suppose we are asked to find the trajectory of a free unit-mass particle in three-
dimensional space with coordinates (u1, u2, u3). For the second, suppose we are
asked to find the shortest curve between two points in three-dimensional space
with differently-labelled coordinates (y1, y2, y3). A solution to the former prob-
lem is a map [0, T ] → R3, t 7→ (ait + bi), and a Lagrangian for the problem is
1
2

(
(u̇1)2 + (u̇2)2 + (u̇3)2

)
. In contrast, a solution to the latter problem is a straight

line segment [(pi), (qi)] ⊂ R3, and a Lagrangian is
√

(ẏ1)2 + (ẏ2)2 + (ẏ3)2: note
that this latter function is ‘positively homogeneous’.

More generally, variational problems in physics are commonly defined on fibred
manifolds π : E →M (for the free particle, this would be R×R3 → R). Extremals
are local sections of π, and the Lagrangian is a function (or, more properly, a
differential m-form, where m = dimM) defined on a jet bundle J1π (or Jkπ) of
jets of local sections of π. But in geometry, variational problems are commonly
defined on manifolds E without a given fibration. Extremals are then submanifolds
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of E, defined ‘parametrically’. To see where the Lagrangian might be defined, we
need to consider different types of jet bundle and the relationships between them.

We can illustrate this by examining the relationships between a vector space,
an affine space and a projective space. If V is a vector space with dimV = n+ 1, a
basis (e0, e1, . . . , en) and corresponding coordinate functions (ẏ0, ẏ1, . . . , ẏn), then
the set

A = {v ∈ V : ẏ0(v) = 1}

is an n-dimensional affine space, whereas the set

P = (V − {0})/(R− {0})

is an n-dimensional projective space; there is a natural injection A→ P .
Now let π : E → R be a fibred manifold, with dimE = n + 1 and coordinates

(y0 = t, y1, . . . , yn); we can apply the remark above to the fibres of the tangent
bundle to E. We write J1π for the manifold of jets of local sections of π, and
J1(E, 1) for the manifold of jets of immersed 1-dimensional submanifolds in E. The
bundle J1π → E is an affine bundle, and there is a canonical injection J1π → TE
whose image is given by ẏ0 = 1. On the other hand, the bundle J1(E, 1) → E
is isomorphic to the projective tangent bundle PTE → E, and we may identify
J1π with an open submanifold of J1(E, 1) by mapping the jet of a local section
to the jet of its image. Writing

o

TE for the slit tangent manifold, excluding the
zero section, we may see that the bundle

o

TE → J1(E, 1) is a principal bundle with
structure group R− {0}.

As an application of this structure, we mention the study of Finsler geometry
(see, for example, [2]), or of its special case, Riemannian geometry. Here, we take
a manifold E with local coordinates ya (0 ≤ a ≤ n). The Lagrangian (that is, the
Finsler function) L is defined on

o

TE, and the condition of positive homogeneity is
that ẏa∂L/∂ẏa = L. The variational problem is to find extremals γ of the integral∫

j1γ∗(L) dt

subject to suitable boundary conditions. If γ is an extremal then so is γ ◦ φ where

φ : R → R is a diffeomorphism , φ′ > 0

The problem may also be formulated on the quotient manifold PTE+ =
o

TE/R+,
which is a double cover of the projective tangent bundle PTE.

Our task in this paper will be to extend these structures to provide a frame-
work for the study of multiple-integral parametric variational problems, of first or
higher order. In Section 2 we shall describe a geometrical background which is
appropriate for a study of these problems, and in Section 3 we shall introduce a
particular class of vector forms which will turn out to useful tools for our inves-
tigation. Section 4 contains a brief reminder, for comparison, of an approach to
non-parametric problems defined on spaces of jets of fibred manifolds, and finally
in Section 5 we show how an analogous approach may be devised for parametric
problems with positively homogeneous Lagrangians.
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author is grateful to Olga Krupková, and to Janusz Grabowski and Pawe l Urbański,
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2 Geometrical background
In this section we shall describe a geometrical background which may be used for the
study of parametric variational problems. Convenient references here are [3], [4];
see also [7].

Finsler geometry, a single-integral problem, is defined on the slit tangent bun-
dle

o

TE; first-order multiple integral problems are defined on a sub-bundle of the
Whitney sum

⊕m
TE. The bundle of regular velocities on E is

o

T (m)E = {(ξ1, . . . , ξm) ∈
⊕m

TE : (ξi) linearly independent} ;

equivalently, we may say that
o

T (m)E is the bundle of ‘non-degenerate velocities’,
1-jets j10σ at 0 ∈ Rm of non-singular maps σ : Rm → E. If (ya) are local coordinates
on Y ⊂ E, then (ya, ya

i ) (1 ≤ i ≤ m) are local coordinates on Y 1 ⊂
o

T (m)E, where

ya
i (j10σ) =

∂σa

∂ti

∣∣∣∣
0

, ya
i (ξ1, . . . , ξm) = ẏa(ξi)

and where Y 1 = τ−1
m (Y ) with τm :

o

T (m)E → E the natural projection.
As with any manifold of jets, we may define contact forms and other related

structures on
o

T (m)E. We say that a differential form ω ∈ Ω(
o

T (m)E) is a con-

tact form if the pull-back (j1σ)∗ω by the prolongation of any non-singular map
σ : Rm → E always vanishes. In coordinates, contact 1-forms are linear combina-
tions of (m+ 1)× (m+ 1) determinants like∣∣∣∣∣∣∣∣∣∣∣

ya1
1 ya2

1 · · · y
am+1
1

ya1
2 ya2

2 · · · y
am+1
2

...
...

...
ya1

m ya2
m · · · y

am+1
m

dya1 dya2 · · · dyam+1

∣∣∣∣∣∣∣∣∣∣∣
and so have a more complicated expression than the contact 1-forms duα − uα

i dx
i

on a jet bundle.
Next, for each function f : E → R, define the functions dif :

o

T (m)E → R by

dif(j10σ) =
∂(f ◦ σ)
∂ti

where σ : Rm → E ;

the operator di is a globally-defined vector field along τm :
o

T (m)E → E, called a
total derivative. It is straightforward to check that a 1-form θ is a contact form
exactly when 〈di, θ〉 = 0 for 1 ≤ i ≤ m. In coordinates, we see that

di = ya
i

∂

∂ya
.
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Finally, the Whitney sum
⊕m

TE → E is a vector bundle, and so supports
a vertical lift operation, arising from the canonical isomorphism between a vector
space and its tangent space at any point. Denote the vertical lift to (ηi) by⊕m

Tτm(ηi)E → T(ηi) (
⊕m

TE) , (ξi) 7→ (ξi)↑(ηi) .

Then, for each vector ζ ∈ T(ηi)

o

T (m)E, define the vector Siζ ∈ T(ηi)

o

T (m)E by

Siζ = (0, . . . , 0, T τm(ζ), 0, . . . , 0)↑(ηi) .

With this definition Si is a type (1, 1) tensor field on
o

T (m)E, called a vertical
endomorphism; in coordinates we have

Si = dya ⊗ ∂

∂ya
i

.

We may also relate the bundle of regular velocities
o

T (m)E with the Grass-

mannian bundle J1(E,m): the former is a manifold of equivalence classes of non-
degenerate maps Rm → E, whereas the latter is a manifold of equivalence classes
of images of such maps, namely of m-dimensional subspaces of TE. We see that
two regular velocities j10σ, j10 σ̂ represent the same subspace when

j10 σ̂ = j10(σ ◦ φ)

for some diffeomorphism φ : Rm → Rm with φ(0) = 0. We may also consider the
bundle J1(E,m)+ of oriented Grassmannians, where the diffeomorphism φ must
preserve the orientation on Rm. The natural projections give principal bundles

ρ :
o

T (m)E → J1(E,m) (group GL(m,R))

ρ+ :
o

T (m)E → J1(E,m)+ (group GL(m,R)+) ,

where a basis of fundamental vector fields is given by {∆i
j = Si(dj)}. In coordi-

nates, we therefore have

∆i
j = ya

j

∂

∂ya
i

.

Note that any fibration π : E →M defines open submanifolds J1π ⊂ J1(E,M) and
J1π ⊂ J1(E,M)+. If we take m = 1 we recover the special cases J1(E, 1) = PTE
and J1(E, 1)+ = PTE+.

We can finally, without too much conceptual difficulty although with increased
computational complexity, extend these definitions to the case of higher-order reg-
ular velocities. We shall take the manifold of k-th order regular velocities

o

T k
(m)E to

be the set of all k-jets (at the origin) of non-singular maps Rm → E, with local co-
ordinates ya

I on
o

T k
(m)E, where I ∈ Nm is a symmetric multi-index with 0 ≤ |I| ≤ k.

The total derivatives di and vertical endomorphisms Si have coordinate represen-
tations

di =
k−1∑
|I|=0

ya
I+1i

∂

∂ya
I

, Si =
k−1∑
|I|=0

(
I(i) + 1

)
dya

I ⊗
∂

∂ya
I+1i



Some geometric aspects of the calculus of variations in several independent variables 7

where different instances of each type of operator commute, so that we may use
multi-index notation dI , SI where appropriate. We may again construct principal
bundles

ρk :
o

T k
(m)E → Jk(E,m) , ρk+ :

o

T k
(m)E → Jk(E,m)+ ,

whose groups are the jet groups Lk
m, Lk+

m

Lk
m = {jk

0φ : Rm φ→ Rm is a diffeomorphism, φ(0) = 0}
Lk+

m = {jk
0φ ∈ Lk

m : |J (φ)| > 0}

A basis for the space of fundamental vector fields of the principal bundles is given
by

{∆I
j = SI(dj) : 1 ≤ |I| ≤ k} ;

we put iIj for the contraction with ∆I
j , and dI

j for the Lie derivative by ∆I
j .

3 Vector forms
In the study of the parametric calculus of variations we use vectors of operators di,
tensors Si, and forms ϑi. These fit into a framework of vector forms [12], and the
use of these forms will provide us with a convenient tool.

We consider forms on
o

T k
(m)E taking values in the vector space Rm∗ and its

exterior powers: put

Ωr,s
k =

(
Ωr o

T k
(m)E

)
⊗ (
∧sRm∗) .

Let the standard basis for Rm∗ be denoted by (dti); then a vector form Φ may be
written canonically as

Φ = φi1···is
⊗ dti1 ∧ . . . ∧ dtis ∈ Ωr,s

k

where the scalar forms φi1···is
are skew-symmetric in their indices. Although this

looks like a coordinate formula, in fact it is not: the indices i1, . . . , is refer to a
fixed basis of Rm∗, and so the formula is valid globally on

o

T k
(m)E.

We shall consider several operators on vector forms. First, obviously, we may
use the de Rham differential d : Ωr,s

k → Ωr+1,s
k , defined on decomposable forms by

d(φ⊗ η) = dφ⊗ η

and extended to arbitrary forms by linearity. But we may also use the total deriv-
atives di to define two further operators, a contraction and a Lie derivative, by

iT : Ωr,s
k → Ωr−1,s+1

k+1 , iT(φ⊗ η) = (di φ)⊗ (dti ∧ η)

and
dT : Ωr,s

k → Ωr,s+1
k+1 , dT(φ⊗ η) = diφ⊗ (dti ∧ η) .

It is immediate, from the definitions and the properties of contraction and Lie
derivative on scalar forms, that

ddT = dTd , d2
T = 0 , dT = diT + iTd .
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We may therefore construct a bicomplex, where in the first column it is convenient
to write Ω

0,s
to denote the quotient Ω0,s/

∧s Rm∗ of vector-valued functions modulo
constant functions. In the diagram we omit explicit mention of the order of the
velocity manifolds on which the spaces are defined; if the order of the spaces for a
given row is k then the order for the next row will be k + 1. For small values of k
of course only the lower part of the diagram will exist.

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0

0

0

0 0 0 0

0 - - - - -Ω
0,0 Ω1,0 Ω2,0 Ω3,0

. . . . . . . . . . . .

Ω
0,m−2 Ω1,m−2 Ω2,m−2 Ω3,m−2

Ω
0,m−1 Ω1,m−1 Ω2,m−1 Ω3,m−1

Ω
0,m Ω1,m Ω2,m Ω3,m

d

d

d

d

d

d

d

d

d

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT

dT dT dT dT

d d d

The bicomplex described above might appear to have some relation to the
variational bicomplex for differential forms on the jet prolongations of fibred spaces,
and the latter, when defined in the usual way on the infinite jet manifold, is locally
exact: indeed, its interior columns are globally exact [1], [13], [14] (see [15] for
a useful summary). The present bicomplex is, however, defined on (a family of)
finite-order velocity manifolds, and the map dT : Ωr,s

k → Ωr,s+1
k+1 is not exact, even

locally. It is, however, globally exact modulo pull-backs (for r ≥ 1).
There are, perhaps surprisingly, two homotopy operators for dT which are sim-

ilar in formulation but subtly different in effect; the first was described in [12], and
the second is a version for velocity manifolds of an operator described in [6]. The
operators are P, P̃ : Ωr,s

k → Ωr,s−1
(r+1)k−1, defined by

P (Φ) = P j
(s)(φi1···is

)⊗
{
∂

∂tj
(
dti1 ∧ . . . ∧ dtis

)}
P̃ (Φ) = P̃ j

(s)(φi1···is)⊗
{
∂

∂tj
(
dti1 ∧ . . . ∧ dtis

)}
where P = P̃ when acting on vector 1-forms, or on first-order forms. The scalar
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operators P j
(s) and P̃ j

(s) are given by the formulæ

P j
(s) =

∑
J

(−1)|J|(m− s)!|J |!
r(m− s+ |J |+ 1)!J !

dJS
J+1j ,

P̃ j
(s) =

∑
J

(−1)|J|(m− s)!|J |!
r|J|+1(m− s+ |J |+ 1)!J !

dJ S̃
J+1j

where, for a scalar form θ,

S1j1+1j2+···+1jr θ = iSj1Sj2 ···Sjr θ

S̃1j1+1j2+···+1jr θ = iSj1 iSj2 · · · iSjr θ .

It is interesting to note that P̃ 2 = 0, but that P 2 6= 0. Proofs that these operators
really do act as homotopy operators modulo pullbacks may be found in the refer-
ences cited (the proof for P is given in [6] for the related operator on jet manifolds,
but the proof for velocity manifolds is essentially the same).

4 Variational problems on jet manifolds

For the purposes of comparison, we give a brief summary of the relevant part of
variational theory on jet manifolds.

Let π : E → M be a fibred manifold, with dimM = m and dimE = m + n,
where the base manifold M is orientable; we take local coordinates xi on M and
(xi, uα) on E. We let Jkπ denote the manifold of k-th order jets of local sections
of π [7], [10]. In this context a Lagrangian of order k is an m-form λ = Ldmx on
Jkπ, horizontal over M . The fixed-boundary variational problem defined by λ is
the search for submanifolds σ(C) ⊂ E satisfying∫

C

((jkσ)∗Xkλ) = 0

for every variation field X on E satisfying X|σ(∂C) = 0, where Xk denotes the
prolongation of X to Jkπ.

Such a variational problem may be expressed in terms of certain other m-forms
called Lepage forms [8]. The m-form θ on J lπ (where l ≥ k) is a Lepage form
if iY dθ is a contact form whenever the vector field Y is vertical over E. It is a
Lepage equivalent of λ if it is a Lepage form, and in addition π∗l,kλ− θ is a contact
form. Every Lagrangian m-form defined on Jkπ has a Lepage equivalent defined on
J2k−1π, although the question of whether there is a suitable geometric construction
depends on the values of m and k.

The simplest cases, as might be expected, are for single-integral problems where
m = 1. For a first-order Lagrangian λ = Ldx on J1π the 1-form

θ = Ldx+
∂L

∂u̇α
(duα − u̇αdx)
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is the unique Lepage equivalent, the Poincaré-Cartan form; it is also defined on
J1π. For a higher-order Lagrangian λ = Ldx on Jkπ the 1-form

θ = Ldx+
k−1∑
p=0

( k−p−1∑
q=0

(−1)q d
q

dxq

∂L

∂uα
(p+q+1)

)
(duα

(p) − uα
(p+1)dx)

is the unique Lepage equivalent, and it is defined on J2k−1π.
For a multiple integral variational problem where m ≥ 2, a first-order La-

grangian λ = Ldmx defined on J1π gives rise to three distinct globally-defined
Lepage equivalents

θ1 = Ldmx+
∂L

∂uα
i

ωα ∧ dm−1xi

θ2 =
1

Lm−1

m∧
i=1

(
Ldxi +

∂L

∂uα
i

ωα

)

θ3 =
min{m,n}∑

r=0

1
(r!)2

∂rL

∂uα1
i1
· · · ∂uαr

ir

ωα1 ∧ · · · ∧ ωαr ∧ dm−rxi1···ir

where ωα = duα−uα
j dx

j (of course θ2 is defined only where the Lagrangian does not
vanish). For a second-order Lagrangian, Lepage equivalents similar to θ1 and θ2
may again be found; it is not known whether there is a Lepage equivalent sim-
ilar to θ3. If m ≥ 3 then it is known that global Lepage equivalents cannot
be constructed in a canonical way without the use of additional data such as
a connection. A list of references for these various constructions may be found
in [11].

5 Homogeneous problems
We now consider m-dimensional variational problems on E, with fixed bound-
ary conditions. For our purposes it is sufficient to consider submanifolds of the
form σ(C), where σ : Rm → E and C ⊂ Rm is a compact m-dimensional sub-
manifold: this is because variational problems are local, in the sense that an
m-dimensional submanifold of E is extremal with fixed boundary conditions if,
and only if, every small piece of it is extremal with fixed boundary conditions.

A vector function Λ = Ldmt ∈ Ω0,m is called a Lagrangian for a parametric
variational problem. It is called positively homogeneous if it is equivariant with
respect to the action of the jet group Lk+

m , where k is the order of the Lagrangian.
If Λ is positively homogeneous then the scalar function L satisfies

di
jL = δi

jL , dI
jL = 0 for |I| ≥ 2 .

The fixed-boundary variational problem defined by Λ is the search for subman-
ifolds σ(C) ⊂ E satisfying ∫

C

((jσ)∗XkL)dmt = 0
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for every variation field X on E satisfying X|σ(∂C) = 0, where Xk denotes the pro-
longation of X to

o

T k
(m)E. We may study this problem by looking for ‘equivalents’

of Lagrangians.

Definition 1. Let Λ ∈ Ω0,m be a positively homogeneous Lagrangian. A scalar
m-form Θm ∈ Ωm,0 is called an integral equivalent of Λ if

Λ =
(

(−1)m(m−1)/2

m!

)
imT Θm .

A vector r-form Θr ∈ Ωr,m−r is called an intermediate equivalent if

Λ =
(−1)r(r−1)/2(m− r)!

m!
irTΘr 0 ≤ r ≤ m− 1 .

It is clear that if Θr+1 is an equivalent of Λ then

Θr =
(−1)r

m− r
iTΘr+1

is also an equivalent. We use the terminology ‘integral equivalent’ because if
σ : Rm → E then (jσ)∗Λ = (jσ)∗Θm, where by jσ we mean the prolongation
of σ to a map Rm →

o

T l
(m)E for l sufficiently large, so that∫

C

(jσ)∗Λ =
∫

C

(jσ)∗Θm ,

from which we see that Λ = Θ0 and Θm have the same extremals.
We may also define some related forms which are used to obtain the Euler-

-Lagrange equations for the problem.

Definition 2. Let Θm be an integral equivalent of Λ; define the scalar (m+1)-form
Em ∈ Ωm+1,0 by

Em = dΘm .

Now let Θr be an intermediate equivalent of Λ for 0 ≤ r ≤ m− 1; define the vector
form Er ∈ Ωr+1,m−r by

Er = dΘr − (−1)rdTΘr+1 .

By a straightforward calculation we see that, corresponding to the relationships
describing a family of intermediate equivalents, we have

Er =
(−1)r+1

m− r
iTEr+1 0 ≤ r ≤ m− 1 ;

the form E0 is called the Euler form of Θm. The various forms we have defined
inhabit two diagonals of our bicomplex.

We shall now impose an additional property on the equivalents of a Lagrangian.
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?

?

?

?
-

-

-

-Θm ∈ Ωm,0 Ωm+1,0 3 Em

. . .

Θ2 ∈ Ω2,m−2

Θ1 ∈

Ω3,m−2 3 E2

Λ ∈

Ω1,m−1 Ω2,m−1 3 E1

Ω
0,m Ω1,m 3 E0

d

d

d

dT

dT

dT

dT

d

�
�

�+

�
�

�+

�
�

�+

�
�

�+

�
�

�+

�
�

�+

�
�

�+

��+Θr =
(−1)r

m− r
iTΘr+1, Θ0 = Λ

Er = dΘr − (−1)rdTΘr+1

Definition 3. Let Λ be a positively homogeneous Lagrangian, and let Θr be an
equivalent of Λ (1 ≤ r ≤ m). We say that Θr is Lepagian if the corresponding
Euler form E0 = ε0 ⊗ dmt ∈ Ω1,m satisfies

SE0 = (Siε0)⊗ dm−1ti = 0 ,

so that E0 is horizontal over E.

So far, we have described conditions which integral (or intermediate) equivalents
and their Euler forms must satisfy, but we have not yet indicated whether such
forms exist. We shall now remedy that deficiency.

Theorem 1. The vector 1-form

Θ1 = PdΛ

defined on
o

T 2k−1
(m) E is an integral equivalent of Λ (m = 1) or an intermediate

equivalent (m ≥ 2), and is Lepagian. It is called the Hilbert equivalent of Λ.

Proof. From the definition of P ,

PΦ = P jφ⊗ dm−1tj , where P j =
∑

J

(−1)|J|

(|J |+ 1)J !
dJS

J+1j ,

so that

iTPdΛ = iTP (dL⊗ dmt)

= iT(P jdL⊗ dm−1tj)

= ikP
jdL⊗ dtk ∧ dm−1tj

= ijP
jdL⊗ dmt .
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Then

ijP
jdL = ij

(∑
J

(−1)|J|

(|J |+ 1)J !
dJS

J+1jdL

)

=
∑

J

(−1)|J|

(|J |+ 1)J !
dJ ijS

J+1jdL

because [ik, dj ] = 0; next

ijP
jdL =

∑
J

(−1)|J|

(|J |+ 1)J !
dJ(SJ+1j ij + SJ+1j−1k ikj )dL

because [ij , Sk] = ikj and [iJj , S
k] = iJ+1k

j , but by homogeneity iJj dL = dJ
j L = 0 for

(|J | ≥ 2); consequently

ijP
jdL = ijjdL

because, when |K| ≥ 1, SK vanishes on functions and hence on ijdL and ikj dL;
and so, finally,

ijP
jdL = mL ,

giving iTPdΛ = mΛ, so that Θ1 is indeed an equivalent (integral or intermediate,
as appropriate).

To show that Θ1 is Lepagian, note that

SdTΘ1 = SdTPdΛ

= SdT(P jdL⊗ dm−1tj)

= S
(
diP

jdL⊗ (dti ∧ dm−1tj)
)

= S
(
djP

jdL⊗ dmt
)

= Si(djP
jdL)⊗ dm−1ti

= Si

( ∑
|J|≥0

(−1)|J|

(|J |+ 1)J !
dJ+1jS

J+1jdL

)
⊗ dm−1ti

= Si

( ∑
|K|≥1

(−1)|K|−1

K!
dKS

KdL

)
⊗ dm−1ti ;

but [Si, dk] = δi
k, giving [Si, dK ] = K(i)dK−1i

, so that

SdTΘ1 =
∑
|K|≥1

(−1)|K|−1

K!
(dKS

K+1i +K(i)dK−1i
SK)dL⊗ dm−1ti

= SidL⊗ dm−1ti

= S(dL⊗ dmt) = SdΛ

as the two parts of the sum over the multi-index K combine to give a collapsing
sum. It it then immediate that SE0 = 0, as required. �
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Theorem 2. Let Λ be a homogeneous Lagrangian, with Hilbert equivalent Θ1 and
Euler form E0. If Θ̃1 is any other Lepagian vector 1-form equivalent to Λ, with
corresponding Euler form Ẽ0, then

Ẽ0 = E0 and Θ̃1 −Θ1 = dTΦ

for some Φ ∈ Ωr,m−2, so that if m = 1 then Θ̃1 = Θ1.

Proof. It follows straightforwardly from the Lepagian condition SẼ0 = 0 that
P Ẽ0 = 0, so that

0 = P Ẽ0

= P (dΛ− dTΘ̃1)

= Θ1 − PdTΘ̃1

= Θ1 − (1− dTP )Θ̃1 ,

giving Θ̃1 −Θ1 = dTP Θ̃1 (or Θ̃1 = Θ1 if m = 1). Thus

Ẽ0 − E0 = (dΛ− dTΘ̃1)− (dΛ− dTΘ1)

= −d2
TP Θ̃1

= 0 . �

In coordinates, if Λ = Ldmt then the Hilbert equivalent and the Euler form are
given by

Θ1 =
∑

I

∑
J

(−1)|I|(I + J + 1i)!|I|!|J |!
(|I|+ |J |+ 1)!I!J !

dI

(
∂L

∂ya
I+J+1i

)
dya

J ⊗ dm−1ti ,

E0 =
∑

I

(−1)|I|dI

(
∂L

∂ya
I

)
dya ⊗ dmt .

If m ≥ 2 then there can indeed be Lepagian vector 1-forms which are equiva-
lent to a given Lagrangian but differ from its Hilbert equivalent. To see this, let
Φ ∈ Ω0,m−2, so that dTdΦ ∈ Ω1,m−1. Then

iT(Θ1 + dTdΦ) = iTΘ1 − dTiTdΦ = Λ− d2
TΦ = Λ

and
dΛ− dT(Θ1 + dTdΦ) = dΛ− dTΘ1 − d2

TdΦ = E0 ,

although there is no reason why we should have dTdΦ = 0. For instance, when
m = 2 we could take Φ = y1 ∈ Ω0,0 and then dTdΦ = dy1

i ⊗ dti 6= 0.
We can now construct a version of the first variation formula for homogeneous

variational problems, using the Hilbert equivalent Θ1 of a Lagrangian Λ. Given
a variation field X on E with X|σ(∂C) = 0, and its prolongation X̂ on

o

T l
(m)E
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with l sufficiently large, we may use the standard formula d
bX = di

bX + i
bXd, Stokes’

Theorem, and the formula dΛ = E0 + dTΘ1 to obtain∫
C

(jσ)∗d
bXΛ =

∫
C

(jσ)∗di
bXΛ +

∫
C

(jσ)∗i
bXdΛ

=
∫

∂C

(jσ)∗i
bXΛ +

∫
C

(jσ)∗i
bXdΛ

=
∫

C

(jσ)∗i
bX(E0 + dTΘ1) .

But∫
C

(jσ)∗i
bXdTΘ1 =

∫
C

(jσ)∗dTi bXΘ1 =
∫

C

d
(
(jσ)∗i

bXΘ1

)
=
∫

∂C

(jσ)∗i
bXΘ1 = 0

because prolongations commute with total derivatives, and the pull-back of dT

to Rm is d; thus ∫
C

(jσ)∗d
bXΛ =

∫
C

(jσ)∗i
bXE0 =

∫
C

(jσ)∗iXE0

because E0 is horizontal over E.
Now if m = 1 then the Hilbert equivalent is an integral equivalent of Λ. But if

m ≥ 2 then this is no longer true, and we need some further work to find integral
equivalents. Let Λ = Ldmt be a positively homogeneous Lagrangian with m ≥ 2,
and write its Hilbert equivalent Θ1 as

Θ1 = ϑi ⊗ dm−1ti ;

the scalar 1-forms ϑi are called the Hilbert forms of Λ.

Definition 4. If Λ never vanishes, define the Carathéodory equivalent Θm ∈ Ωm,0

by

Θm =
1

Lm−1

m∧
i=1

ϑi .

Theorem 3. The Carathéodory equivalent Θm is an integral equivalent of Λ.

Proof. We must show that imT Θm = (−1)m(m−1)/2m!Λ, so rewrite Θm as

Θm =
1

m!Lm−1

∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m) ,

where Sm is the permutation group, and use induction. The calculation uses
dj ϑi = δi

jL, the proof of which is similar to that used to show that iTΘ1 = mΛ;
we also define τr,s ∈ Sm by

τr,s(i) =


m− s (i = r)
i− 1 (r + 1 ≤ i ≤ m− s)
i otherwise .
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Now

iT

( ∑
σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m−s) ⊗ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

)
=
∑

σ∈Sm

(−1)σdj

(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s)

)
⊗ dtj ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

=
m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1
(
ϑσ(1) ∧ · · · ∧ (dj ϑσ(r)) ∧ · · · ∧ ϑσ(m−s)

)
⊗

⊗ dtj ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= L

m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1
(
ϑσ(1) ∧ · · · ∧ ϑσ(r−1) ∧ ϑσ(r+1) ∧ · · · ∧ ϑσ(m−s)

)
⊗

⊗ dtσ(r) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= L
m−s∑
r=1

∑
σ∈Sm

(−1)σ(−1)r−1(−1)m−r−s

{
(
ϑστr,s(1) ∧ · · · ∧ ϑστr,s(r−1) ∧ ϑστr,s(r+1) ∧ · · · ∧ ϑστr,s(m−s)

)
⊗

⊗ dtστr,s(r) ∧ dtστr,s(m−s+1) ∧ · · · ∧ dtστr,s(m)

}
= (−1)m−s−1L

m−s∑
r=1

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

= (−1)m−s−1(m− s)L
∑

σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m) ,

so if

isTΘm =
(−1)s(2m−s−1)/2

(m− s)!Lm−s−1

{
∑

σ∈Sm

(−1)σϑσ(1) ∧ · · · ∧ ϑσ(m−s) ⊗ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

}
then

is+1
T Θm =

(−1)s(2m−s−1)/2

(m− s)!Lm−s−1

{
(−1)m−s−1(m− s)L

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

}
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=
(−1)(s+1)(2m−s−2)/2

(m− s− 1)!Lm−s−2

∑
σ∈Sm

(−1)σ
(
ϑσ(1) ∧ · · · ∧ ϑσ(m−s−1)

)
⊗

⊗ dtσ(m−s) ∧ dtσ(m−s+1) ∧ · · · ∧ dtσ(m)

as required. Hence

imT Θm =
(−1)m(m−1)/2

L−1

∑
σ∈Sm

(−1)σdtσ(1) ∧ · · · ∧ dtσ(m)

= (−1)m(m−1)/2m!Ldt1 ∧ · · · ∧ dtm

= (−1)m(m−1)/2m!Λ . �

We see also from the induction formula that

im−1
T Θm = (−1)m(m−1)/2 (m− 1)!Θ1

where Θ1 is the Hilbert equivalent; consequently Θm is Lepagian. The Carathéo-
dory equivalent of a nonvanishing homogeneous Lagrangian is the ‘parametric’
version of the Lepage equivalent θ2 for a variational problem on a jet manifold,
with the difference that there is no longer a restriction to first or second order
Lagrangians.

We can now create a ‘variation formula’ for Θm. For a variation field X on E
with X|σ(∂C) = 0,∫

C

(jσ)∗d
bXΘm =

∫
C

(jσ)∗i
bXdΘm +

∫
C

(jσ)∗di
bXΘm

=
∫

C

(jσ)∗i
bXEm +

∫
C

d(jσ)∗i
bXΘm

=
∫

C

(jσ)∗i
bXEm +

∫
∂C

(jσ)∗i
bXΘm

=
∫

C

(jσ)∗i
bXEm

=
∫

C

(jσ)∗imT i bXEm

= (−1)m

∫
C

(jσ)∗i
bX i

m
T Em

= (−1)m(m−1)/2m!
∫

C

(jσ)∗i
bXE0

= (−1)m(m−1)/2m!
∫

C

(jσ)∗iXE0

which is independent of the ‘prolonged’ part of X̂.
Finally, we consider the possibility of other integral equivalents of a Lagran-

gian Λ. We can, of course, obtain such an equivalent by adding any contact form
to Θm; but it is of greater interest to see if we can obtain equivalents which have
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particular desirable properties. The analogy of Lepage equivalents for variational
problems on jet manifolds suggests that there might be other possibilities in the
parametric case, and there is indeed a version of θ3 for first-order homogeneous
Lagrangians. Let Λ be such a Lagrangian, and put

Θ̂r+1 = (−1)rPdΘ̂r (1 ≤ r < m) ,

so that each Θ̂r is a first-order vector form. Using commutator relations as before,
we obtain

Θ̂r =
(−1)r

m− r
iTΘ̂r+1

so that Θ̂m is a Lepagian integral equivalent of Λ, the fundamental equivalent of Λ.
Thus dΘ̂m = Êm = 0 if, and only if, Ê0 = E0 = 0, the same property satisfied by θ3
in the jet manifold case [5].

6 Conclusions
Parametric variational problems are often studied on Grassmannian bundles. There
is, however, some interest in considering the versions of the problem defined on ve-
locity manifolds, subject to the homogeneity condition. The bicomplex of vector
forms performs a similar rôle to the variational bicomplex in the jet bundle theory,
but the intermediate and integral equivalents corresponding to the Lepage equiva-
lents may be defined globally for forms of arbitrary order. It seems reasonable to
expect that further study of the subject in this context would produce useful re-
sults concerning related concepts such as regularity, symmetry and the Helmholtz
equations for the inverse problem of the calculus of variations.
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